/I OthAnnual

({ P Conference of Computer Society of Iran
| February 15-17, 2005

ITRC

Parallel Subspace Clustering

Hamid Nazerzadeh Mohammad Ghodsi Saba Sadjadian

Sharif University of Technology
{nazerzadeh. ghodsi. sadjadian}@ce.sharif.ir

Abstract

Subspace clustering is an extension of traditional clustering that discovers clusters respected
to the different subspaces within a data-set. The time complexity of the algorithms to explore
the high dimensional spaces and find clusters in subspaces is exponential in the dimensionality
of the data and is thus extremely computationally intensive. Therefore, employing parallel algo-
vithin for this problem can reduce its time complexity. In this paper, we propose an architecture
for parallel implementation of the Locally Adaptive Clustering Algorithm. We demonstrate the
clliciency ol our approach through analysis and experimental cvaluation.

Keywords: parallel algorithms. data clustering, PRAM model

1 Introduction

The enlarging masses of information emerging by the progress of technology, makes clustering of
very large masses of high dimensional data a challenging task. This is a data mining task that is
widely used in many fields, such as pattern recognition, image processing and analysis of genes in
bioinformatics [1]. that concern with grouping similar data. Fundamentally. finding the homogeneous
groups of data is the main point of clustering. The resemblance between the data in one cluster is
based on different simnilarity measures. The data is mostly represented as vectors of measurements or
points in multi-dimensional space. Calculating the distance measures over the various dimensions in
a data-set can be considered as similarity measures which in some applications is a computationally
intensive task.

Recentlv. many researches have shown interest in the problem of high dimensional data clustering
and have proposed several solution approaches. But, the curse of dimensionality is what these
methods suffer from. As the number of dimensions of the data increases, the distance measures
calculated from the distances of attributes over dimensions become meaningless. In such spaces, for
each pair of data. vou can find at least one dimension where the points are far from each other on
that dimension.

A potential solution to this problem is the use of Subspace Clustering which seeks to discover the
set of objects in the data-set that are correlated along some of dimensions. CLIQUE [2] proposed
as a stbspace clustering finds the dense regions in each subspace through the bottom-up search-
ing wethods: however, the resulted clusters are not disjoint. Performing a top-down searching,
PROCLUS [3]. is another algorithm which partitions data in to disjoint groups.

Local Adaptive Clustering, or LAC [4], is another subspace clustering algorithm that works
differentlv from the traditional clustering algorithms (e.g. CLIQUE, PROCLUS) which are based
on the idea of feature selection. LAC. assigns weights to features according to the local similarities
of the data along dimensions in such a way that features that correlate strongly with the data receive
large weights while the loosely related dimensions are assigned small values. These characteristic of

Proceeding of CSI Computer Conference

LAC algorithm makes it more efficient in some areas, since considering all the dimensions, makes
the algorithm less prone to loss of information.

Some characteristic of LAC, such as local weight estimating and independency of clusters, make
it attractive for parallel implementation. and that is why we have focused on this algorithm. Our
main coutribution in this paper is to propose a parallel version of LAC, or PLAC, on Parallel
Random Access Machine (PRAM) [5]. As we know, LAC suffers from the long running time in
some applications. Our parallel approach. has achieved a significant speed up in these cases. In
applications such as Gene clustering for which the similarity are measured by computationally
intensive methods such as Transformation Distance [6], we achicve a consequential efficiency of
O(1).

The reminder of the paper is organized as follows. We first describe the formal definition of
clustering problem and the LAC algorithmm. The structure of our solution is discussed in section 3
followed by the parallel version of LAC. In section 5. we describe our experimental results.

2 Locally Adaptive Clustering Algorithm

[n this section. we give a formal definition of the stated clustering problem followed by the description
of LAC. First. we define some significant terms: weighted cluster and centroid. Consider a set of
points in some n-dimensional space. A weighted cluster C is a subset of data points including a
point called centroid such that the points in C are clustered around its centroid according to the Lo
norm distance which is weighted using a vector of weights. In other words, the concept of cluster is
not basced ouly on points, but also involves a weighted distance factor along each dimension.

