
CCCG 2011, Toronto ON, August 10–12, 2011

Weak Visibility Queries in Simple Polygons

Mojtaba Nouri Bygi ∗ Mohammad Ghodsi †

Abstract

In this paper, we consider the problem of computing
the weak visibility (WV) of a query line segment in-
side a simple polygon. Our algorithm first preprocesses
the polygon and creates data structures from which any
WV query is answered efficiently in an output sensitive
manner. In our solution, the preprocessing is performed
in time O(n3 log n) and the size of the constructed data
structure is O(n3). It is then possible to report the WV
polygon of any query line segment in time O(log n+ k),
where k is the size of the output. Our algorithm im-
proves the current results for this problem.

1 Introduction

Two points inside a polygon are visible to each other
if their connecting segment remains completely inside
the polygon. The visibility polygon V P (q) of a point q
in a simple polygon P is the set of P points that are
visible from q. A common approach to this problem is
to decompose the polygon into the visibility regions in
such a way that all points inside a region have equivalent
visibility data [2]. Two visibility polygons are equivalent
if they are composed of the same sequence of vertices
and edges of the underlying polygon. If all the visibility
regions and their corresponding visibility polygons are
calculated in the preprocessing phase, for any point q,
V P (q) can then be obtained by refining the visibility
polygon of the region that contains q.

In a simple polygon with n vertices, V P (q) can
be reported in time O(log n + |V P (q)|) by spending
O(n3 log n) preprocessing time and O(n3) space [2, 7].
An improvement was presented in [1] where the prepro-
cessing time and space were reduced to O(n2 log n) and
O(n2) respectively, at the expense of more query time
of O(log2 n + |V P (q)|).

The visibility problem has also been considered for
line segments. A point v is said to be weakly visible to
a line segment pq if there exists a point w ∈ pq such
that w and v are visible to each other. The problem of
computing the weak visibility polygon (or WVP) of pq

∗Department of Computer Engineering, Sharif University of
Technology, nouribaygi@ce.sharif.edu
†Computer Engineering Department, Sharif University of

Technology, and Institute for Research in Fundamental Sciences
(IPM), Tehran, Iran. ghodsi@sharif.edu. This author’s research
was partially supported by the IPM under grant No: CS1389-2-01

inside a polygon P is to compute all points of P that
are weakly visible from pq. If P is a polygon without
holes, Chazelle and Guibas [3] gave an O(n log n) time
algorithm for this problem. Guibas et al. [6] showed
that this problem can be solved in O(n) time if a tri-
angulation of P is given along with P . Since P can be
triangulated in O(n) [4], the algorithm of Guibas et al.
runs in O(n) time [6]. Another linear time solution was
obtained independently in [8].

The weak visibility problem in the query version has
been considered by few. It is shown in [2] that a simple
polygon P can be preprocessed in O(n3 log n) time and
O(n3) space such that given an arbitrary query line seg-
ment inside the polygon, O(k log n) time is required to
recover k weakly visible vertices. This result was later
improved in [1] where the preprocessing time and space
were reduced to O(n2 log n) and O(n2) respectively, at
the expense of more query time of O(k log2 n).

In this paper, we improve these results by showing
that the weak visibility polygon of a line segment pq can
be reported in an output sensitive time of O(log2 n +
k) after preprocessing the input in time and space of
O(n3 log n) and O(n3) respectively.

2 Preliminaries

In this section we introduce some basic terminologies
used throughout the paper. For a better introduction
to these terms, we refer the readers to Guibas et al. [6],
Bose et al. [2], and Aronov et al. [1]. For simplicity,
we assume that no three vertices of the polygon are
collinear.

2.1 Visibility Decomposition

Let P be a simple polygon with n vertices. Also let p
and q be two points in the polygons. A visibility de-
composition of P is to partition P into a set of visibility
regions, such that for each region, the same sequence of
vertices and edges of P are visible from any point inside
the region.

