
August 11, 2014 International Journal of Computer Mathematics paper

To appear in the International Journal of Computer Mathematics
Vol. 00, No. 00, Month 20XX, 1–17

Weak Visibility Queries of Line Segments in Simple Polygons and

Polygonal Domains

M. Nouri Bygia∗ and M. Ghodsib†

aComputer Engineering Department, Sharif University of Technology, Tehra, Iran; bSchool of

Computer Science, Institute for Research in Fundamental Sciences (IPM)

(v3.1 released January 2014)

In this paper we consider the problem of computing the weak visibility polygon of any query line
segment pq (or WVP(pq)) inside a given polygon P . Our first non-trivial algorithm runs in simple
polygons and needs O(n3 logn) time and O(n3) space in the preprocessing phase to report WVP(pq)
of any query line segment pq in time O(logn + |WVP(pq)|). We also give an algorithm to compute
the weak visibility polygon of a query line segment in a non-simple polygon with h pairwise-disjoint
polygonal obstacles with a total of n vertices. Our algorithm needs O(n2 logn) time and O(n2) space
in the preprocessing phase and computes WVP(pq) in query time of O(n~ logn+ k), in which ~ is an
output sensitive parameter of at most min(h, k), and k = O(n2h2) is the output size. This is claimed
to be the best query-time result on this problem so far.

Keywords: computational geometry; visibility; line segment visibility; simple polygons

2010 AMS Subject Classification: 68U05; 65D18

1. Introduction

Two points inside a polygon are visible to each other if their connecting segment remains
completely inside the polygon. Visibility polygon V P (q) of a point q in a simple polygon
P is the set of P points that are visible from q. The visibility problem has also been
considered for line segments. A point v is said to be weakly visible to a line segment pq if
there exists a point w ∈ pq, such that w and v are visible to each other. The problem of
computing the weak visibility polygon (or WVP) of pq inside a polygon P is to compute
all points of P that are weakly visible from pq.

1.1 Previous Work

If P is a simple polygon, WVP(pq) can be computed in linear time [7, 11]. For a polygon
with holes, the weak visibility polygon has a complicated structure. Suri and O’Rourke
[10] showed that the weak visibility polygon can be computed in O(n2) time if output as
a union of O(n2) triangular regions. They also showed that WVP(pq) can be output as
a polygon in O(n2 log n+ k), where k is O(n4). Their algorithm is worst-case optimal as
there are polygons with holes whose weak visibility polygon from a given segment can
have Ω(n4) vertices.

∗Corresponding author. Email: nouribygi@ce.sharif.edu

†Email: ghodsi@sharif.edu

1

August 11, 2014 International Journal of Computer Mathematics paper

The query version of this problem has also been considered by few. It is shown in [4]
that a simple polygon P can be preprocessed in O(n3 log n) time and O(n3) space, such
that given an arbitrary query line segment inside the polygon, O(k log n) time is required
to recover k weakly visible vertices. This result was later improved by [1] in which the
preprocessing time and space were reduced to O(n2 log n) and O(n2) respectively, at the
expense of more query time of O(k log2 n). In a recent work, we presented an algorithm
to report WVP(pq) of any pq in O(log n + |WVP(pq)|) time by spending O(n3 log n)
time and O(n3) space for preprocessing [9]. Later, Chen and Wang considered the same
problem and, by improving the preprocessing time of the visibility algorithm of Bose et
al. [4], they improved the preprocessing time to O(n3) [5].

Scene Prep. Time Space Query Time Ref

simple polygon - O(n) O(n) [7, 11]
simple polygon O(n3 log n) O(n3) O(k log n) [4]

simple polygon O(n2 log n) O(n2) O(k log2 n) [1]
simple polygon O(n3 log n) O(n3) O(k + log n) Our Result 1

polygonal domain - O(n4) O(n4) [10]
polygonal domain O(n2 log n) O(n2) O(n~ log n + k) Our Result 2

Table 1. A summary of the data structures. Here, n is the total complexity of the scene, ~ is the number of visible
holes, and k in the size of WVP(pq) for any query segment pq.

1.2 Our results

In this paper, we present two new data structures whose performances are also given
in Table 1. In the first part, we present an algorithm for computing the weak visibility
polygon of any query line segment in a simple polygon P . We build a data structure in
O(n3 log n) time and O(n3) space that can compute WVP(pq) in O(log n + |WVP(pq)|)
time for any query line segment pq. A preliminary version of this result appeared in [9].

In the second part of the paper, we consider the problem of computing WVP(pq) in
polygonal domains. For a polygon with h holes and total vertices of n, our algorithm needs
the preprocessing time of O(n2 log n) and space of O(n2). We can compute WVP(pq) in
time O(n~ log n + k). Here ~ is an output sensitive parameter of at most min(h, k), and
k = O(n2h2) is the size of the output polygon. Our algorithm is an improvement over the
previous result of Suri and O’Rourke [10], considering the extra cost of preprocessing.

1.3 Motivations and Applications

Over the years, visibility has become one of the most studied problems in computational
geometry, and has many applications in computer graphics and computational geome-
try. As visibility is a natural phenomenon in everyday life [6], such problems arise in
areas where computational geometry tools and algorithms find applications. In addition,
we can use their solutions as building blocks to solve other problems, such as motion
planning and art gallery problems. The reader is referred to [2, 6].

For example, consider a robot that wants to move from a starting point to a target
point, and avoid colliding with any obstacles in its path. Assume that the robot has a
linear sensor with it, and the sensor sees an object if at least a point of the sensor detects
the object. By projecting the scene on the floor, we can model it as a polygon (with or
without holes). Also, at each time, the detected objects can be mapped to weakly visible
objects from the linear sensor.

