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Abstract. Computing the visibility polygon, VP, of a point in a polyg-
onal scene, is a classical problem that has been studied extensively. In
this paper, we consider the problem of computing VP for any query point
efficiently, with some additional preprocessing phase. The scene consists
of a set of obstacles, of total complexity O(n). We show for a query point
q, V P (q) can be computed in logarithmic time using O(n4) space and
O(n4 log n) preprocessing time. Furthermore to decrease space usage and
preprocessing time, we make a tradeoff between space usage and query
time; so by spending O(m) space, we can achieve O(n2 log(

√
m/n)/

√
m)

query time, where n2 ≤ m ≤ n4. These results are also applied to angu-
lar sorting of a set of points around a query point.

Keywords: Visibility polygon, logarithmic query time, space–query-
time tradeoff, (1/r)-cutting.

1 Introduction

The visibility polygon, or simply VP, of a point is defined as the set of all points
of the scene that are visible from that point. In this paper we consider the
problem of computing VP of a query point when the scene is a fixed polygonal
scene. We can use a preprocessing phase to prepare some data structures based
on the scene, then for any query point, we use these data structures to quickly
compute VP of that point.

The problem of computing VP when the scene is a polygonal domain, is more
challenging than for simple polygon scene, which has been studied extensively.
In these problems, a scene with total complexity of O(n) consists of a simple
polygon with h holes. Without any preprocessing V P (q) can be computed in
time O(n log n) by algorithms of Asano [3] and Suri and O’Rourke [15]. This can
also be improved to O(n+h log h) with algorithm of Heffernan and Mitchell [10].

Asano et al. [4] showed that with a preprocessing of O(n2) time and space,
V P (q) can be reported in O(n) time. It is remarkable that even though |V P |
may be very small, the query time is always O(n). Vegter [16] showed that with
O(n2 log n) time and O(n2) space for preprocessing, we can report V P (q) in
an output sensitive manner in time O(|V P (q)| log(n/|V P (q)|)). Pocchiola and
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Vegter [13] then showed that if the boundary polygon of the scene and its holes
are convex polygons, using visibility complex, V P (q) can be reported in time
O(|V P (q)| log n) after preprocessing the scene in time O(n log n + E) time and
O(E) space, where E is the number of edges in the visibility graph of the scene.
Very recently Zarei and Ghodsi [17] proposed an algorithm that reports V P (q)
in O((1 + min(h, |V P (q)|)) log n + |V P (q)|) query time. The preprocessing takes
O(n3 log n) time and O(n3) space.

One of the problems with the above mentioned algorithms in the polygonal
scene, is the large query time in the worst cases. For example when h = Θ(n)
and |V P (q)| = Θ(n) the algorithms of Pocchiola and Vegter [13] and Zarei and
Ghodsi [17] degrade to the algorithms without any preprocessing time. For Veg-
ter’s algorithm, we can also generate instances of the problem that use more
time than the required time to report V P (q). Another problem with these al-
gorithms, as far as we know, is that they cannot efficiently report some other
properties of the VP, like its size without actually computing it. For example
in Asano et al. [4], we should first compute V P (q) to be able to determine
its size.

In this paper, we have introduced an algorithm which can be used to report
V P (q) in a polygonal scene in time O(log n+ |V P (q)|), using O(n4 log n) prepro-
cessing time and O(n4) space. The algorithm can be used to report the ordered
visible edges and vertices of the scene around a query point or the size of V P (q)
in optimal time O(log n). The solution of the algorithm can also be used for
further preprocessing to solve many other problems faster than before (e.g., line
segment intersection with VP).

Because the space used in the preprocessing is still high, we have modified
the algorithm to obtain a tradeoff between the space and query time. With
this modifications, using O(m) space and O(m log(

√
m/n)) time in the prepro-

cessing, where n2 ≤ m ≤ n4, we can find the combinatorial representation
(to be described later) of V P (q) in time O(n2 log(

√
m/n)/

√
m). If we need

to report the actual V P (q), additional O(|V P (q)|) time is required in query
time.