Two visibility regions are neighboring if they are sepa-
rated by an edge. In a simple polygon, two neighboring
visibility regions differ only in one vertex in their visi-
bility sequences. This fact is used to reduce the space
complexity of maintaining the visibility sequences of the
regions [2]. This is done by defining the sink regions.
A sink is a region with the smallest visibility sequence

23d Canadian Conference on Computational Geometry, 2011

compared to all of its adjacent regions. It is therefore
sufficient to only maintain the visibility sequences of the
sinks, from which the visibility sequences of all other re-
gions can be computed. By constructing a directed dual
graph (see Figure 1) over the visibility regions, one can
maintain the difference between visibility sequences of
neighboring regions[2].

Figure 1: Decomposed visibility regions and its dual
graph [2].

The number of visibility regions in a simple polygon
is O(n3), and the number of sink regions is O(n2) [2].

2.2 Linear time algorithm for computing WVP

Here, we explain the O(n) time algorithm of Guibas
et al. [6] for computing WVP(pq) of a line segment pq
inside a simple polygon P with n vertices, as described
in [5]. For any line segment pq, we can cut P into two
polygons P1 and P2 along the supporting line of pq (see
Figure 2). It can be seen that WVP(pq) is the union of
the WVPs of the two sub-polygons from pq. So here we
assume that pq is an edge of P .

p qu v

Figure 2: P is divided by uv into two sub-polygons.

Let SPT(p) denote the shortest path tree in P rooted
at p. We traverse SPT(p) using a depth-first search
and check the turn at every vertex vi in SPT(p). If the
path SP(p, vj) makes a right turn at vi, then, we find
the descendant of vi in the tree with the largest index
j (see Figure 3). We compute the intersection point

z of vjvj+1 and vkvi, where vk is the parent of vi in
SPT(p), in O(1) (because there is no vertex between
vj and vj+1), and finally remove the counter-clockwise
boundary of P from vi to z by inserting the segment
viz.

Let P ′ denote the remaining portion of P . We fol-
low the same procedure for q, except that this time we
check the turn at every vertex and see whether the path
make its first left turn. After finishing the procedure,
we output the remaining portion of P ′ as WV P (pq).

replacements

pp qq

vk

vk

z

z

vi

vi vj

vj

vj−1

vj−1

vj+1

vj+1

Figure 3. A line segment observer among
convex objects.

[3] G. S. Brodal and R. Jacob. Dynamic planar convex
hull. In In Proc. 43rd IEEE Sympos. Found. Comput.
Sci, pages 617–626, 2002.

[4] B. Chazelle, L. J. Guibas, and D. T. Lee. The power of
geometric duality. InProc. 24th Annu. IEEE Sympos.
Found. Comput. Sci., pages 217–225, 1983.

[5] S. Ghali and A. J. Stewart. Incremental update of
the visibility map as seen by a moving viewpoint in
two dimensions. InSeventh International Eurograph-
ics Workshop on Computer Animation and Simulation,
pages 1–11, Aug. 1996.

[6] S. Ghali and A. J. Stewart. Maintenance of the set of
segments visible from a moving viewpoint in two di-
mensions. InProc. 12th Annu. ACM Sympos. Comput.
Geom., pages V3–V4, 1996.

[7] S. K. Ghosh and D. M. Mount. An output sensitive
algorithm for computing visibility graphs. Technical
Report CS-TR-1874, Department of Computer Sci-
ence, University of Maryland, July 1987.

[8] K. Nechvle and P. Tobola. Dynamic visibility in the
plane. InProc. Seventh Int. Conf. in Central Europe
on Computer Graphics and Visualization, WSCG ’99,
pages 187–194, 1999.

[9] M. H. Overmars and J. van Leeuwen. Maintenance
of configurations in the plane.J. Comput. Syst. Sci.,
23:166–204, 1981.

[10] M. Pocchiola and G. Vegter. The visibility com-
plex. Internat. J. Comput. Geom. Appl., 6(3):279–308,
1996.

[11] S. Rivière. Dynamic visibility in polygonal scenes
with the visibility complex. InProc. 13th Annu. ACM
Sympos. Comput. Geom., pages 421–423, 1997.

[12] P. Tobola. Local approach to dynamic visibility in
the plane. InProceedings of the 7-th International
Conference in Central Europe on Computer Graphics,
Visualization and Interactive Digital Media’99, pages
202–208, 1999.