2

August 11, 2014 International Journal of Computer Mathematics paper

To move in the free space and avoid colliding with the objects, the robot must maintain
a list of visible objects from its current position. As there may be thousands of objects
in the scene, computing the visible objects in the path becomes a complex task. Also, as
the robot moves to a new position, we must run the visibility algorithm again to update
the current visible objects.

Here we can see the merit of our work that, by building a data structure in the prepro-
cessing time which is dependent to the scene, we can perform the visibility computations
more quickly. For example, if we perform visibility queries for hundreds of times, the
speed up will result in a significant time difference.

2. Preliminaries

Let P be a polygon with total vertices of n. Also, let p be a point inside P . The visibility
sequence of a point p is the sequence of vertices and edges of P that are visible from
p. A visibility decomposition of P is to partition P into a set of visibility regions, such
that any point inside each region has the same visibility sequence (see Figure 1). This
partition is induced by the critical constraint edges, which are the lines in the polygon
each induced by two vertices of P , such that the visibility sequences of the points on its
two sides are different.

The visibility sequences of two neighboring visibility regions which are separated by
an edge, differ only in one vertex. This fact is used to reduce the space complexity
of maintaining the visibility sequences of the regions [4]. This is done by defining the
sink regions. A sink is a region with the smallest visibility sequence compared to all of
its adjacent regions. It is therefore sufficient to only maintain the visibility sequences
of the sinks, from which the visibility sequences of all other regions can be computed.
By constructing a directed dual graph over the visibility regions, one can maintain the
difference between the visibility sequences of the neighboring regions [4].

Figure 1. The visibility decomposition induced by the critical constraints.

In a simple polygon with n vertices, the number of visibility and sink regions are O(n3)
and O(n2), respectively [4]. For a non-simple polygon, these bounds are both O(n4) [12].

2.1 Guibas et al. algorithm for computing WVP

Here, we present the linear algorithm of Guibas et al. for computing WVP(pq) of a line
segment pq inside P , as described in [6]. This algorithm is used in computing the weak
viability polygons in an output sensitive way, to be explained in Section 3. For simplicity,
we assume that pq is a convex edge of P , but we will later show that this can be extended
to any line segment inside the polygon.

3

August 11, 2014 International Journal of Computer Mathematics paper

Let SPT(p) denote the shortest path tree in P rooted at p. The algorithm traverses
SPT(p) using a DFS and checks the turn at each vertex vi in SPT(p). If the path makes a
right turn at vi, then we find the descendant of vi in the tree with the largest index j (see
Figure 2). As there is no vertex between vj and vj+1, we can compute the intersection
point z of vjvj+1 and vkvi in O(1) time, where vk is the parent of vi in SPT(p). Finally
the counter-clockwise boundary of P is removed from vi to z by inserting the segment
viz.

Let P ′ denote the remaining portion of P . We follow the same procedure for q. This
time, the algorithm checks every vertex to see whether the path makes its first left turn. If
so, we will cut the polygon at that vertex in a similar way. After finishing the procedure,
the remaining portion of P ′ would be WVP(pq).

replacements

pp qq

vk

vk

z

z

vi

vi vj

vj

vj−1

vj−1

vj+1

vj+1

Figure 3. A line segment observer among
convex objects.

pp qq

vk

z

vi

vj

vj−1

v′k

z′

v′i

v′jv′j

v′j−1
v′j+1

Figure 4. A line segment observer among
convex objects.

[4] B. Chazelle, L. J. Guibas, and D. T. Lee. The power of
geometric duality. In Proc. 24th Annu. IEEE Sympos.
Found. Comput. Sci., pages 217–225, 1983.

[5] S. Ghali and A. J. Stewart. Incremental update of
the visibility map as seen by a moving viewpoint in
two dimensions. In Seventh International Eurograph-
ics Workshop on Computer Animation and Simulation,
pages 1–11, Aug. 1996.

[6] S. Ghali and A. J. Stewart. Maintenance of the set of
segments visible from a moving viewpoint in two di-
mensions. In Proc. 12th Annu. ACM Sympos. Comput.
Geom., pages V3–V4, 1996.

[7] S. K. Ghosh and D. M. Mount. An output sensitive
algorithm for computing visibility graphs. Technical
Report CS-TR-1874, Department of Computer Sci-
ence, University of Maryland, July 1987.

[8] K. Nechvle and P. Tobola. Dynamic visibility in the
plane. In Proc. Seventh Int. Conf. in Central Europe
on Computer Graphics and Visualization, WSCG ’99,
pages 187–194, 1999.

p q

Figure 5. A line segment observer among
convex objects.

[9] M. H. Overmars and J. van Leeuwen. Maintenance
of configurations in the plane. J. Comput. Syst. Sci.,
23:166–204, 1981.

[10] M. Pocchiola and G. Vegter. The visibility com-
plex. Internat. J. Comput. Geom. Appl., 6(3):279–308,
1996.

[11] S. Rivière. Dynamic visibility in polygonal scenes
with the visibility complex. In Proc. 13th Annu. ACM
Sympos. Comput. Geom., pages 421–423, 1997.

[12] P. Tobola. Local approach to dynamic visibility in
the plane. In Proceedings of the 7-th International
Conference in Central Europe on Computer Graphics,
Visualization and Interactive Digital Media’99, pages
202–208, 1999.

[13] G. Vegter. Computational topology. In J. E. Good-
man and J. O’Rourke, editors, Handbook of Discrete
and Computational Geometry, chapter 32. CRC Press
LLC, Boca Raton, FL, 2th edition, 2004.

