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Abstract. We study a constrained version of the shortest path prob-
lem in polygonal domains, in which the path must visit a given target
polygon. We provide an efficient algorithm for this problem based on the
wavefront propagation method and also present a method to construct
a subdivision of the domain to efficiently answer queries to retrieve the
constrained shortest paths from a single-source to the query point.

1 Introduction

In this paper, we study the problem of finding a shortest path between two points
inside a polygonal domain P (a simple polygon with a number of polygonal holes
inside it) while the path is constrained to visit (i.e. has non-empty intersection
with) a given target polygon T inside the free space. We call such a path a
shortest T -visiting path. Our goal is to construct the shortest T -visiting path
map SPMT (s, P ), a decomposition of the free space into a number of regions
such that the combinatorial structure of the shortest T -visiting path from the
given source point s to any point in a region is the same. This way, we will be
able to find the length of the shortest T -visiting path between s and any query
point in logarithmic time and report the actual path with an additional cost
proportional to the complexity of the path. If the number of vertices in P and
T be n and m respectively, and N = m + n, we preprocess the input (s, P, T )
in O(N log N) time to construct a subdivision of the same space, so that the
queries can be answered in O(log N) time.

Our method is based on the continuous Dijkstra paradigm to compute shortest
paths in polygonal domains [4,10]. The main idea of our algorithm is to propagate
a wavefront from s to visit T . Parts of T reached this way work as pseudo-
sources for finding shortest T -visiting paths to points of the free space. We let
those wavelets that first visit T propagate further and also propagate back a
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reflected version of those wavelets to cover points of the free space that shortest
T -visiting paths to them visits the boundary of T and reflect back. This idea
has been previously introduced in [7] by the authors.

A similar problem has been studied by the authors for the case of simple
polygons [8] resulting in a linear algorithm for convex target polygons, as well as
a method to construct the shortest T -visiting path map. The method presented
here can be used to solve that problem for non-convex polygons. Extending
the problem to multiple target polygons makes the problem similar to TSP with
neighborhoods [2,3] which is NP-hard. Dror et al. [1] have presented an algorithm
for the problem of finding the shortest path that visits k given convex polygons
in a pre-specified order. Also, they have shown that the problem is NP-hard for
the case of non-convex polygons.

We first introduce the concept of reflective subdivision in Sect. 2 which deter-
mines the structure of the shortest T -visiting paths without any obstacles in the
plane. Then we extend this concept to the general case of polygonal domains in
Sect. 3.

2 The Reflective Subdivision

To study the properties of the constrained shortest paths, we start by a simple
case in which there is no obstacles in the plane. We are given a (possibly non-
convex) target polygon T with m vertices and a point s outside T . We define
G(s) as the set of points where shortest T -visiting paths from s have their first
intersections with T and call it the gate of s to T , or the gate of s for short. If
T is a convex polygon, G(s) is a connected chain on the boundary of T [1]. In
general, G(s) is not connected, but since we assumed there is no obstacles in the
plane, there is at most one segment in G(s) on any edge of T (which of course
may be the entire edge).

Computing G(s) can be easily done using algorithms for computing visibility
polygon of a point in simple polygons [9,5], since if we consider T as an obstacle,
G(s) is the part of the boundary of T visible from s.

For an arbitrary point x, consider a shortest T -visiting path from s to x. If
the segment sx intersects T , this segment is the desired path. The set of such
points x makes a connected region called the pass-through region. If sx does not
intersect T , the path consists of two segments sc and cx where c is a point on
the boundary of T . We call c the contact point.

If c is an interior point of an edge e of T , the angle between sc and e is the
same as the angle between e and cx . We call the part of G(s) on the interior of
e an edge-reflector. If c is a vertex v of T , we call v a vertex-reflector. It easy to
see that a vertex in G(s) is a vertex-reflector if the angle made by the incident
edges inside T is less than π. We define the root of a reflector r as r itself if it is
a vertex-reflector, and s reflected about r if it is an edge-reflector.

Since the pass-through region can be easily computed and the corresponding
shortest T -visiting paths are straight segments, we limit our attention to its
complement, called D.
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The reflective subdivision RS(s, T ), or RS(s) for short, is the decomposition
of D into faces such that the contact point of every point in a face is the same
vertex-reflector r, or belongs to the same edge-reflector r. We call such a face a
reflective region of r (Fig. 1).

s

T

Fig. 1. The reflective subdivision RS(s, T ): The shaded area is the pass-through region.
The edge-reflectors are shown in thick segments and the vertex-reflectors are shown in
black circles.