[13] G. Vegter. Computational topology. In J. E. Good-
man and J. O’Rourke, editors,Handbook of Discrete
and Computational Geometry, chapter 32. CRC Press
LLC, Boca Raton, FL, 2th edition, 2004.Figure 3: In both cases, the from the root makes its first

right turn at vj [5].

3 The Proposed Algorithm

In this section, we show how to modify the presented al-
gorithm, so that the WVP can be computed efficiently
in an output sensitive manner. First, we show how to
compute the shortest path trees in an output sensitive
manner, and then we present the first version of our
algorithm. Finally, in Section 3.3, we improve this al-
gorithm and present the final result.

3.1 Computing the shortest path trees

In our algorithm, we use both of the shortest path trees
of p and q. In [6], it is shown how to compute the
Euclidean shortest paths inside a simple polygon P of
n vertices from a given point p to all other vertices in
O(n) time. But, this algorithm requires O(n) of query
time which is way beyond our goal. To overcome, we
show how to preprocess a simple polygon, so that for
any given point, we can compute any part of its shortest
path tree in an output sensitive way.

The shortest path tree SPT(p) is composed of two
kinds of edges: the primary edges, which are from the
root p to its direct visible vertices, and the secondary
edges that connect other two vertices of polygons (see
Figure 4).

We can compute the primary edges using the same
output sensitive algorithm of computing the visibility

CCCG 2011, Toronto ON, August 10–12, 2011

polygon [2]. More precisely, with a processing cost of
O(n3 log n) time and O(n3) space, we can in query time
of O(log n) have a pointer to the sorted list of the visible
vertices from p in O(log n) time.

primary edges

1st type secondary edges

2nd type secondary edges

p
u

v

Figure 4: The shortest path tree from p and its different
edge types.

We also need to access the list of the secondary edges
of a node in constant time. For this, we compute all pos-
sible values of secondary edges of a vertex in preprocess-
ing time and in query time, we detect the appropriate
list without any further cost.

Depending on the number of possible parents of a
vertex v, we recognize two kinds of secondary edges:
The 1st type of secondary edges (1st type for short) are
those connected to a primary edge, and the 2nd type are
the ones that connect other two vertices of the polygon.

For the 2nd type edges, as there are O(n) possible
parents for v, and for each parent, there may be O(n)
edges emitting from v, we need O(n2) space to store all
possible combinations of the 2nd type edges emitting
from v. In total, we need O(n3) space to store all these
edges. We can also compute a local shortest path tree
in each case (a SPT with the parent of v as its root),
and compute the sorted list of edges in O(n log n), or in
total O(n3 log n) time.

The parent of a 1st type edge is the root of the tree.
As the root can be in any of the O(n3) different visibility
regions, computing all possible combinations of the 1st
type edges emitting from a vertex, requires to consider
all these parents (remember that if the root of two SPTs
are in the same region, then the combinatorial structure
of the two trees are the same). We can compute the first
type edges for each region in O(n4 log n) time and store
them in O(n4) space. In Section 3.3 we will show how
to improve this result by a linear factor.

Theorem 1 Given a simple polygon P , we can prepro-
cess it into a data structure with O(n4) space and in
O(n4 log n) time so that for any query point p, the short-
est path tree from p can be reported in O(log n + k),
where k is the size of the tree that is to be reported.

Proof. First, we use Bose’s algorithm for computing
the visibility polygon of point p. For this, we need O(n3)
space and O(n3 log n) time in the preprocessing phase.

For the secondary edges, we need O(n4 log n) time and
O(n4) space to compute and store the 1st type edges,
and O(n3 log n) time and O(n3) space to store the 2nd
type ones.

In query time, we can locate the visibility region of p
in O(log n) and have the sorted list of the visible ver-
tices from p. Therefore, we can use the primary edges
of SPT(p) without paying any further costs (remember
that each visible vertex from p corresponds to a primary
edge in SPT).

As we have computed the 1st type edges of the SPT
for all the regions, we can access a pointer to the sorted
list of these edges in O(1). Similarly, at any node of
the tree, we have the list 2nd type edges from that
node. Therefore, the cost of traversing the SPT would
be the number of visited nodes of the tree, plus the
initial O(log n) cost, i.e., O(log n + k), where k is the
number of the traversed edges of SPT. �

3.2 Computing the query version of WVP

In this section, we use the linear algorithm of Guibas et
al. [6] for computing WVP of a simple polygon and show
how to compute the query version of this problem. We
build the data structure explained in previous section,
so that we can compute the SPT of any point inside the
polygon in query time.