Figure 2. The two phases of the algorithm of computing WVP(pq). In the left figure, the shortest path from p to
vj makes a first right turn at vi. In the right figure, the shortest path from q to v′j makes a first left turn at v′i.

3. Weak visibility queries in simple polygons

In this section, we show how to modify the algorithm of Section 2.1, so that WVP can be
computed efficiently in an output sensitive way. An important part of this algorithm is
computing the shortest path trees. Therefore, we first show how to compute the shortest
path trees in an output sensitive way. Then, in Section 3.2, we present a primary version
of our algorithm. Later, in Section 3.3, we show how to improve this algorithm.

3.1 An output sensitive algorithm for computing SPT

The Euclidean shortest path tree of a point inside a simple polygon P of size n can be
computed in O(n) time [7]. In this section we show how to preprocess P , so that for any
given point p we can report any part of SPT(p) in an output sensitive way.

The shortest path tree SPT(p) is composed of two kinds of edges: the primary edges
that connect the root of the tree to its direct visible vertices, and the secondary edges
that connect two vertices of SPT(p) (see Figure 3). We can also recognize two kinds of
the secondary edges: a 1st type secondary edge (1st type for short) is a secondary edge
that is connected to a primary edge, and a 2nd type secondary edge (2nd type for short)
is a secondary edge that is not connected to a primary edge. We show how to store these

4

August 11, 2014 International Journal of Computer Mathematics paper

edges in the preprocessing phase, so that they can be retrieved efficiently in the query
time.

The primary edges of SPT(q) can be computed by using the Bose et al. algorithm
of computing the visibility polygons [4]. More precisely, with a preprocessing cost of
O(n3 log n) time and O(n3) space, a pointer to the sorted list of the visible vertices of a
query point p can be computed in O(log n) time.

primary edges

1st type secondary edges

2nd type secondary edges

p
u

v

Figure 3. The shortest path tree of p and its different types of edges: the edges that are directly connected to the

root p (primary edges), the edges that are connected to the primary edges (1st type secondary edges), and the
remaining edges (2nd type secondary edges).

For computing the secondary edges of SPT, in the preprocessing time, we store all the
possible values of the secondary edges of each vertex. Having these values, we can detect
the appropriate list in the query time, and report the edges without any further cost.

Each vertex v in P have O(n) potential parents in SPT. For each potential parent of
v, there may be O(n) 2nd type edges in SPT. Therefore, for a vertex v, O(n2) space
is needed to store all the possible combinations of the 2nd type edges. Computing and
storing these potential edges can be done in O(n2 log n) time. In the query time, when
we arrive at the vertex v, we use these data to extract the 2nd type edges of v in SPT.
Computing these data for all the vertices of P needs O(n3 log n) time and O(n3) space.

The parent of a 1st type edge of SPT is the root of the tree. As the root can be in
any of the O(n3) visibility regions, to compute the possible combinations of the 1st type
edges of a vertex, we need to consider all these potential parents. Considering all the
visibility regions, the potential first type edges can be computed in O(n4 log n) time and
O(n4) space.

Lemma 3.1 Given a simple polygon P , we can build a data structure of size O(n4)
in time O(n4 log n), so that for a query point p, the shortest path tree SPT(p) can be
reported in O(log n + k) time, where k is the size of the tree to be reported.

In Section 3.3 we will show how to improve the processing time and space by a linear
factor.

3.2 Computing the query version of WVP

The linear algorithm presented in Section 2.1 for computing WVP of a simple polygon is
not output sensitive by itself. See the example of Figure 4. In this example, as stated in
Section 2.1, first we traverse SPT(p) using DFS and we check the turn at every vertex of
SPT(p). Consider vertex v. As we traverse the shortest path SP (p, v), all the children of
v must be checked. This can cost O(n) time. When we traverse SPT(q), all the children
of v will be omitted. Therefore, the time spent on processing the vertices in SPT(p) was
redundant.

5

August 11, 2014 International Journal of Computer Mathematics paper

p q

v

Figure 4. In the first phase of the algorithm, all the children of v in SPT(p) are processed. These vertices which

are not in WVP(pq) may impose redundant O(n) time.

To achieve an output sensitive algorithm, we build the data structure explained in the
previous section, so that SPT of any point inside the polygon can be computed in the
query time. Also, we store some additional information about the vertices of the polygon
in the preprocessing phase. We say that a vertex v of a simple polygon is left critical
(LC for short) with respect to a point p, if SP(p, v) makes its first left turn at v. In other
words, each shortest path from p to a non-LC vertex is a convex chain that makes only
clockwise turns at each node. The critical state of a vertex is whether or not it is LC.
If we have the critical state of all the vertices of the polygon with respect to a point p,
we say that we have the critical information of p. Note that as we check the right turns
at the first phase of the algorithm, we do not need to store the right turn state of the
vertices in the preprocessing time.

The idea is to change the algorithm of Section 2.1 and make it output sensitive. The
outline of the algorithm is as follows: In the first round, we traverse SPT(p) using DFS.
At each vertex, we check whether this vertex is left critical with respect to q or not.
If so, we are sure that the descendants of this vertex are not visible from pq, so we
postpone its processing to the time it is reached from q, and check other branches of
SPT(p). Otherwise, we proceed with the algorithm and check whether SPT(p) makes
a right turn at this vertex. In the second round, we traverse SPT(q) and perform the
normal procedure of the algorithm.

Lemma 3.2 All the traversed vertices in SPT(p) and SPT(q) are vertices of WVP(pq).