The above algorithms are also described for the problem of angular sorting of
some points around a query point and the same results are also established for
it, i.e., we can return a data structure containing the set of n points sorted
around a query point in time O(n2 log(

√
m/n)/

√
m) using O(m) space and

O(m log(
√

m/n)) preprocessing time where n2 ≤ m ≤ n4. The actual sorted
points can then be reported using O(n) additional time.

The remaining of this paper is organized as follows: In Section 2 we first
describe how we can sort n points around a query point in logarithmic time
using a preprocessing. We then use this solution to develop a similar result for
computing VP. In Section 3 we obtain a tradeoff between space and query time
for both problems. Section 4 describes some of immediate applications of the
new algorithms, and finally, Section 5 summarizes the paper.
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2 Logarithmic Query Time

In this section we develop an algorithm with optimal query time for computing
VP of a query point. Since the problem of angular sorting points is embedded
in the computation of VP, we first consider it.

2.1 Angular Sorting

Let P = {p1, . . . , pn} be a fixed set of n points and q, a query point in the plane.
Let θq(pi) denote the counterclockwise angle of the line connecting q to pi with
the positive y-axis. The goal is to find the sorted list of pi in increasing order of
θq(pi). Let θq denote this sorted list.

The idea is to partition the plane into a set of disjoint cells, totally covering
the plane, such that for all points in a cell r, the sorted sequences are the same.
Let the sequence be denoted by θr. This partitioning is obtained by some rays,
called critical constraints. A critical constraint cij lies on the line through the
points pi, pj. It is the ray emanating from pi in the direction that points away
from pj. That is, every line through two points contains two critical constraints
(see Fig. 1). If q moves slowly, it can be shown that θq changes only when q
crosses a critical constraint. When q crosses cij , pi and pj , which are adjacent
in θq, are swapped. The following lemma, summarizes this observation, which is
an adaptation of a similar lemma in [2] for our case.

Lemma 1. Let P = {p1, . . . , pn} be a set of non-degenerate points in the plane,
i.e., no three points lie on a line. Let q and q′ be two points not on any critical
constraint of points of P . The ordered sequences of points of P around q and q′,
i.e., θq and θq′ differ iff they are on the opposite sides of some critical constraint.

Proof. The lemma can be proved by a similar argument to that used by Aronov
et al. [2] ��
Let C denote the set of critical constraints cij , for 1 ≤ i, j ≤ n, and A(C) denote
the arrangement of the constraints in C. In Fig. 1 the arrangement of critical

Fig. 1. Arrangement of critical constraints for P = {p1, p2, p3, p4}. q1, q2 and q4 see
the points in different angular orders, while q2 and q3 see in the same order.
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constraints for a set of four points is illustrated. The complexity of A(C) is not
greater than the complexity of the arrangement of

(
n
2

)
lines, so |A(C)| = O(n4).

This implies the following corollary.

Corollary 1. The plane can be decomposed into O(n4) cells, such that all points
in a cell see the points of P in the same angular order.

From the above corollary, a method for computing θq for a query point q can
be derived. In the preprocessing phase, for each cell r in A(C), θr is computed
and stored. Moreover A(C) is preprocessed for point location. Upon receiving a
query point q, the cell r in which q lies is located, and θr is simply reported.

In spite of the simplicity of the algorithm, its space complexity is not satisfac-
tory. The required space (resp. time) to compute the sorted sequences of points
for each cell of A(C) is O(n) (resp. O(n log n)). So for computing θr for all the
cells in the arrangement, O(n5) space and O(n5 log n) time is required.

For any two adjacent cells r, r′ in A(C), θr and θr′ differ only in two (adjacent)
position. To utilize this low rate of change and reduce the required time and space
for the preprocessing, a persistent data structure, e.g., persistent red-black tree,
can be used. A persistent red-black tree, or PRBT, introduced by Sarnak and
Tarjan [14], is a red-black tree capable of remembering its earlier versions, i.e.,
after m updates into a set of n linearly ordered items, any item of version t of
the red-black tree, for 1 ≤ t ≤ m can be accessed in time O(log n). PRBT can
be constructed in O((m + n) log n) time using O(m + n) space.