This algorithm is not output sensitive by itself. See
the example of Figure 5. As stated in Section 2.2, first
we traverse SPT(p) using DFS and check the turn at
every vertex of SPT(p). Consider vertex v. As we tra-
verse the shortest path from p to v, or SP (p, v), we
must check all the children of v and this checking can
costs O(n). But when we traverse SPT(q), v would be
omitted, therefore, the time we spend for processing its
children would be useless.

p q

v

Figure 5: Processing vertex v imposes redundant O(n)
time.

To achieve an output sensitive algorithm, we store
some additional information about the vertices of the
polygon.

23d Canadian Conference on Computational Geometry, 2011

We say that a vertex v of a simple polygon is left crit-
ical (LC for short) with respect to a point p, if SP (p, v)
makes its first left turn at v or one of its ancestors. In
other words, each shortest path from p to a non-LC ver-
tex is a convex chain that makes only clockwise turns at
each node. Having the critical state of all vertices with
respect to a point p, we say that we have the critical
information with respect to p.

Having the critical information of p and q, we can
change the algorithm for computing WVP as follows:
In the first round, we traverse SPT(p) using DFS. At
each vertex, we check whether this vertex is left critical
with respect to q. If so, we are sure that the descendants
of this vertex are not visible from pq, so we postpone
its processing to the time we reach it from q, and check
the other branches of SPT(p). Otherwise, we proceed
with the algorithm and check whether SPT(p) makes
a right turn at this vertex. In the second round, we
traverse SPT(q) and perform the normal procedure of
the algorithm.

Lemma 2 All the vertices that we traverse in SPT(p)
and SPT(q) are vertices of WVP(pq).

Proof. Assume that we meet v when we are traversing
SPT(p) and v 6∈ WVP(pq). Also, assume that u is the
parent of v in SP (pv). Then, u or one of its ancestors
must be LC with respect to q, otherwise the Guibas et
al. algorithm will detect it as a WVP vertex. So, as
one of the ancestors of v is LC, we would not reach v
when traversing SPT(p). The same argument applies to
SPT(q). �

As the combinatorial structure of shortest path trees
of all points in a visibility region are the same, we just
need to compute the critical information of a point a
in each region S, and use this information for all points
of that region. In the preprocessing phase, for each
visibility region we compute critical information of a
point inside it, and assign this information to that re-
gion. In query time and upon receiving a line segment
pq, we locate p and q. Using the critical information of
their regions, we apply the above algorithm and com-
pute WVP(pq).

So far, we have assumed that pq is a polygon edge.
The following lemma generalizes the position of pq in
P .

Lemma 3 If pq is a line segment inside the simple poly-
gon P , we can decompose P into two sub-polygons P1

and P2, such that they both have pq as an edge. In
addition, we can use the critical information and the
secondary edges data of the visibility regions of P for
these sub-polygons.

Proof. We build the ray shooting structure in P , in
O(n) time and space [3]. In query time, we find the

intersection points of the supporting line of pq with the
border of P . Locating these intersection points among
the vertices of P , we can create two simple polygons, P1

and P2, in O(log n) time . Each of these two polygons
has pq on its edge. As the visibility regions of the gen-
erated polygons are a subset of the visibility regions of
the original polygon, and we have computed the critical
information and the SPT edges for all the regions of P ,
we have the needed data for p and q in both P1 and P2.
See an example in Figure 6.

p q

p’ q’

Figure 6: If the query line segment pq is inside the poly-
gon, we split it along the supporting line of pq.

For simplicity, we can translocate pq a little higher
(or lower) from its supporting line to p′q′. As the visi-
bility regions of p and p′ (also q and q′) are the same,
WVP(pq) and WVP(p′q′) have the same combinatorial
structures. We need to filter the primary edges origi-
nating from p and q to those that are in P1 (or P2). As
we have the sorted list of these edges, this filtering can
be done in O(log n) by a simple range searching. By
traversing these primary edges at each vertex of P1, we
can use the stored critical information and secondary
edges of that vertex. Depending on which side of the
line pq we are on, we use the critical information of p or
q in the weak visibility computations.

