
EuroCG 2010, Dortmund, Germany, March 22–24, 2010

Partial Visibility Polygon with Semi-Transparent Objects

Mostafa Nouri Baygi∗ Mohammad Ghodsi†

Abstract

In this paper, we study partial visibility (or p-
visibility) of a scene containing semi-transparent (con-
vex) obstacles through which the light can pass partly.
We define the p-visibility polygon and give algorithms
to compute it for any query point. Then, we use the
same technique to update the p-visibility polygon of
a moving point, and to compute the maximum num-
ber of intersected objects by a ray emanating from a
query point.

1 Introduction

We study the concept of partial visibility (or p-
visibility) and present an algorithm to compute p-
visibility polygon for a query point. Roughly speak-
ing, the p-visibility polygon is the set of visible re-
gions around a viewer when there are some semi-
transparent objects in the scene.

P-Visibility can be applicable in many areas. For
example, as Fulek et al. [2] mentioned, according to a
model of wireless positioning service patented by Liu
and Hung [3], the signal sent by a sensor can penetrate
only at most a certain number, k, of obstacles and
will not be received by the base station if there are
more than k obstacles between the sensor and the
base station.

Fulek et al. [2] studied a problem related to p-
visibility. For a set S of n objects in the plane, and
a point p, they defined τ(p, S) as the maximum num-
ber of objects that are intersected by all the rays em-
anated from p. Likewise, they defined τ(S) as the
minimum value of τ(p, S) over all points p. Their
problem is to provide an upper and lower bound for
the value of τ(n), which is the maximum of τ(S) over
all sets S of n objects. They also showed how τ(S)
can be computed in O(n4 log n).

In addition to algorithms for computing and updat-
ing the p-visibility polygon, we show how to compute
τ(q) for a query point q. Briefly, we give the following
results:

1. In the presence of some semi-transparent objects
with total complexity of n, we compute any de-
sired p-visibility polygon of a query point, in

∗Department of Computer Engineering, Sharif University of
Technology, nourybay@ce.sharif.edu

†Department of Computer Engineering, Sharif University of
Technology, ghodsi@sharif.edu

O(n2 log(
√

m/n)/
√

m + |PVP(q)|) query time,
using O(m) space. Here |PVP(q)| is the total
size of the p-visibility polygons.

2. For a moving point, we maintain the p-visibility
polygon of the point, in O(n2 log(

√
m/n)/

√
m)

time for each change, and detect the first place
that a change occurred in the same time.

3. For a query point q, we compute τ(q) in
O(n2 log(

√
m/n)/

√
m).

In the above formulae, n2 ≤ m ≤ n4

2 Preliminaries

Assume that a set S includes l disjoint semi-
transparent convex polygons, called objects, in the
plane with total complexity of n. We need to com-
pute the visible portion of the plane from an observer
point. This problem is similar to computing the visi-
bility polygon of a point.

Since the objects are semi-transparent, the light
can partially pass through them, i.e., its intensity de-
grades when the light passes through an object. As-
sume that the light intensity only decreases when it
enters an object. This way, we have different areas
in the plane, each is visible with a different intensity.
The problem is to compute these regions.

With the notion of p-visibility, for a point q and a
parameter k, we define k-PVP(q) as the set of points
in the plane whose connecting line segments to q in-
tersects at most k objects. Obviously, k-PVP(q) con-
tains j-PVP(q) for j < k. For k ≥ τ(S), k-PVP(q)
consists of all the plane and 0-PVP(q) is the well-
known visibility polygon of q. The main problem in
this paper is to compute k-PVP(q).

Let rq be a ray emanating from q and let τ(rq)
be the set of objects intersected by rq. For each q,
we define τ(q) = maxrq τ(rq). This is the same as
τ(q, S) proposed by Fulek et al. [2]. We can define
τ(q) in another way: τ(q) is the smallest k, such that
k-PVP(q) is all the plane.

3 P-visibility polygon computation

In this section, we present an algorithm that computes
k-PVP(q). In this problem, we have a set S of con-
vex polygons, with total complexity of O(n), called
objects, and a query point q. We can preprocess S so

26th European Workshop on Computational Geometry, 2010

Figure 1: A tangent shows the place where the p-
visibility changes occurs.

that for a given q k-PVP(q) can be efficiently com-
puted for any desired value of k.