In order to use PRBT, a tour visiting all the cells of A(C) is needed. Using a
depth-first traversal of the cells, a tour visiting all the cells and traversing each
edge of A(C) at most twice is obtained. Initially, for an arbitrary cell in the tour,
θr is computed from scratch and stored in PRBT. For the subsequent cells in
the tour, we update PRBT accordingly by simply reordering two points. Finally,
when all the cells of A(C) are visited, θr is stored in PRBT for all of them.

Constructing A(C) and the tour visiting all the cells, takes O(n4) time. Com-
puting θr for the first cell needs O(n log n) time and O(n) space, and subsequent
updates for O(n4) cells need O(n4 log n) time and O(n4) space. A point location
data structure for A(C) is also needed that can be created in O(n4) time and
space [5]. Totally the preprocessing phase is completed in O(n4 log n) time using
O(n4) space. The query time consists of locating the cell in which the query
point q lies, and finding the related root of the tree for that cell. Each of these
tasks can be accomplished in O(log n) time.

Theorem 1. A set P of n points in the plane can be preprocessed in O(n4 log n)
time using O(n4) space, such that for any query point q, a pointer to a red-black
tree which stores θq can be returned in time O(log n).

2.2 Visibility Polygon Computation

In this section we consider the problem of computing VP in a polygonal scene.
Let O = {o1, . . . , on} be a set of line segments which may intersect each other
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only at their end-points. These segments are the set of all edges of the polygo-
nal scene. Let q be a query point in the scene. The goal is to compute V P (q)
efficiently using enough preprocessing time and space.

Since VP of each point is unique, the plane cannot be partitioned into cells in
which all points have equal VP. But we can decompose it into cells such that in
each cell all points have similar VP’s, or formally combinatorial structures of VP’s,
denoted by VP, are equal. Combinatorial structure of V P (q) is a circular list of
visible edges and vertices of the scene in the order of their angle around q.

Let P = {p1, . . . , pk} be the set of the end-points of the segments in O, where
k ≤ 2n. With an observation similar to the one in the previous section, the
arrangement of critical constraints (the rays emanating from pi in the direction
that points away from pj for 1 ≤ i, j ≤ k, i �= j), determines the cells in which
VP(q) is fixed and for each two adjacent cells these structures differ only in O(1)
edges and vertices.

Due to the changes in the scene, the critical constraints differ from what
previously described. If a pair of points are not visible from each other, they do
not produce any critical constraint at all. Some critical constraints may also be
line segments, this happens when a critical constraint encounters an obstacle.
Since for two points q and q′ in the opposite sides of an obstacle VP(q) �= VP(q′),
the obstacles are also added to the set of critical constraints.

Since these differences do not increase the upper bound on the number of cells
in the arrangement of critical constraints asymptotically, the argument about the
complexity of the arrangement of critical constraints, which is called in this case
visibility decomposition, remains valid, so we can rewrite the corollary as below.

Corollary 2. In a polygonal scene of complexity O(n), the plane can be decom-
posed into O(n4) cells, such that all points in a cell have equal VP. Moreover
VP of each two adjacent cells can be transformed to each other by O(1) changes.

Using the above result, the method in the previous section can be applied to com-
pute VP(q) for any point q in O(log n) time, using O(n4) space and O(n4 log n)
time for preprocessing. If the actual V P (q) (all the vertices and edges of VP)
is to be computed, additional O(|V P (q)|) time is needed. This can be done by
examining the vertices and edges of VP(q) and finding non-obstacle edges and
the corresponding vertices of V P (q) (see Fig. 2).

Theorem 2. A planar scene consists of n segment obstacles can be preprocessed
in O(n4 log n) time and O(n4) space, such that for any query point q, a pointer
to a red-black tree which stores VP(q) can be returned in time O(log n). Fur-
thermore the visibility polygon of the point, V P (q), can be reported in time
O(log n + |V P (q)|).