Proof. Assume that while traversing SPT(p), we meet v and v 6∈WVP(pq). Let u be the
parent of v in SP (pv). In this case, u or one of its ancestors must be LC with respect to q,
otherwise the algorithm will detect it as a vertex of WVP(pq). Therefore, while traversing
SPT(p), we cannot reach v. The same argument can be applied to SPT(q). �

In the preprocessing phase, we compute the critical information of a point inside each
region, and assign this information to that region. In the query time and upon receiving
a line segment pq, we find the regions of p and q. Using the critical information of these
two regions, we can apply the algorithm and compute WVP(pq).

As there are O(n3) regions in the visibility decomposition, O(n4) space is needed to
store the critical information of all the vertices. For each region, we compute SPT of a
point, and by traversing the tree, we update the critical information of each vertex with
respect to that region. For each region, we assign an array of size O(n) to store these

6

August 11, 2014 International Journal of Computer Mathematics paper

information. We also build the structure described in Section 3.1 for computing SPT in
time O(n4 log n) and O(n4) space. In the query time, we locate the visibility regions of p
and q in O(log n) time. As the processing time spent in each vertex is O(1), by Lemma
3.2, the query time is O(log n + |WVP(pq)|).

Lemma 3.3 Using O(n4 log n) time to preprocess a simple polygon P and construct-
ing a data structure of size O(n4), it is possible to report WVP(pq) in time O(log n +
|WVP(pq)|).

Until now, we assumed that pq is a polygonal edge. This can be generalized to any line
segment pq inside P .

Lemma 3.4 Let pq be a line segment inside a simple polygon P . We can decompose P
into two sub-polygons P 1 and P 2, such that each sub-polygon has pq as a polygonal edge.
Furthermore, the critical information of P 1 and P 2 can be computed from the critical
information of P .

Proof. We find the intersection points of the supporting line of pq with the border of P .
Then, we split P into two simple polygons P 1 and P 2, both having pq as a polygonal edge.
The visibility regions of P 1 and P 2 are subsets of the visibility regions of P . Therefore,
we have the critical information and SPT edges of these regions. The primary edges of
p and q can also be divided to those in P 1 and those in P 2. See the example of Figure
5. �

replacements

pp qq

vk

vk

z

z

vi

vi vj

vj

vj−1

vj−1

vj+1

vj+1

Figure 3. A line segment observer among
convex objects.

pp qq

vk

vk

z

z

vi

vi vj

vj

vj−1

vj−1

vj+1

vj+1

Figure 4. A line segment observer among
convex objects.

[4] B. Chazelle, L. J. Guibas, and D. T. Lee. The power of
geometric duality. In Proc. 24th Annu. IEEE Sympos.
Found. Comput. Sci., pages 217–225, 1983.

[5] S. Ghali and A. J. Stewart. Incremental update of
the visibility map as seen by a moving viewpoint in
two dimensions. In Seventh International Eurograph-
ics Workshop on Computer Animation and Simulation,
pages 1–11, Aug. 1996.

[6] S. Ghali and A. J. Stewart. Maintenance of the set of
segments visible from a moving viewpoint in two di-
mensions. In Proc. 12th Annu. ACM Sympos. Comput.
Geom., pages V3–V4, 1996.

[7] S. K. Ghosh and D. M. Mount. An output sensitive
algorithm for computing visibility graphs. Technical
Report CS-TR-1874, Department of Computer Sci-
ence, University of Maryland, July 1987.

[8] K. Nechvle and P. Tobola. Dynamic visibility in the
plane. In Proc. Seventh Int. Conf. in Central Europe
on Computer Graphics and Visualization, WSCG ’99,
pages 187–194, 1999.

p q

Figure 5. A line segment observer among
convex objects.

[9] M. H. Overmars and J. van Leeuwen. Maintenance
of configurations in the plane. J. Comput. Syst. Sci.,
23:166–204, 1981.

[10] M. Pocchiola and G. Vegter. The visibility com-
plex. Internat. J. Comput. Geom. Appl., 6(3):279–308,
1996.

[11] S. Rivière. Dynamic visibility in polygonal scenes
with the visibility complex. In Proc. 13th Annu. ACM
Sympos. Comput. Geom., pages 421–423, 1997.

[12] P. Tobola. Local approach to dynamic visibility in
the plane. In Proceedings of the 7-th International
Conference in Central Europe on Computer Graphics,
Visualization and Interactive Digital Media’99, pages
202–208, 1999.

[13] G. Vegter. Computational topology. In J. E. Good-
man and J. O’Rourke, editors, Handbook of Discrete
and Computational Geometry, chapter 32. CRC Press
LLC, Boca Raton, FL, 2th edition, 2004.

Figure 5. If the query line segment pq is inside the polygon, we split it along the supporting line of pq to create

two sub-problems. The dotted lines are some of the critical constraints in the polygon.

3.3 Improving the algorithm

In this section we improve the preprocessing cost of Lemma 3.3. To do this, we improve
those parts of the algorithm of Section 3.2 that need O(n4 log n) preprocessing time and
O(n4) space. We show that it is sufficient to compute the critical information and the 1st
type edges of the sink regions (see Section 2 for the definition of the sink regions). For any
query point p in a non-sink region, the 1st type edges of SPT(p) can be computed from
the 1st type edges of the sink regions (Lemma 3.5). Also, the critical information of the
other regions can be deduced from the critical information of the sink regions (Lemma

7

August 11, 2014 International Journal of Computer Mathematics paper

3.6). As there are O(n2) sinks in a simple polygon, the processing time and space of our
algorithm will be reduced to O(n3 log n) and O(n3), respectively.