We first describe the algorithm that uses O(n4)
space, and then extend it to the general case with
the space–query-time tradeoff.

3.1 Logarithmic query time

In order to compute k-PVP(q) for a query point, we
partition the plane into regions that all the points in
each region have similar k-PVP(q). The similarity
is defined by the order of visibility of visible edges
of the objects in S from observer. We denote this or-
dered list of visible edges by k-PVP(q). The following
lemma helps identify the desired partition.

Lemma 1 For a point q in the plane, k-PVP(q) for
any k changes only if q moves across the tangent line
of a pair of edges.

Proof. Let q1, q2 be two points in the same cell in
the arrangement, A, of tangent lines of all pairs of
the edges of the objects and k-PVP(q1), k-PVP(q2)
differ, for some fixed value of k. Consider moving
point q from q1 towards q2. When q moves, k-PVP(q)
changes until it equals to k-PVP(q2). Let q0 be the
first point at which k-PVP(q) changes. This change is
in the form of removing a visible edge from or adding
a new previously invisible edge to the list. Assume
that it is in the latter form, so the object Z is added
between X, Y . This means that before we reach q0,
the number of objects between q and any point on C
was at least k + 1, but in q0, the number of objects
between q to a point on C is at most k. This event
happens only when a segment previously blocked C
and then, in q0, it becomes visible. As it can be seen in
Figure 1, q0 is on the tangent line of two segments (B,
C in this example), which contradicts the assumption
that q1, q2 are in the same cell. Similarly, the other
case leads to a contradiction. ¤

As above lemma shows, we need to construct the
arrangement A and compute k-PVP(p) for a point
p in each cell. By this approach we can prove the
following theorem.

Theorem 2 Given a point q, we can compute k-
PVP(q) for 0 ≤ k ≤ τ(q, S), in O(log n + |k-
PVP(q)| query time, while using O(τ(S)n4) space and
O(τ(S)n4 log n) preprocessing time.

Proof. We construct the arrangement A and obtain
a tour visiting all the cells of A, such that each edge of
A is visited at most twice, by a depth-first traversal
of the cells of A. Then, we select an arbitrary cell
and compute k-PVP for all 0 ≤ k ≤ τ(S) for an
arbitrary point in that cell and store them, in a set of
persistent red-black tree [5], each element of the set
for one value of k. Since k-PVP is an ordered list
of objects, it can be inserted in a binary search tree
without any ambiguity. Afterwards, we move to the
next cell in the tour and compute new lists of k-PVP
in that cell. k-PVP in adjacent cells of A differ in
1 position, so we can store the new k-PVP’s in the
persistent data structures easily in O(τ(S) log n).

In the query time, for a point q, we identify the
cell in A that q lies in, and search in the persistent
red-black tree for related k-PVP. We can report this
data structure as the ordered list of visible objects,
or compute k-PVP(q) precisely in the order of size of
k-PVP(q).

The construction of A, which consists of O(n2)
lines, takes O(n4) and in the same time we can cre-
ate a tour. Computing k-PVP for 0 ≤ k ≤ τ(S)
in the first cell and storing them in the data struc-
ture takes O(τ(S)n log n) time. Computing k-PVP
for other cells in A each takes O(τ(S) log n) and to-
tally O(τ(S)n4 log n). We should preprocess A for a
point location data structure [1] which can be done in
O(n4 log n). In the query time, a point location and a
search in the persistent data structure is required to
find the stored k-PVP(q), all of which takes O(log n).
We can construct the actual k-PVP(q) based on k-
PVP(q). ¤

In above theorem, we assume that k is a parameter
which is specified at query time, so we compute all the
different p-visibility polygons and stored them in the
persistent data structure. But if k is determined in the
preprocessing step, we can reduce the memory space
and preprocessing time considerably. In this case, we
only compute p-visibility polygon for that specified
k. This way the memory space (resp. preprocessing
time) is reduced to O(n4) (resp. to O(n4 log n)).

In the above result, we can compute k-PVP(q) for
several values of k, without any change in the query
time (except for reporting). This is because the search
in the persistent data structure should be done only
once and the associated lists can be returned easily.