Forually. given aset S of points z in the n-dimensional space, a set of k centroids {ei, -~ er}y65 €
S.j = 1.---.k coupled with a set of corrcsponding weight vectors {wy.---,wx}, w; € R", J =
1,---. k, partition S into k sets {S1,---, Sk }:

S; = {I|(zn:-wﬁ(:az — i)Y < (O wulz: — @)®)V?, W #)
t=1

T

where u,; and ¢,; represent the sth components of vectors w; and c; respectively and the operator
—_minus operator. is defined as the distance of the operand points in S.

The LAC algorithn is presented in Table 1. In this algorithm, a distributed set of points in S
are chosen first as the k centroids. In the next step, the weight vectors are initialized by 1//n.
Steps 3 to 7 presents the main iterating phase of the algorithm. For each centroid, in each iteration,
the corresponding sets S; is computed according to the definition above. Then, X i, the average
distance from ¢; to the points in S; due to feature 7, is calculated. The smaller X;; the larger will
be the correlation of points along dimension 7. The values of weight vector are updated according
to the formula wj; = exp(—h x X;i)/(3 =, (exp(2 x —h X X;1)))Y?, where h is a experimental
parametcr which determines the effect of X;; on the new value w;;. Bottou et all (8], shows that
the exponential weighting is more sensitive to changes in local feature correlation [8]. This iteration
continues nntil the S;, for all values of j converge. It is proved in [9] that LAC will in fact converge.
Also. the result is local minimum of the error function:

kK n
.EF?'(C+ VV) = Z ’LUjiE_"{ﬁ
1

s

where i | w?, = 1V

231

Proceeding of CSI Computer Conference

INPUT: S: set of points z, kK and A

OUTPUT: weighted clusters, centroids ¢;. - - -.c; and weight vectors wy, - - -, wg.
1. Start with A initial centroids ¢;.- - - . Ck.,
2. Set w;; = 1/\/n. for each centroid ¢;. j = 1,---,k and each teature i = 1,---,n,

3. For cach centroid c;, and for each point
e Sct §; = {2z]j = miniLu(c, z)}, Lula,) = (T, wii(zi — ¢:)*)Y%;
4. CoMPUTE NEW WEIGHTS. For each centroid ¢;. and for each feature u:

e Sct Xj; = Z.E.msj (i — z:)?/15;|

L] X "h}f.:{
L I-LJ'E."T “1,.“ = Tt p{ “”.l} e .-.,:
: E exp(2x—hxX;))!/=

i=1

5. For cach centroid ¢, and for each point

e Recompute S5 = {z|j = ming L. (c,)};

6. COMPUTE NEW CENTROID. Set ¢; = 372 ,es, T
J

:-ule

[terate 3.4.5.6 until convergence.

Table 1: The Locally Adaptive Clustering Algorithm

3 Design & Architecture of PLAC

In this section we deseribe the design principles of PLAC: The Parallel Locally Adaptive Clustering
method. Plac structure is based on Parallel Random Access Machine(PRAM) architecture and its
hasic routines.

Suppose we are to find a set of k centroids for clustering objects in a n-dimensional space. PLAC
architecture. for solving such instance of the clustering problem, consists of n x k processors which
share a global memory (see Figure 1). We group the processors into k bunches of size n and denote
them C-Colurnns. Each processor in a group corresponds to one of the attributes of the space,
consequently. A C-Column represents a centrotd. The Leader is a process of an C-Column which
maintains the communicating operations among the C-Columns. The leaders produce a set which

we name it L-Row.
In the following subsections, we will go thorough the design of an interface for implementing

PLAC over PRAM. This interface is based on the basic PRAM’s operations such as broadcasting and
semi-grouping.

3.1 C-Column

Cooperating with cach other, the processors of a C-Column perform the operations invoking the
attributes of the corresponding centroid in the clustering algorithm. In other words, the processors
act as one weighted cluster. The term C; is used to refer to the C-Column corresponding to the :th
centroid.