In the query time, if both p and q belong to sink regions, as we have the critical
information of their regions, we can proceed the algorithm. On the other hand, if one of
these points belongs to a non-sink region, Lemma 3.5 and 3.6 show that the secondary
edges and the critical information of that point can be retrieved in O(log n+ |WVP(pq)|)
time.

Lemma 3.5 Assume that, for a visibility region V , the 1st type secondary edges are
computed. For a neighboring region that share a common edge with V , these edges can
be updated in constant time.

p

u
v

Figure 6. When p enters a new visibility region, the combinatorial structure of SPT(p) can be maintained in

constant time.

Proof. When a view point p crosses the common border of two neighboring regions, a
vertex becomes visible or invisible to p [4]. In Figure 6, for example, when p crosses the
border specified by u and v, a 1st type edge of u becomes a primary edge of p, and all the
edges of v become the 1st type edges. We can see that no other vertex is affected by this
movement. Processing these changes can be done in constant time, since it includes the
following changes: removing a secondary edge of u (uv), adding a primary edge (pv), and
moving an array pointer (edges of v) from the 2nd type edges of uv to the 1st type edges
of pv. Note that we know the exact positions of these elements in their corresponding
lists. The only edge that involves in these changes (i.e., the edge corresponding to the
crossed critical constraint), can be identified in the preprocessing time. Therefore, the
time we spent in the query time would be O(1). �

Lemma 3.6 The critical information of a point can be maintained between two neigh-
boring regions that share a common edge in constant time.

Proof. Suppose that we want to maintain the critical information of p, and p is crossing
the critical constraint defined by uv, where, u and v are two reflex vertices of P . Recall
that by critical information, we mean whether the vertices of P are left critical w.r.t. p
or not. As stated in Section 3.2, we do not store the right turn states of the vertices of
P , and the right turns will be checked at the query time.

The only vertices that are affected directly by this change are u and v. Depending on
the critical states of u and v w.r.t. p, four situations may occur (see Figure 7). In the
first three cases, the critical state of v will not change. In the forth case, however, the

8

August 11, 2014 International Journal of Computer Mathematics paper

p

u
v p

u v

pp uu v
v

(a) (b)

(c) (d)

2

0 0 0

1

1 1
1

(a) v is LC but not u

p

u
v p

u v

pp uu v
v

(a) (b)

(c) (d)

2

0 0 0

1

1 1
1

(b) u and v are not LC

p

u
v p

u v

pp uu v
v

(a) (b)

(c) (d)

2

0 0 0

1

1 1
1

(c) both u and v are LC

p

u
v p

u v

pp uu v
v

(a) (b)

(c) (d)

2

0 0 0

1

1 1
1

(d) u is LC but not v

Figure 7. Changes in the critical information of v w.r.t p, as p moves between the two regions.

critical state of v will change. Before the cross, the shortest path SP(p, v) makes a left
turn at u, therefore, both u and v are LC w.r.t. p. However, after the cross, u is not on
SP(p, v) and v is no longer LC. This means that the critical state of all the children of v
in SPT(p) could be changed as well.

To handle these cases, we use a lazy updating method to propagate these changes across
the tree. To do this, we modify the way the critical information of each vertex w.r.t. p are
stored. At each vertex v, we store two additional values: the number of LC vertices we
met in the path SP (p, v) (including v), or its critical number, and debit number, which is
the critical number that is to be propagated in the subtree of the vertex. If a vertex is LC,
it means that its critical number is greater than zero (see Figure 8). Also, if a vertex has
a non-zero debit number, the critical numbers of all its children must be added by this
number. Notice that computing and storing these numbers along the critical information
will not change the time and space requirements. Also, in query time, we can update the
critical number of a vertex in O(1) time, while traversing the tree.

Having these new data, we must update these numbers in the third and forth cases in
Figure 7. For example, let us consider the forth case. When v becomes visible to p, it
is no longer LC w.r.t. p. Therefore, the critical number of v is changed to 0. However,
instead of changing the critical numbers of all the children of v, we set the debit number
of v to −1, indicating that the critical numbers of all the vertices of its subtree must be
subtracted by 1. The actual propagation of this subtraction will happen at query time,
when SPT(p) will be traversed. Similarly, If p moves in the reverse path, i.e., when v
becomes invisible to p, we handle the tree in a same way by adding 1 to the debit number,
and propagating this addition in the query time.

�

9

August 11, 2014 International Journal of Computer Mathematics paper

p 1

1

1

1
2

0

0

Figure 8. The numbers represent the number of left critical vertices met from p in SPT(p).

In the preprocessing time, we build the dual directed graph of the visibility regions.
In this graph, every node represents a visibility region, and an edge between two nodes
corresponds to a gain of one vertex in the visibility set in one direction, and a loss in
the other direction. We compute the critical information and 1st type edges of all the
sink regions. By Lemma 3.5 and 3.6, any two neighboring regions have the same critical
information and secondary edges, except at one vertex. We associated this vertex with
the edge.

In the query time, we locate the region containing the point p, and follow any path from
this region to a sink. As each arc represents a vertex that is visible to p, and therefore to
pq, the number of arcs in the path is O(|WVP(pq)|). When traversing the path from the
sink back to the region of p, we update the critical information and the secondary edges
of the visible vertices in each region. At the original region, we would have the critical
information and the 1st type edges of this region. We perform the same procedure for
q. Having the critical information and the 1st type edges of p and q, we can compute
WVP(pq) with the algorithm of Section 3.2. In general, we have the following theorem:

Theorem 3.7 A simple polygon P can be preprocessed in O(n3 log n) time and O(n3)
space, such that given an arbitrary query line segment inside the polygon, WVP(pq) can
be computed in O(log n + |WVP(pq)|) time.