Some edges of RS(s) are from the boundary of D. Other edges separate re-
flective regions of different reflectors. In general, the edge separating two regions
of reflectors r1 and r2 with roots a and b respectively, is defined by the bisector
curve of a and b. This curve is a hyperbolic curve in general and is the locus of
points x such that w(a) + |ax| = w(b) + |bx| where w(a) is |sa| if a is a vertex-
reflector and zero if it is an edge-reflector. The following lemma establishes a
linear bound on the size of this decomposition.

Lemma 1. For a target polygon T with m vertices, the complexity of RS(s, T )
is O(m).

Proof. We prove that for a reflector r, there is at most one reflective region. First
observe that the points on a reflector r belong to its own reflective regions. Now
consider a point x in a reflective region of r and assume c is the contact point of
x. We can easily check that every point y on cx belongs to the same reflective
region.

Now consider a case in which there is a reflector r with root a that has two
reflective regions f1 and f2. Since these two regions are distinct, there exists a
ray R emanated from a in the space between f1 and f2 such that every point on
R from the intersection of R and r away from a belongs to the reflective regions
of reflectors other than r. Let x be the intersection of R and r. Then, the length
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of the T -visiting path between s and x through r is the same as the length of
such a path through another reflector namely r′. So, x lies on the bisector curve
of the roots of r and r′. If this curve is a straight line, part of either f1 or f2
will be in the half-plane geodetically closer to r′ which is impossible. The case
that the curve is a not a straight line and has two intersections with r is not
acceptable since part of r will reside in the reflective region of r′. So, there is
at most one face in RS(s) corresponding to a reflector r, hence the number of
faces is O(m). The vertices of this subdivision are of these kinds: vertices of T ,
endpoints of edge-reflectors, and intersections between bisectors. The number of
the first two kinds is O(m). A vertex of the third kind borders at least three
faces, hence the total number of vertices is O(m). ��

We can compute RS(s) in O(m log m) time and O(m) space using a simple sweep
process. For a point x ∈ D, define δ(s, x) to be the length of the shortest T -
visiting path from s to x. We sweep D based on the increasing value of δ. The
sweep structure is a wavefront consisting of circular arcs (wavelets) centered at
the roots of the reflectors. Initially, there will be a wavelet corresponding to each
reflector. The release time for a vertex-reflector with root a is the length of sa.
At any instant during sweep, we say two bisectors are adjacent if they bound
the same wavelet.

The only event in the sweep process occurs when the two bisectors separating
the region of r from its two adjacent regions intersect. At this time the wavelet
sweeping the region of r disappears and its two neighbors become adjacent. Since
the intersections only occur between two adjacent bisectors, when processing an
event, we can compute the times at which the newly created bisector intersects
its two adjacent bisectors. It is easy to see that processing all O(m) events can
be done in O(m log m) time and O(m) space.

3 Polygonal Domains

Let P be a polygonal domain having n vertices. A T -visiting path is a path in
the free space having non-empty intersection with the target polygon T which
we assume to have m vertices. We define the gate of s as before as the set of
points where the shortest T -visiting paths from s have their first intersections
with T . Again, G(s) consists of a number of segments on the boundary of T .

Consider a maximally connected set of points on an edge e of T such that
the last vertex on the shortest paths from s to them is the same vertex v of
P . We call such a segment an edge-reflector and define its root as v reflected
about e. Like before, a vertex of T in G(s) is called a vertex-reflector and its
root is the vertex itself. The edge-reflectors are a subset of the segments made
on the boundary of T when intersected by SPM(s, P ). In general, there can be
O(mn) such segments, but the following lemma shows that only O(m + n) of
these segments are edge-reflectors.

Lemma 2. For a polygonal domain and a target polygon having n and m ver-
tices respectively, there are O(m + n) edge-reflectors.
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Proof. Let f be a cell of SPM(s) with root r. By adding three kinds of segments,
we can decompose f into triangle-like regions (Fig. 2):

1. Segments connecting r to the intersection points between the boundaries of
T and f ,

2. segments connecting r to the vertices of f , and
3. segments each connecting r to some point on the boundary of f passing

through a vertex of T inside f .