Every C-Column has its own memory in the globally-shared memory. In fact a C-Column can be
viewed as a PRAM. To implement PLAC. some simple operations arc defined on C-Columns. In the
following. these operations are described based on the simple routines of PRAM and are corresponding

232

Proceeding of CSI Computer Conference

— e e ammw o T m—

Figure 1: The structure of PRAM processors

to C;(1 < i < k). We denote the representing processor of dimension j (the jth attribute) of C; by
Pﬁ(l < j < ﬁ‘.). The Ciiy Wyes lS_-_;-l and Ly values are maintained b}' -Pjt

beast(msg): Broadcasting the value of msg to all of the other prbcessars—..

load(x:): Pj;s read x; from the memory.

dist(.): load(r) is performed then Pj;s compute the distance between Z; and c;; in parallel and
store the result on the memory.

surm: Compute the sum of the values written on the shared memory.
cum,.: P,; maintains the new value of ¢;; by cumulating the value of z; € Sj.

cum,: For maintaining the value of X;;, P;; performs the following operation: cumulating the
value of (¢;; — z;)? and increasing |Sj| by.

update,.: Updating the c;; by dividing the corresponding cumulated value by |5;|.
update .. Updating the z;; by dividing the representing cumulated value by |5;].

updatc,.: Using basic operations bcast and sum, the new value of w;; is computed in parallel
according to the following formula:

exp(—h x _ﬁfjé)/Zexp(E X —h X Xﬁ))lfz

=1

In Table 2. the complexities of these operation on the different PRAM architecture are listed.

233

Proceeding of CSI Computer Conference

ARCHITECTURE C-COLUMN L-ROW
bcast load dist sum | cum update min CONVerge
{z,c} | {z,c} w
EREW logn 1 d logn 1 1 logn | logk log k
CRCW-SUM 1 1 d 1 1 1 1 log k log k
CRCW-MIN 1 1 d logn 1 1 log n 1 1
SEQUENTIAL n n n x d n n n n k k

Table 2: The time complexity of the operations over different architecture. d is the cost of computing
the similarity of to features. '

3.2 L-Row

[-Row is the sot of the leaders of the C-Columns. These processors collaborate together for commu-
nicating the data and perform aggregation operation among the C-Columns. Similar to C-Columns,
L-Row can be viewed as a PRAM which has its own part in the shared memory. Two main operations
are defined on L-Row: min and converge.

In some parts of the algorithm we need to find the minimum value among the leader processors.
Finding the closest centroid to an object or converge operation are instances of such operations.
min is the operation defined to compute such minimum value.

Clustors are converging when the Sj(1 < j < k)s do not change. We estimate the convergence by
considering the size of S;s. We assume that the clusters are converging when the size of 5;s remains
constant. after v iterations where v is a constant which will be evaluated through the experiments;
we find 7 a reliable value for v in our evaluation. converge operation inspects whether the sets are
converging or not. This operation can be easily performed by observing the maximum difference
of old aud new value of |S;|. Note that the maximum of some positive numbers can be found by
searching for the minimum in negatives of these numbers. We list the complexities of these operations

in Table 2.

4 Implementation of PLAC

In this scetion, using the interface defined in the previous section, we describe the parallel imple-
mentation PLAC. The computationally complex part of the algorithm is the iteration part while the
other parts executed only once. In the following, we present the implementation of iteration phase
of LAC. The > mark, indicates that the operation is done inside one processor.

The analysis of PLAC follows. Our main contribution is reducing the time complexity of iteration
of parts 3 to 7 where the number of iterations depends on the characteristics of input data. It 1s
clear that most of the time of the program spend on iteration 3 and 5 and we can neglect the other
part to compute the time complexity.

Parts 3 and 5 cousist of dist, sum, min and cumg, .} operations. In Table 4. we list the time
complexity of these operations on different PRAM’s architectures. The term d is the cost of measuring
the similarity of to features. The complexity of d varies gravely due to the different applications.
Wo have counsidered two cases:, d € O(1) and d € Q(logn + logk). Former for the data-sets are
simple veetor of real numbers and the later. according to applications such as Gene clustering when
the similavity are measured by, are computationally intensive methods. As it become clear from the
Table 3. for large value of d we will have consequential speed-up and efficiency of O(1).

234

Proceeding of CSI Computer Conference

3. For each point z do
For each C-Column C;,,_,,, do:
C;.dist(x)
Ci.sum
L-Row.min
> If min is equal to value computed by C; then:
Ci.cumy
1. For each C-Column C; . ., do:
C;.update,,
C;.update,,,
. For cach point x
For each C-Column C; , _,,, do:
C;.dist(x)
Ci.sum
L-Row.min
> If min is equal to value computed by C; then:
C;.cum,
6. For each C-Column C;,_,,, do:
C;.update,,
7. If L-Row.converge

-1

Terminate.
Table 3: Parallel LAC
architecture complexity d=0(1) d = Qlogn + logk)
speed-up efficiency | speed-up | efficiency
SEQUENTIAL nxkxd+n+~k - - - -
EREW d + logn + logk + O(1) | (kn)/logkn | 1/logkn O(kn) O(1)
CRCW-SUM d + logk + O(1) (kn)/logk 1/logk O(kn) O(1)
CRCW-MIIN d+logn+ O(1) (kn)/logn 1/logn O(kn) O(1)

Table 4: The time complexity of the part 3 of the LAC algorithm over different architecture. d is
the cost of computing the similarity of to features.