4. Weak Visibility queries in polygons with holes

In this section, we propose an algorithm for computing the weak visibility polygons in
polygonal domains. Let P be a polygon with h holes and n total vertices. Also let pq
be a query line segment. We use the idea presented in [12] and convert the non-simple
polygon P into a simple polygon P s. Then, we use the algorithms of computing WVP
in simple polygons to compute a preliminary version of WVP(pq). With some additional
work, we find the final WVP(pq).

A hole H can be eliminated by adding two cut-diagonals connecting a vertex of H to
the boundary of P . By cutting P along these diagonals, we will have another polygon
in which H is on its boundary. We repeat this procedure for all the holes and produce a
simple polygon P s.

Let l be the supporting line of pq. For simplicity, we assume that all the holes are on
the same side of l. Otherwise, we can split the polygon along l and generate two sub-
polygons that satisfy this requirement. To add the cut-diagonals, we select the nearest
point of each hole to l, and perform a ray shooting query from that point in the left
direction of l, to find the first intersection with a point of P (see Figure 9). This point

10

August 11, 2014 International Journal of Computer Mathematics paper

p
q

c1

c2

c3

c4

Figure 9. Adding the cut-diagonals to make a simple polygon P s.

can be a point on the border of P or a point on the border of another hole. We select
the shooting segment to be the cut-diagonal. Finding the nearest points of the holes can
be done in O(n log n) time. Also, performing the ray shooting procedure for each hole
can be done in O(n) time. Therefore, adding the cut-diagonals can be done in total time
of O(n(h + log n)). The resulting simple polygon will have O(n + 2h) vertices. As h is
O(n), the number of vertices of P s is also O(n).

Having a simple polygon P s, we compute WVPs(pq) in P s by using the algorithm
of Section 2.1. Next, we add the edges of the polygon that can be seen through the
cut-diagonals. An example of the algorithm can be seen in Figure 10. First, we compute
WVPs(pq) in P s. Then, for each segment of the cut-diagonals that can be seen from pq,
we recursively compute the segments of P that are visible from pq through that diagonal.
This leads to the final WVP(pq).

A B

C D
Figure 10. Computing WVP(pq) inside a polygon with holes.

11

August 11, 2014 International Journal of Computer Mathematics paper

4.1 Computing visibility through cut-diagonals

For computing WVP(pq), we must update WVPs(pq) with the edges that are visible
through the cut diagonals. To do this, we define the partial weak visibility polygon. Sup-
pose that a simple polygon P is divided by a diagonal e into two parts, L and R. For
a line segment pq ∈ R, we define the partial weak visibility polygon WVPL(pq) to be
the polygon WVP(pq)∩L. In other words, WVPL(pq) is the portion of P that is weakly
visible from pq through e. To compute WVPL(pq), one can compute WVP(pq) by the
algorithm of Section 2.1, and then report those vertices in L.

Lemma 4.1 Given a polygon P and a diagonal e which cuts P into two parts, L and
R, for any query line segment pq ∈ R, the partial weak visibility polygon WVPL(pq) can
be computed in O(n) time.

Lemma 4.1 only holds for simple polygons, but we use its idea for our algorithm.
Assume that P has only one hole H and this hole has been eliminated by the cut u1u2.
Let v1v2 be another cut which is on the supporting line of u1u2 and is on the other
side of H, such that v1 is on the border of H and v2 is on the border of P . We can
also eliminate H by v1v2 and obtain another simple polygon P ′

s. Now Lemma 4.1 can
be applied to the polygon P ′

s and answer partial weak visibility queries through the cut
u1u2. Following the terminology used by Zarei and Ghodsi [12], we denote this algorithm
by See-Through(H).

By performing the See-Through(H) algorithm once for each hole Hi and assuming
that P has been cut to a simple polygon, we can extend this algorithm to more holes.
This leads to h data structures of size O(n) for storing the simple polygons to perform
Lemma 4.1 for Hi. Using these data structures, we can find the edges of P that are visible
from pq through the cut-diagonals.

4.2 The algorithm

We first add the cut-diagonals to make a simple polygon P s. Then, we compute
WVPs(pq) and find the set of segments that are visible from pq in P s. If a segment
e of the cut-diagonal of a hole H is visible from pq, we use Lemma 4.1 and replace that
segment with the partial weak visibility polygon of pq through that segment. We continue
this for every cut-diagonal that can be seen from pq. Due to the nature of visibility, this
procedure will end. If we have processed h′ segments of the cut-diagonals, we end up
with h′ + 1 simple polygons of size O(n). It can be easily shown that the union of these
polygons is WVP(pq).

Now let us analyze the running time of the algorithm. The cut-diagonals can be added
in O(nh + n log n) time. Running the algorithm of Theorem 3.7 in P s takes O(n) time.
In addition, for each segment of the cut-diagonals that has appeared in WVPs(pq), we
perform the algorithm of Lemma 4.1 in O(n) time. In general, we have the following
lemma:

Lemma 4.2 The time needed to compute WVP(pq) as a set of h′ simple polygons of size
O(n) is O(nh′ + n log n), where h′ is the number of cut-diagonals that has been appeared
in WVPs(pq) during the algorithm.

Lemma 4.3 The upper bound of h′ is O(h2) and this bound is tight.