�

Now, we analyse the time and space of the above al-
gorithm. As there are O(n3) visibility regions, we need
O(n4) space to store the critical information of each ver-
tex. For each region, we compute SPT of a point, and by
traversing the tree, we update the critical information
of each vertex with respect to this region. We assign an
array of size O(n) to each region to store these informa-
tion. We also build the structure described in Section
3.1 for computing SPT in time O(n4 log n) and O(n4)
space. In query time, we locate the visibility regions of

CCCG 2011, Toronto ON, August 10–12, 2011

p and q in O(log n). As we traverse SPTs of p and q,
by Lemma 2, each vertex that we see is on WVP(pq).
Because the processing time we spend in each vertex is
O(1), the total query time is O(log n + |WV P (pq)|).

Theorem 4 Using O(n4 log n) time to preprocess a
simple polygon P and maintain a data structure of
size O(n4), it is possible to report WV P (pq) in time
O(log n + |WV P (pq)|).

3.3 Improving the algorithm

To improve the result of Theorem 4, we will modify two
parts of our algorithm. First, we show that it is suffi-
cient to compute the critical information of the sink vis-
ibility regions (see Section 2.1), from which we can de-
duce the critical information of all other regions. Also,
in computing SPT in Section 3.1, we will show that if we
compute 1st type of secondary edges of the sink regions,
we can compute these edges for the non-sink regions in
query time. As there are O(n2) sinks in a simple poly-
gon, the processing time and space of our algorithm
would reduce to O(n3 log n) and O(n3) respectively.

In query time, if both p and q belong to sink regions,
we have critical information of both regions and we pro-
ceed the algorithm as stated before. On the other hand,
if one of these points lie on a non-sink region, we show
how to obtain the secondary edges and the critical in-
formation for that region in O(log n + |WV P (pq)|).

Lemma 5 Consider two visibility regions that share a
common edge. If we have the 1st type secondary edges
of a region for each vertex visible from it, these edges
are the same for its neighboring region, except for one
edge.

p

u
v

Figure 7: Combinatorial changes of SPT by moving be-
tween neighboring regions.

Proof. When we cross the border of two neighboring
regions, a vertex becomes visible, or invisible [2]. In Fig-
ure 7 for example, when p crosses the border specified
by u and v, a 1st type secondary edge of u becomes a
primary edge of p, and all edges of v become 1st type

secondary edges. We can see that no other vertex would
be affected by this movement. Processing these changes
can be done in constant time, since it includes the fol-
lowing changes: removing a secondary edge of u (uv),
adding a primary edge (pv) and moving an array pointer
(edges of v) from 2nd type edges to 1st type edges. Note
that we know the exact position of these elements, so
we do not have the overhead time of finding them in
their corresponding lists. Finally, we can identify the
sole edge which involves with these changes in the pre-
processing time (the edge corresponding to the crossed
critical constraint), so, the time we spend in the query
time would be O(1). �

Lemma 6 In the path from a sink to another visibility
region, we can handle the changes of the critical infor-
mation of the point in constant time.

p

u
v p

u v

pp uu v
v

(a) (b)

(c) (d)

2

0 0 0

1

1 1
1

Figure 8: The critical information of v w.r.t p, as p
moves between the two regions. a) v is LC but not u,
b) u and v are not LC, c) both u and v are LC, d) u is
LC but not v.

Proof. Suppose that we want to maintain the critical
information of p and we are crossing the critical con-
straint defined by the edge uv. Depending on the crit-
ical status of u and v w.r.t. p, four possible situations
may occur (see Figure 8). In the first three cases, the
critical status of v will not change and no further ac-
tion is required. In the forth case, however, the critical
status of u will change. To handle this case, we mod-
ify the way we store the critical status of each vertex
w.r.t. p. More precisely, at each vertex v we store the
number of LC vertices we met, or critical numbers, in

23d Canadian Conference on Computational Geometry, 2011

the path SP (p, v) (see Figure 9). Computing and stor-
ing the critical numbers along the critical info will not
change our time and space requirements. Now consider

p 1

1

1

1
2

0

0

Figure 9: We store the number of LC vertices we met
from p in SPT(p).