It is easy to arrange a scene such that the number of combinatorially different
visibility polygons is Θ(n4) (e.g., see [17]). Therefore it seems likely that the
above result is the best we can reach for optimal query time.
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Fig. 2. Part of the visibility polygon of a point. The thick dashed lines denote the
visibility polygon of q. Non-obstacle edges and non-obstacle vertices of the visibility
polygon are marked in the figure.

3 Space–Query-Time Tradeoff

In Section 2, an algorithm with logarithmic query time for computing VP is pre-
sented that uses O(n4) space and O(n4 log n) preprocessing time. Asano et al. [4]
have shown that we can compute VP of a point in a polygonal scene in O(n)
time by preprocessing the scene in O(n2) time using O(n2) space. In this section,
these results are combined and a tradeoff between the memory usage and the
query time for computing the visibility polygon is obtained.

3.1 Angular Sorting

As in Section 2, we first consider the problem of angular sorting points around a
query point. In this problem, P , θq(pi) and θq are defined similar to the previous
section. We assume the points are in the general position in the plane, so that
no three points are collinear and for 1 ≤ i ≤ n, piq does not lie on a vertical
line. In contrast to the previous section, here at most o(n4) space can be used.

For this problem the plane can be partitioned into disjoint cells, such that θq

does not change significantly when q moves in each cell (similar to the method of
Aronov et al. [2] to obtain space–query-time tradeoff). Unfortunately with this
method, using O(n3) space, query time of O(n log n) is achieved which is not
adequate.

Linear time algorithm for sorting points. To be able to use the technique
used by Asano et al. [4], let us review their method with some modifications.
Consider the duality transform that maps the point p = (px, py) into the line
p∗ : y = pxx − py and the line l : y = mx + b into the point l∗ = (m,−b). This
transformation preserves incidence and order between points and lines [8], i.e.,
p ∈ l iff l∗ ∈ p∗ and p lies above l iff l∗ lies above p∗.

Let A(P ∗) denote the arrangement of the set of lines P ∗ = {p∗1, . . . , p∗n}. Line
q∗ can also be inserted in the arrangement in O(n) time [6]. Let rq denote the
vertical upward ray from q and lq its supporting line. When rq rotates around q
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counterclockwise 180�, it touches all the half-plane to the left of q, and l∗q slides
on line q∗ from −∞ to +∞. Whenever rq reaches a point pi, l∗q lies on p∗i . Thus
the order of all points pi in the left half-plane of vertical line through q according
to θq(pi), is the same as the order of intersection points between q∗ and the dual
of those points according to x-coordinate. The same statement holds for the right
half-plane of vertical line through q. Using this correspondence between orders,
θq can be computed in linear time.

Lemma 2. [Asano et al.] Using O(n2) preprocessing time and O(n2) space for
constructing A(P ∗) by an algorithm due to Chazelle et al. [6], for any query
point q, we can find the angular sorted list of pi, 1 ≤ i ≤ n, in O(n) time.

Sublinear query time algorithm for sorting points. Before describing the
algorithm with space–query-time tradeoff, we should explain another concept.
Let L be a set of lines in the plane. A (1/r)-cutting for L is a collection of
(possibly unbounded) triangles with disjoint interiors, which cover all the plane
and the interior of each triangle intersects at most n/r lines of L. Such triangles
together with the collection of lines intersecting each triangle can be found for
any r ≤ n in time O(nr). The first (though not optimal) algorithm for con-
structing cutting is presented by Clarkson [7]. He showed that a random sample
of size r of the lines of L can be used to produce a fairly good cutting. Efficient
construction of (1/r)-cuttings of size O(r2) was given by Matoušek [11] and then
improved by Agarwal [1].

As will be described later, a cutting that is effective for our purpose, has
a specific property. To simplify the algorithm, in this section we describe the
method using random sampling and give a simple (but inefficient) randomized
solution. Later we show how an efficient cutting introduced by Chazelle [5] can
be used with some modifications instead, to make the algorithm deterministic
and also reduce the preprocessing and query time and space.