Proof. We have selected the cut-diagonals in such a way that the query line segment pq
does not intersect the supporting line of any of the cut-diagonals. Also, the cut-diagonals

12

August 11, 2014 International Journal of Computer Mathematics paper

p q

Figure 11. A polygon with tight bound of h′.

do not intersect each other. Therefore, if pq sees a cut-diagonal l through another cut-
diagonal l′, then pq cannot see l′ through l. Hence, the upper bound of h′ is O(h2). Figure
11 shows a sample with tight bound of h′. �

4.3 Improving the algorithm

In the algorithm of the previous section, we may perform the See-Through(H) algo-
rithm up to h times for each hole, resulting the high running time of O(nh2). In this
section, we show how to change this algorithm and improve the final result.

A vertex v of the polygon P can see the line segment pq directly or through the cut-
diagonals. More precisely, v can see up to h parts of pq through different cut-diagonals.
These parts can be categorized by the critical constraints that are tangent to the holes
and pass through v and cut pq. The next lemma put a limit on the number of these
critical constraints.

Lemma 4.4 The number of the critical constraints that see pq is O(n~), where ~ =
min(h, |WVP(pq)|) is the number of visible holes from pq.

Proof. Let the number of vertices of the hole Hi be mi. There are three kinds of con-
straints:

• For each vertex v that is not on the border of Hi and is visible to Hi, there are at
most two critical constraints that touch Hi and cut pq. Therefore, the total number of
these constraints is O(n~).

• The number of the critical constraints induced by two vertices of Hi that cut pq is
O(mi). We also have

∑
imi = O(n).

• The number of the critical constraints that cut pq and do not touch any hole is O(n)
[4].

Putting these together, we can prove the lemma. �

We preprocess the polygon P so that, in query time, we can efficiently find the critical
constraints that cut pq. There are O(n) critical constraints passing through each vertex
in P . Therefore, the set of critical constraints can be computed in O(n2 log n) time
and O(n2) space. As the critical constraints passing through a vertex can be treated
as a simple polygon (see Figure 12), we build the ray shooting data structure for each
vertex in O(n) time and space, so that the ray shooting queries can be answered in
O(log n) time. In query time, we find the critical constraints of each vertex that cut pq
in O(cv log cv) time, or in total time of O(n~ log n) for all the vertices. Here cv is the

13

August 11, 2014 International Journal of Computer Mathematics paper

number of constraints that pass through v and cut pq.

v

Figure 12. We can treat the line segments passing through a vertex v as a simple polygon (dashed lines) and
build a ray shooting data structure in O(n) time to answer the ray shooting queries.

By performing an angular sweep through these lines, we can find the visible parts of
pq and the visible cut-diagonals from the vertices in O(n~) time. We store these parts in
the vertices, according to the visible cut-diagonal of each part. Performing this procedure
for all the vertices of P , including the vertices of the holes, and storing the visible parts
of pq in each vertex can be done in O(n~ log n) time and O(n~) space. So, we have the
following lemma:

p
q

v

Figure 13. There are O(h) critical constraints from each vertex of the polygon that hit a cut-diagonal.

Lemma 4.5 Given a polygonal domain P with h disjoint holes and n total vertices, it
can be processed into a structure in O(n2) space and O(n2 log n) preprocessing time so
that for any query line segment pq, the critical constraints that cut pq can be computed
and sorted in O(n~ log n) time, where ~ = min(h, |WVP(pq)|).

It the rest of the paper we show that these critical constraints make an arrangement
that can be used to compute WVP(pq).

We defined WVPs(pq) to be the part of P that can be seen directly from pq. Let ci be
the cut-diagonal of the hole Hi. We define WVPci to be the part of P that can be seen
pq through ci. It is clear that WVP(pq) = ∪iWVPci(pq) ∪WVPs(pq).

14

August 11, 2014 International Journal of Computer Mathematics paper

Now, we show how to compute WVPci . First notice that WVPci is on the upper half
plane of ci. Let P ci be the part of P s that is above ci. As pq can see P ci through different
parts of ci, WVPci may not a simple polygon.

Let Di be the set of critical constraints originating from the vertices of P ci that can
see pq and directly cut ci, plus the critical constraints that can see pq and hit the border
of P ci and cut ci just before they hit P ci . Each critical constraint is distinguished by
one or two reflex vertices. We call each one of these vertices as the anchor of the critical
constraint. Also, each one of these critical constraints may cut the border of P ci at most
twice. Let Si be the segments on the border of P ci resulted from these cuttings. It is
clear that |Si| = O(n + 2h) = O(n).

Let Li = ∪k=1...i(Sk ∪Dk), and let Ai be the arrangement induced by the segments of
Li. We show that Ai partitions P ci into visible and invisible regions.

Lemma 4.6 For each point x ∈ P ci that is visible from pq, there is a segment e in Li
that can be rotated around its anchor until it hits x, while remaining visible to pq.

p

q

x

ci

r

y1

y2

y

z

Figure 14. For each visible point x ∈ P ci , there is a critical constraint yz that can be rotated around its anchor
y until it hits x.

Proof. As x is visible from pq, it must be visible from some point r of pq, such that xr
cuts ci (see Figure 14). We rotate the segment xr counterclockwise about x until it hits
some vertex y1 ∈ P . Notice that the case y1 = q is possible and does not require separate
treatment. Next, we rotate the segment clockwise about y1 until it hits another vertex
y2 ∈ P . We continue the rotations until the segment reaches one of the endpoints of ci,
or the lower part of the segment hits a point z of the polygon, or the segment reaches
the end-point p. Let y be the last point that the segment hits on the upper part of e.
As we only rotate the segment clockwise, this procedure will end. It is clear that yz is a
critical constraint in Li, and we can reach the point x by rotating yz counterclockwise
about z. �

Lemma 4.7 All the points of a cell c in Ai have the same visibility status w.r.t. pq.