the forth case in Figure 8. When v becomes visible to
p, it is no longer LC w.r.t. p. So, we change the critical
number of v to 0, but instead of changing the critical
numbers of its children, we store −1 in v as its critical
number, indicating that the critical numbers of all the
vertices of its subtree must be subtracted by 1. The ac-
tual propagation of this subtraction will happen when
we are traversing SPT(p). We also modify the query
time algorithm to reflect this change. If we are comput-
ing WVP(pq), and because v is LC w.r.t. q, we stopped
at the path SP(p, v), we store a pointer to this path at
v. When we are traversing SP(q, v) and we find out that
v is no LC w.r.t. q, we resume the stored pass. �

In the preprocessing time, we construct the dual pla-
nar graph of the visibility regions. We use the dual
directed graph that was built by algorithm of Bose et
al. [2] (Figure 1). In this graph, every node represents
a visibility region, and an edge between two nodes cor-
responds to a gain of one vertex in the visibility set in
one direction, and a loss in the other. By Lemma 5 and
6, we also know that these two neighboring regions have
the same critical information and secondary edges, ex-
cept for one vertex. We associate this vertex with the
edge. We also compute the critical information and 1st
type secondary edges of all the sink regions.

In query time, we locate the region containing point
p, and follow any path from this region to a sink. As
each arc represents one vertex seen by the query point
p and therefore seen by pq, the number of arcs that
we pass would be O(|WV P (pq)|). When traversing the
path from sink back to the region of p, we update the
critical information and the secondary edges of the vis-
ible vertices in each region. Upon coming back to the
original region, we would have the critical information
and the secondary edges of this region. We perform
the same procedure for q. Having the critical informa-
tion and the 1st type edges of p and q, we can compute
WVP(pq) with the algorithm of Section 3.2. Putting all
together, we have the following result

Theorem 7 A simple polygon P can be preprocessed
in O(n3 log n) time and O(n3) space such that given
an arbitrary query line segment inside the polygon, it
takes O(log n + |WV P (pq)|) time to list all vertices of
WVP(pq).

4 Conclusion

In this paper, we showed how to answer weak visibil-
ity queries in a simple polygon in an efficient way. We
presented an algorithm to report WV P (pq) of any line
segment pq in O(log n + |WV P (pq)|) time by spending
O(n3 log n) time to preprocess the polygon and main-
taining a data structure of size O(n3).

Currently, we are working on a different approach for
the same problem, to construct a data structure of size
O(n2) which can be computed in time O(n2 log n) so
that the weak visibility polygon WV P (pq) from any
query line segment pq ∈ P can be reported in O(log2 n+
|WV P (pq)|) time. Also, we are investigating whether
our techniques can be extended to the cases of polygons
with holes.

Acknowledgement

The authors would like to thank the anonymous reviewers
for their helpful comments.

References

[1] B. Aronov, L. Guibas, M. Teichmann and L. Zhang.
Visibility queries and maintenance in simple polygons.
Discrete and Computational Geometry, 27(4):461-483,
2002.

[2] P. Bose, A. Lubiw, and J. I. Munro. Efficient visibility
queries in simple polygons. Computational Geometry:
Theory and Applications, 23(3):313-335, 2002.

[3] B. Chazelle and L. J. Guibas. Visibility and intersec-
tion problems in plane geometry. Discrete and Compu-
tational Geometry, 4:551-581, 1989.

[4] B. Chazelle. Triangulating a simple polygon in linear
time. Discrete and Computational Geometry, 6:485-524,
1991.

[5] S. K. Ghosh. Visibility Algorithms in the Plane. Cam-
bridge University Press, New York, NY, USA, 2007.

[6] L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and
R. E. Tarjan. Linear time algorithms for visibility and
shortest path problems inside triangulated simple poly-
gons. Algorithmica, 2:209-233, 1987.

[7] L. Guibas, R. Motwani, and P. Raghavan. The robot
localization problem in two dimensions. SIAM J. Com-
put., 26(4):11201138, 1997.

[8] G. T. Toussaint. A linear-time algorithm for solving the
strong hidden-line problem in a simple polygon. Pattern
Recognition Letters, 4:449-451, 1986.