Since f is star-shaped with kernel r, all these segments are inside f and connect
r to some point on the boundary of f . The regions obtained this way are either
triangles, or bounded by two segments incident to r and a hyperbolic curve.
Each region intersects a number of edges of T (possibly zero), but there is no
vertices of T inside a region. Thus, the intersection of a region with T makes a
number of segments with their end-points lying on the two boundary segments
incident to r. Since the segments does not intersect inside the region, they can
be ordered according to the increasing distance from r. It easy to check that
only the nearest segment to r is a part of an edge-reflector. Since the shortest
T -visiting paths to points on other segments already intersect it. Since there are
at most O(m + n) triangle-like regions in total, the number of edge-reflectors is
bounded by the same order. ��

f

r

T

Fig. 2. Proof of lemma 2: The thick segments are parts of G(s)

To compute the set of reflectors, we can use the algorithms for constructing the
shortest path map of a polygonal domain such as the algorithm of Hershberger
and Suri [4] or that of Mitchell [10]. To do this, we consider T as an obstacle
and define the polygonal domain P ′ = P − T . If we construct SPM(s, P ′), the
boundary of T is partitioned into a number of segments. Some of these segments
are edge-reflectors. Consider a segment that is made by the SPM cell with root
r. If r is a vertex of T , then the segment cannot be a part of G(s). Assuming
r is a vertex of P , we locate r in the two shortest path trees SPT(s, P ) and
SPT(s, P ′). If the path from s to r is the same in both trees, considering T as
an obstacle has no effect in the shortest path to the points in the segment under
consideration, so it is an edge-reflector. So, computing the edge-reflectors can be
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done in O((m + n) log(m + n)) time and the same space. This computation also
produces a list of vertex reflectors.

We define the pass-through region as before. Let D be the free space with
the pass-through region removed. RS(s, T ) is the partition of D into regions
according to the reflector that is first visited along shortest T -visiting paths
from s. A similar argument as the one in lemma 1 proves there are O(m) regions
in the subdivision and its complexity is O(m + n).

Computing the shortest T -visiting path map SPMT (s, P ) can be done using
wavefront propagation method. This map has two parts: one corresponding to
the pass-through region, and another for D. The first part is SPM(s, P ) restricted
to the pass-through region. For the second part, we have multiple sources which
are the roots of the reflectors. Each source has a specified release-time. For
vertex-reflectors, the release time is the geodesic distance from s to that vertex,
and for the edge-reflectors, it is the geodesic distance from s to the last vertex
v on the shortest paths from s to points on the edge-reflector, plus d which is
the distance from v to the reflector segment. To cover points in D, we use a
wavefront propagation algorithm to “reflect back” those parts of the original
wavefront started from s that have visited T . Note that the initial wavelets are
to be computed carefully, since some sources may lie outside D. For an edge-
reflector, if v is the last vertex on the shortest path from s to points on the
reflector, the initial wavelet is centered at the v̄ which is v reflected about the
edge-reflector, and the radius is d.

Both algorithms of [4] and [10] are capable of handling multiple source with
specified release-times. If we use the first algorithm (that of Hershberger and
Suri) which is worst-case optimal, we obtain O((m+n) log(m+n)) time and space
bounds to construct SPMT (s, P ). Since computing the reflectors can be done
using the same algorithm, the order remains the same for the entire computation.
Hence we have our main result as follows.

Theorem 1. For a polygonal domain P and a target polygon T inside P with
N vertices in total, and a source point s, we can compute the shortest T -visiting
path map SPMT (s, P ) in O(N log N) time and space.

4 Conclusion

We showed how one can use the wavefront propagation method to partition
the free space in a polygonal domain according to the combinatorial structure of
shortest paths from a given source point s to the points in the free space that has
non-empty intersection with a target polygon T . We showed how to compute this
subdivision having an algorithm for wavefront propagation capable of handling
multiple sources with specified release-times. The best known method so far ([4])
solves this problem in O((m + n) log(m + n)) time and space.

We leave an open problem that is whether one can use the methods based
on searching the visibility graph to find the shortest T -visiting path between
two points. This is particularly important, since the best known algorithm using
this method by Kapoor et al. [6], solves the shortest path problem in polygonal
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domains in O(n + h2 log n) which is only linear in n, while being quadratic in
the number, h, of holes.
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