235

Proceeding of CSI Computer Conference

__0=10000 -+- 6=1000 - 0=100 _ d=10

4=10000 - =- g=1000 - d=100" fi.f.i'!f?_.

6 0.90 .
0.80 -
5
0.70 -
4 0.60 -
.- [] - i
gb Eﬂ.ﬁ-ﬂ' ! - & -
E 3 ﬁ |
3 5%
2 0.30 |
0.20
! |
0.10 -
0 e e iy 0.00 ! ey =i
3000 5000 7000 000 10000 3000 5000 7000 9000 10000
Number of Objects Number of Objects

Figure 2: The graph of speed up and efficiency for different set of objects.

5 Experimental Evaluation

We have performed simulation to evaluate our design. The algorithm is implemented using LAM/MPI
7] technology. There is some limitation to propose a general method for simulating PRAM by MPI
(Message Passing Interface) but the nature of our problem and algorithms permit us to emulate
PRAM with intangible overhead. In our setup one of the computer of the cluster act as the share
memory. Reading and writing is simulated by receiving and sending the message from(to) this
counputer.

In our experiment we have tested the algorithm with seven centroids each of which is assigned
to one of the computers of the system cmulating the n corresponding processor in PRAM model.
Test-cases consist of 3000 up to 10000 objects in 30-dimensional space. The attributes of the space
are synthesized by the Gaussian random variable with various parameter.

To evaluate the speed up and the efficiency of our approach, we execute the parallel clustering
algorithuu for different values of d which specifies the average number of float operation needed to
estimate the similarity of two features. The results are presented in Figure 2. In the former plots,
the achicved speed up for d equals to 10! up to 10*. The later, exhibits the corresponding values of
efficiency. The results validate our claim in Table 4. For large values of d, the speed up is about 5.6
and the officiency is 80% which is considered as salient achievements.

6 Conclusion

[n this paper. we proposed a parallel approach to overwhelm the clustering problem in high dimen-
sional spaces. We designed an environment on Parallel Random Access Machine. Also, we modified
the algorithun to make it parallel. We analyzed the algorithm and showed that for computationally
massive problems. we can achieve an O(1) efficiency. We have demonstrated our claims through a
series of expernnents.

We plan to work on implementing parallel version of the others well-known clustering algorithms,
such as CLIQUE, to evaluate and compare their performance. Also, we intend to experiment real

data-sets on larger cluster systems.

236

Proceeding of CSI Computer Conference

References

1]
2]

3]

[4]

9

Jiang. D. Pei. J. and Zhang, A. DHC: A Density-Based Hierarchical Clustering Method for
Time Series Gene Expression Data. B/IBE 2003: 393-400

Agrawal, R. Gehrke, J. Gunopulos, D. Raghavan, P. Automatic Subspace Clustering of High
Dimensional Data for Data Mining Applications, Proc. ACM SIGMOD, 1999

Agearwal. C.. Procopiuc, C., Wolf, J. L.. Yu, P. S., and Park, J. S. Fast Algorithms for Projected
Clustering. SIGMOD, 1999

Domeniconi. C. Papadopoulos, D. Gunopulos, D. Ma, S. Subspace Clustering of High Dimen-
sonal Data. Proc. SIAM International Conference on Data Mining, April, 2004

Leiehton. F. Introduction to Parallel Algorithms and Architectures : Arrays, Trees. Hypercubes
: 1AL

Behzadi. B and Steyaert, J.-M. On Transformation Distance Problem, proc, SPIRE, 2004
http://www. la-mpi.org
Bottow. L.. and Vapnik, V. Local learning algorithms. Neural computation. 4(6):888-900, 1992.

Domcniconi. C. Locally Adaptive Techniques for Pat- tern Classification, PhD dissertation, ucC
Riverside. Computer Science Dept., August 2002.

237