The basic idea in random sampling is to pick a random subset R of r lines
from L. It can be proved [7] that with high probability, each triangle of any
triangulation of the arrangement of R, A(R), intersects O((n log r)/r) lines of
L. Let R be a random sample of size r of the set of lines P ∗ = {p∗1, . . . , p∗n}.
Let A(R) denote the arrangement of R and R denote a triangulation of A(R).
According to the random sampling theory, with high probability, any triangle
t ∈ R intersects O((n log r)/r) lines of P ∗.

Lemma 3. Any line l in the plane, intersects at most O(r) triangles in R.

Proof. It is a trivial application of the Zone Theorem [9] and is omitted. ��
The above lemma states that the line q∗ intersects O(r) triangles of R and for
each such triangle t, the intersection segment q∗ ∩ t is the dual of a double
wedge wt, with q as its center, in the primal plane. Therefore the primal plane
is partitioned into O(r) co-centered disjoint double wedges, totally covering all
the plane. For computing θq, it is adequate to sort the points inside each double
wedge, and then join these sorted lists sequentially. Let each sorted sublist be
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denoted by θq(t). The sorted list θq(t) can be computed by first finding the
sorted list of points whose dual intersect the triangle t, denoted by P (t), and
then confining the results to the double wedge wt. In order to sort the points of
P (t) in each triangle t ∈ R efficiently, we can use the method of Section 2.

At the query stage, θq(t) is computed by performing four binary search in the
returned red-black tree, to find the head and the tail of the two sublists that
lie in the double wedge (one sublist for the left half-plane and one for the right
half-plane). In this way, O(log |P (t)|) canonical subsets from the red-black tree
are obtained whose union form the two sorted lists. This procedure is repeated
for all triangles t ∈ R that are intersected by q∗ and O(r) sorted lists θq(t) are
obtained which should be concatenated sequentially to make θq.

Constructing a (1/r)-cutting for P ∗ together with computing the lines inter-
sected by each triangle uses O(nr) time and space, for 1 ≤ r ≤ n. Preprocessing
a triangle t for angular sorting takes O(|P (t)|4) space and O(|P (t)|4 log |P (t)|)
time, which sum up to O((n4 log4 r)/r2) space and O((n4 log4 r log(n log r/r))/r2)
time for all O(r2) triangles. At query time, each sorted subsequence is found in
O(log((n log r)/r)) time, and the resulting canonical subsets are joined in
O(r log((n log r)/r)) time.

Using efficient cutting. Efficient cuttings that can be used for our approach
have a special property: Any arbitrary line intersect O(r) triangles of the cutting.
We call this property the regularity of the cutting. Many algorithms have been
proposed for constructing a (1/r)-cutting for a set of lines, but most of them
do not fulfill regularity property. A good cutting which with some modifications
satisfies the regularity was introduced by Chazelle [5]. Due to space limitations,
we describe our modifications to make Chazelle’s algorithm regular in the full
version of the paper. We here only mention the final result of applying this
efficient cutting.

Theorem 3. A set of n points in the plane can be preprocessed into a data
structure of size O(m) for n2 ≤ m ≤ n4, in O(m log(

√
m/n)) time, such that

for any query point q, the angular sorted list of points, θq, can be returned in
O(n2 log(

√
m/n)/

√
m) time.

3.2 Space–Query-Time Tradeoff for Computing the Visibility
Polygon

We can use the tradeoff between space and query-time for computing θq, to
achieve a similar tradeoff for computing VP. The set O of the obstacle segments
and the set P of the end-points of the segments are defined as before. Let A(P ∗)
denote the arrangement of dual lines of points of P . Based on this arrangement,
we compute a regular (1/r)-cutting as described in Section 3.1 and decompose
the plane into O(r2) triangles such that any triangle is intersected by at most
O(n/r) lines of P ∗, and the dual line of any point q intersects at most O(r)
triangles of the cutting.