Proof. Suppose that the points u and v are in c, and u is visible and v is invisible from
pq. Let uv be the line segment connecting u and v, and x be the nearest point to u on uv
that is invisible from pq. According to Lemma 4.6, there is a segment e ∈ Li with z as
its anchor, such that if we rotate e around z, it will hit u. We continue to rotate e until
it hits x. As x is invisible from pq, zx must be a critical constraint. This means that we

15

August 11, 2014 International Journal of Computer Mathematics paper

z

u v
x

e

Figure 15. All the points of a cell have the same visibility status.

have another critical constraint from a vertex z ∈ P that sees pq, and it crosses the cell
c. Thus, the assumption that c is a cell in Ai is contradicted. �

To compute the final WVP(pq), we have to compute ∪iWVPci(pq) ∪ WVPs(pq).
WVPs(pq) is a simple polygon of size O(n) which can be represented by O(n) line
segments. Also, WVPci(pq) can be represented by the arrangement of O(n + 2h + di)
line segments, where di = |Di|. It can be easily shown that

∑
i di = O(n~). Therefore,

WVP(pq) can be represented as the arrangement of O(
∑

i=1...~ n +
∑

i=1...h di) = O(n~)
line segments.

In the next section, we consider the problem of computing the boundary of WVP(pq).

4.4 Computing the boundary of WVP(pq)

We showed how to output WVP(pq) as an arrangement of O(n~) line segments. Here,
we show that WVP(pq) can be output as a polygon in O(n~ log n + |WVP(pq)|) time.

Balaban [3] showed that by using a data structure of size O(m), one can report the
intersections of m line segments in time O(m logm + k), where k is the number of
intersections. This algorithm is optimal because at least Ω(k) time is needed to report
the intersections. Here, we have O(n~) line segments and reporting all the intersections
needs O(n~ log n+k) time and O(n~) space. With the same running time, we can classify
the edge fragments by using the method of Margalit and Knott [8], while reporting the
line segment intersections. We can summarize this in the following theorem:

Theorem 4.8 A polygon domain P with h disjoint holes and n vertices can be prepro-
cessed in time O(n2 log n) to build a data structure of size O(n2), so that the visibility
polygon of an arbitrary query line segment pq within P can be computed in O(n~ log n+k)
time and O(n~) space, where k is the size of the output which is O(n2h2) and ~ is the
number of visible holes from pq.

5. Conclusion

We considered the problem of computing the weak visibility polygon of line segments in
simple polygons and polygonal domains. In the first part of the paper, we presented an

16

August 11, 2014 International Journal of Computer Mathematics paper

algorithm to report WVP(pq) of any line segment pq in a simple polygon of size n in
O(log n+ |WVP(pq)|) time, by spending O(n3 log n) time to preprocess the polygon and
maintaining a data structure of size O(n3).

In the second part of the paper, we considered the same problem in polygons with
holes. We presented an algorithm to compute WVP(pq) of any pq in a polygon with
h polygonal obstacles with a total of n vertices. The query time of our algorithm is
O(n~ log n + k), and we spend O(n2 log n) time to preprocess the polygon and build a
data structure of size O(n2). The factor ~ is an output sensitive parameter of size at
most min(h, k), and k = O(n2h2) is the size of the output polygon.

References

[1] B. Aronov, L. J. Guibas, M. Teichmann, and L. Zhang. Visibility queries and maintenance in simple
polygons. Discrete and Computational Geometry, 27(4):461–483, 2002.

[2] T. Asano, S. Ghosh, and T. Shermer. Visibility in plane. In Handbook in Computational Geometry.
Elsevier Science, 1999.

[3] I.J. Balaban. An optimal algorithm for finding segment intersections. In Proceedings of 11th Annual
ACM Symposium of Computational Geometry, pages 211–219. none, 1995.

[4] P. Bose, A. Lubiw, and J. I. Munro. Efficient visibility queries in simple polygons. Computational
Geometry: Theory and Applications, 23(3):313–335, 2002.

[5] D. Z. Chen and H. Wang. Weak visibility queries of line segments in simple polygons. In Proceedings
of The 23rd International Symposium on Algorithms and Computation, pages 609–618, 2012.

[6] S. K. Ghosh. Visibility Algorithms in the Plane. Cambridge University Press, New York, NY, USA,
2007.

[7] L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan. Linear time algorithms for
visibility and shortest path problems inside triangulated simple polygons. Algorithmica, 2:209–233,
1987.

[8] A. Margalit and G.D. Knott. An algorithm for computing the union, intersection or difference of
two polygons. Computation and Graphics, 13:167–183, 1989.

[9] M. Nouri Bygi and M. Ghodsi. Weak visibility queries in simple polygons. In Proceedings of The
23rd Canadian Conference of Computational Geometry, 2011.

[10] S. Suri and J. O’Rourke. Worst-case optimal algorithms for constructing visibility polygons with
holes. In Proceedings of The 2nd Annual Symposium on Computational Geometry, pages 14–23,
1986.

[11] G. T. Toussainta. A linear-time algorithm for solving the strong hidden-line problem in a simple
polygon. Pattern Recognition Letters, 4:449–451, 1986.

[12] A. Zarei and M. Ghodsi. Efficient computation of query point visibility in polygons with holes. In
Proceedings of The Annual 21st Symposium on Computational Geometry, pages 314–320, 2005.

17