Here, we provide two notes about how to optimize
the arrangement A. First, when we draw the line
through a1b1 as a tangent for segments A = (a1, a2)
and B = (b1, b2), the portion between a1 and b1 can be
removed without any problem. This is because when

EuroCG 2010, Dortmund, Germany, March 22–24, 2010

Figure 2: Optimization of the arrangement by reduc-
ing tangent lines. In this example, kmax = 3

q crosses from this part of the tangent, no changes oc-
curs in the p-visibility polygons. Second, if the max-
imum value of k is determined in the preprocessing
step, kmax, and we want to draw the tangent line
through a1b1 as before, we can continue the tangent
from b1 as long as the points on it see at most k ob-
jects before a1. The same is true for the other portion
of the tangent (see Figure 2).

3.2 Space–query-time tradeoff

In this section, we show how to modify the previous
method, and reduce the preprocessing space in the
expense of an increase in the query time. The follow-
ing lemma which is a modified version of the cutting
theorem, in [4] is the main tool that helps achieve this.

Lemma 3 Given a set of n lines in the plane, we can
partition the plane into O(r2) triangles, for 1 ≤ r ≤ n,
such that each triangle is intersected by O(n/r) lines
and any arbitrary new line intersects at most O(r)
triangles.

Theorem 4 For any query point q, we can
compute k-PVP(q) for all 0 ≤ k ≤ τ(S),
in O(n2 log(

√
m/n)/

√
m) query time, while us-

ing O(τ(S)m) space and O(τ(S)m log(
√

m/n)) pre-
processing time, for an arbitrary n2 ≤ m ≤ n4.

Proof. The set, P , of the vertices of the objects con-
sists of O(n) points and in the dual plane, this cor-
responds to a set of O(n) lines, denoted by P ∗. We
start by constructing a cutting of size O(r2) for this
set, such that each triangle of the cutting intersects
O(n/r) lines of P ∗.

For a query point q in the primal plane, its dual
line q∗ intersects O(r) triangles, and the intersection
of q∗ with these triangles, in the primal plane, parti-
tions the plane into O(r) co-centered disjoint double
wedges, totally covering all the plane. Therefore, it
is enough to compute the k-PVP(q) in each double

Figure 3: (a) In the dual plane, the triangle t, dual
of t0, is intersected by q∗. The dual of some edges of
objects are also shown. (b) The arrangement of t0, q
and edges of objects in the primal plane.

wedge, or equivalently, in each triangle intersected by
q∗.

In Figure 3(a), the triangle t in the dual plane is
shown which is intersected by q∗. The triangle t is
also intersected by O(n/r) lines which are dual to the
end-points of O(n/r) edges of objects in S. We call
these segments the closed segments of t, denoted by
the set CSt. At least the dual of one end-point of
each segment in CSt intersects t. There are also some
segments in O which are not in CSt, but may appear
in k-PVP(q), for example s8 in Figure 3. We call
these segments the open segments of t, denoted by
the set OSt. OSt consists of all the segments whose
dual double wedge contains t completely.

The triangle t0, whose dual is t, as in Figure 3(b),
partitions the plane into three regions. A region,
which is brighter in the figure, is the region that q
and at least one end-point of each segment of CSt lie
(for example segments s6 and s7). In contrast, we
have two regions, which is shaded in the figure, and
contains at most one end-point of each segment of
CSt and both end-points of the other segments of O.
If an end-point of a segment oi lies in a shaded region
and the other end-point in the other shaded region,
oi belongs to OSt (for example segments s3 and s5).

It is not hard to see that the segments in OSt par-
tition the bright region, the region which contains q,
into |OSt|+1 subregions. Let Rt = {r1

t , . . . , r
|OSt|+1
t }

denote the set of subregions. In each subregion rk
t , a

set of segments CSk
t ⊂ CSt is contained.

Since the view around q is bounded to wt, we
can imagine each segment in OSt as an infinite
line. Therefore, to identify the cells with uniform k-
PVP(q), we only construct the arrangement of tan-
gents for each pair of segments in CSt and not OSt.
We only consider the objects of segments in OSt as
obstacles.

With this approach, we can use the previous
method with logarithmic time in each double wedge.
For each triangle t, we spend O(τ(S)(n/r)4) space
and O(τ(S)(n/r)4 log(n/r)) preprocessing time.

26th European Workshop on Computational Geometry, 2010

To complete the argument, we should say how to
compute CSt and OSt. CSt of complexity O(n/r),
which is already computed during the construction of
the cuttingR, is the set of segments with an end-point
whose dual intersects t.