As described in Section 3.1, the intersections of q∗ with the triangles that
are intersected by q∗, partition the primal plane into O(r) co-centered disjoint



128 M. Nouri and M. Ghodsi

Fig. 3. (a) In the dual plane, the triangle t, dual of t0, is intersected by q∗. The dual of
some of obstacle segments are also shown. (b) The arrangement of t0, q and obstacle
segments in the primal plane.

double wedges, totally covering all the plane. Therefore it is enough to compute
VP(q) bounded to each double wedge and join the partial VP’s sequentially.
Let the double wedge created by the triangle t be denoted by wt and VP(q)
bounded to wt denoted by VP(q, t). VP(q, t) is computed very similar to the
method described in Section 3.1 for computing θq(t). The only thing we should
care is the possibility of the presence of some segments in VP(q, t) none of whose
end-points lies in wt.

In Fig. 3(a) the triangle t in the dual plane is shown which is intersected by
q∗. The triangle t is also intersected by O(n/r) lines which are dual to the end-
points of O(n/r) segments of O. We call these segments the closed segments of
t, denoted by the set CSt. At least the dual of one end-point of each segment in
CSt intersects t. There are also some segments in O which are not in CSt, but
may appear in VP(q), for example s8 in Fig. 3. We call these segments the open
segments of t, denoted by the set OSt. OSt consists of all the segments whose
dual double wedge contains t completely.

The triangle t0, whose dual is t, as in Fig. 3(b), partition the plane into three
regions. A region, which is brighter in the figure, is the region that q and at least
one end-point of each segment of CSt lie (for example segments s9 and s10). In
contrast, we have two regions, which is shaded in the figure, and contains at most
one end-point of each segment of CSt and both end-points of the other segments
of O. If an end-point of a segment oi lies in a shaded region and the other end-
point in the other shaded region, oi belongs to OSt (for example segments s4,
s6 and s8).

By the above observations, and the fact that the segments of O may intersect
each other only at their end-points, we conclude that the segments in OSt parti-
tion the bright region, the region which contains q, into |OSt|+1 subregions. Let
Rt = {r1

t , . . . , r
|OSt|+1
t } denote the set of subregions. In each region rk

t , a set of
segments CSk

t ⊂ CSt is contained. Since VP(q, t) is limited to the subregion rk
t
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in which q lies, for computing VP(q, t), we should first find rk
t , and then compute

VP(q) which is bounded to rk
t and the double wedge wt.

First assume we know where q lies, i.e., we know the region rk
t ∈ Rt that

contains q, where 1 ≤ k ≤ |OSt| + 1. Any point inside rk
t can see only the set

of segments CSk
t . If in the preprocessing phase, for each region rk

t we use the
method of Section 2.2 with CSk

t as obstacles, we can find VP(q, t) bounded to wt

in time O(log(|CSk
t |)) = O(log(n/r)). A trick is needed here to preprocess only

non-empty regions of Rt, since otherwise an additional linear space is imposed,
which may be undesirable when r > O(n

3
4 ). If we do not preprocess empty

regions rk
t , in which no closed segment lies, i.e., CSk

t = ∅, the preprocessing time
reduces to O((n/r)4 log(n/r)) and the space to O((n/r)4). Whenever a query
point q is received, we first find the region rk

t in which q lies. If CSk
t �= ∅, we

can use the related data structures to compute VP(q, t), otherwise rk
t consists

of only two segments, oi, oj ∈ OSt, and we can easily compute VP(q) bounded
to wt in O(1) time.

There are three data structures, Rt, CSk
t and CSt that should be computed in

the preprocessing phase. CSt of complexity O(n/r), which is already computed
during the construction of the cutting R, is the set of segments with an end-
point whose dual intersects t. However the process of computing Rt and CSk

t is
somewhat complicated and due to space limitations we give the details of the
computation in the full version of the paper. Briefly, Rt of complexity O(n) takes
much space and time, so we cannot explicitly compute it for all the triangles of
R. We use a data structure to compute Rt of a triangle t based on Rt′ where t′

is a neighbor triangle of t. By this data structure, we can also compute CSk
t for

each triangle t and 1 ≤ k ≤ |OSt|+1. This procedure takes O(rn log(n/r)) time
and O(rn) space.

At the query time rk
t that contains q can be found in total O(r log(n/r)) time

for all the triangles that are intersected by q∗. For each triangle t, from rk
t , we

can easily compute VP(q) bounded by wt in O(log(n/r)) time. Summing up
these amounts, we can compute VP(q) in O(r log(n/r)) time.

In summary, the total preprocessing time and space are O(n4 log(n/r)/r2)
and O(n4/r2) respectively and the query time is O(r log(n/r)). If the used space
is denoted by m we can conclude the following theorem.

Theorem 4. A planar polygonal scene of total complexity O(n) can be prepro-
cessed into a data structure of size O(m) for n2 ≤ m ≤ n4, in O(m log(

√
m/n))

time, such that for any query point q, in O(n2 log(
√

m/n)/
√

m) time VP(q)
can be returned. Furthermore the visibility polygon of the point, V P (q), can be
reported in O(n2 log(

√
m/n)/

√
m + |V P (q)|) time.

4 Applications

In this section we use the previous results for computing the visibility polygon
and apply them to some other related problems.
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4.1 Maintaining the Visibility Polygon of a Moving Point

Let q be a point in a polygonal scene. The problem is to update V P (q) as it
moves along a line. We can use the technique previously used to compute V P
of a query point, to maintain V P of a moving point in the plane. Due to space
limitations, we only describe the final result.

Theorem 5. A planar polygonal scene of total complexity n can be preprocessed
into a data structure of size O(m), n2 ≤ m ≤ n4, in time O(m log(

√
m/n)), such

that for any query point q which moves along a line, V P (q) can be maintained
in time O(( n2√

m
+ k)(log n2√

m
+ log

√
m
n )) where k is the number of combinatorial

visibility changes in V P (q).

It is remarkable that the moving path need not to be a straight line, but it can
be broken at some points. In this case, the number of break points is added to
the number of combinatorial changes in the above upper bounds.

4.2 The Weak Visibility Polygon of a Query Segment

The weak visibility polygon of a segment rs is defined as the set of points in
the plane, that are visible from at least a point on the segment. Using the
previous result about maintaining the visibility polygon of a moving point, the
weak visibility polygon of a query segment can be computed easily. We here
only mention the last theorem and leave the proof for the extended version of
the paper.

Theorem 6. A planar polygonal scene of total complexity n can be preprocessed
into a data structure of size O(m), n2 ≤ m ≤ n4, in O(m log(

√
m/n)) time,

such that for any query segment rs, V P (rs) can be computed in time O(( n2√
m

+

|V P (rs)|)(log n2√
m

+ log
√

m
n )).

4.3 Weak Visibility Detection between Two Query Objects

In [12] Nouri et al. studied the problem of detecting weak visibility between two
query objects in a polygonal scene. Formally, a scene consists of some obstacles
of total complexity n, should be preprocessed, such that given any two query
objects, we can quickly determine if the two objects are weakly visible. They
proved that using O(n2) space and O(n2+ε) time for any ε > 0, we can answer
queries in O(n1+ε).

In their paper, they mentioned that the bottleneck of the algorithm is the
time needed to compute the visibility polygon of a query point, and if it can
be answered in a time less than Θ(n) in the worst case, the total query time
will be reduced. Here we summarize the result of applying the new technique for
computing V P (q) and defer the details to the full version of the paper.

Theorem 7. A planar polygonal scene of total complexity n can be preprocessed
in O(m1+ε) time to build a data structure of size O(m), where n2 ≤ m ≤ n4,
so that the weak-visibility between two query line segments can be determined in
O(n2+ε/

√
m) time.
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5 Conclusion

In this paper we studied the problem of computing the visibility polygon. We
present a logarithmic query time algorithm, when we can use O(n4 log n) time
and O(n4) space in the preprocessing phase. As the algorithm requires much
space, the algorithm was modified to get a tradeoff between space usage and
query time. With this tradeoff, VP of a query point can be computed in time
O(n log(

√
m/n)/

√
m) using O(m) space, where n2 ≤ m ≤ n4.

This problem may have many applications in other related problems. An inter-
esting future work is to find more applications for the proposed algorithms. It is
also an interesting open problem, whether our algorithms are optimal regarding
space usage and preprocessing time.
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