It is also notable that, we cannot compute OSt for
each triangle independently, since the size of OSt may
be large, compared to O((n/r)4), which we can spend
for each triangle. The elements of OSt for each t, is
very similar to OSt′ of an adjacent triangle t′. The
differences are in the elements of CSt′ and CSt, that
is some segments in CSt may be removed from OSt′

and some segments in CSt′ may be added to OSt′ to
produce OSt.

At query time, we find the cell in t∗ that con-
tains q by a point location and return the associ-
ated k-PVP in O(log(n/r)) time for each triangle t
that is intersected by q∗. We can easily compute k-
PVP(q) bounded by wt in the same time. Summing
up these amounts for O(r) triangles, we can compute
k-PVP(q) in O(r log(n/r)) time.

In summary, the total preprocessing time and space
are O(τ(S)n4 log(n/r)/r2) and O(τ(S)n4/r2) respec-
tively and the query time is O(r log(n/r)). If the used
space is denoted by m we can prove the claim.

¤

4 Applications

In this section, we apply the techniques used in the
previous section to two related problems and give so-
lutions for them.

4.1 Maximum intersecting objects

Theorem 5 For any query point q we can compute
τ(q) in O(n2 log(

√
m/n)/

√
m), using O(m) space and

O(O(m log(
√

m/n))) preprocessing time, for n2 ≤
m ≤ n4

Proof. Consider the cutting we used before in the
dual plane for the vertices of the objects. For each
point q, the intersection of q′ and triangle t, in the
primal plane corresponds to the double wedge wt.
Here we should change the data structures, so that
instead of storing the actual k-PVP(q) in each cell of
the arrangements, we only store the maximum value
of objects, that are intersected by any ray emanated
from any point inside wt, denoted by τt(q). To com-
pute τ(q), we should compute τt(q), for all triangles t
that are intersected by q′, and choose the maximum
value among them, which can be done in the same
query time as before. ¤

4.2 P-visibility polygon of a moving point

Theorem 6 For a moving point q in the plane, which
moves on a straight line, we can detect the first place

where k-PVP(q) changes for some k and update k-

PVP(q) in O(n2√
m

(log
√

m
n)). The preprocessing time

and space are respectively O(τ(S)m log(
√

m/n)) and
O(τ(S)m).

Proof. Assume we can use O(τ(S)n4) space for com-
puting k-PVP(q). In this case, q is a point which lies
in a cell c in the arrangement of tangent lines. c is a
convex polygon, therefore for a straight line, we can
identify in O(log n), from which edge of c, q leaves
it. Once q leaves c, k-PVP(q) may change for some
value of k. We can easily detect this event and update
k-PVP(q) based on the edge q crosses.

For the case that we use tradeoff, consider line q∗ in
the dual plane. When q moves on a straight line, q∗

rotates around a fixed center. In each triangle, we can
easily detect the first change in the visibility similar
to the previous case that was described. Here we need
to choose the first place from these O(r) places that
changes occurred. All of these, can be accomplished
in O(r log(n/r)). Substituting r with n2/

√
m proves

the theorem. ¤

5 Conclusion

In this paper, we introduced the p-visibility concept
and presented an algorithm that computes p-visibility
polygon of a query point in logarithmic time. We then
extended the algorithm to reduce the space usage, but
in the expense of an increase in the query time.

Finally, we used the method to solve two related
problems: updating p-visibility polygon of a moving
point and computing the maximum number of objects
that are intersected by a ray emanated from a query
point. For the future works, we intend to solve this
problem: for a set of objects S, find a point p such
that τ(S) = τ(p) in optimal time.

References

[1] B. Chazelle. Cutting hyperplanes for divide-and-
conquer. Discrete Comput. Geometry, 9:145–158,
1993.

[2] R. Fulek, A. F. Holmsen, and J. Pach. Intersect-
ing convex sets by rays. Discrete Comput. Geometry,
42(3):343–358, 2009.

[3] C.-T. Liu and T.-Y. Hung. Method of build-
ing a locating service for a wireless network en-
vironment. patent no. 7203504, April 2007.
www.freepatentsonline.com/7203504.html.

[4] M. Nouri and M. Ghodsi. Space–query-time trade-
off for computing the visibility polygon. In FAW ’09,
pages 120–131. Springer-Verlag, 2009.

[5] N. Sarnak and R. E. Tarjan. Planar point location us-
ing persistent search trees. Commun. ACM, 29(7):669–
679, 1986.

