
A Topology-Aware Load Balancing Algorithm for P2P Systems

Seyed Iman Mirrezaei1 Javad Shahparian1

Mohammad Ghodsi1,2∗

Computer Engineering Department
1Sharif University of Technology, Tehran, Iran

2IPM School of Computer Science, Tehran, Iran

{mirrezaei, shahparin}@ce.sharif.edu, ,{ghodsi}@sharif.edu

Abstract

One of the challenges of P2P systems is to perform load

balancing ef�ciently. A distributed hash table (DHT) ab-

straction, heterogeneous nodes, and non uniform distri-

bution of objects cause load imbalance in structured P2P

overlay networks. Several solutions are suggested to solve

this problem but they have some restrictions. They as-

sume the homogeneous capabilities of nodes, unawareness

of the link latency during transferring load and imposing

logical structures to collect and reassign load. This paper

presents a distributed load balancing algorithm with topol-

ogy awareness using the concept of virtual servers. In our

proposed approach, each node collects neighborhood load

information from physically close nodes and reassigns vir-

tual servers to overlay nodes according to topology of un-

derlying network. Consequently, it provides rapid conver-

gence on load balance and reduces the load transfer cost.

Moreover, our parametric algorithm increases the quality of

load balancing among close nodes of overlay and also pro-

vides a new tradeoff between the quality of load balancing

and load transfer cost among all overlay nodes. Our sim-

ulations show that our approach reduces the load transfer

cost and saves a great network bandwidth.

1 Introduction

Structured P2P overlay networks [3, 6, 7] provide DHT

abstraction for object storage and retrieval. In these over-

lays, each object and node is identi�ed by a unique identi-

�er. The search space is partitioned among overlay nodes

and each node is responsible for storage and retrieval of

objects in its region. These systems assume that resources

such as network bandwidth, capacity and storage are uni-

∗This work has been partially supported by IPM School of CS (con-

tract: CS1385-2-01)

formly distributed among all participants of network.

In these structured systems, a distributed hash function

chooses identi�er of nodes and objects. So, it causes an

O(log N) imbalance factor in the number of stored objects
at a node. Moreover, if identi�er of nodes are no longer

uniformly distributed, the imbalance factor becomes worse.

This could happen in database applications because all data

items (tuples) of a relation are kept with regard to their pri-

mary key values(identi�ers). In addition, load imbalance

becomes worse when there exist many nodes with differ-

ent capabilities (storage, bandwidth, CPU, etc.). Resulted

load imbalance deteriorates the functionality of overlay net-

works.

Several solutions are offered to solve the load balancing

problem [7, 8, 9, 11, 10, 15, 16, 17]. But these solutions

have some restrictions. Firstly, they may assume that nodes

have similar capabilities. Secondly, they ignore the link la-

tency between nodes and extra load of a node may traverse

the high link latency, thereby increasing the bandwidth con-

sumption, increasing traf�c in underlying network and de-

laying the convergence of load balancing. Thirdly, they may

use some logical �xed nodes to collect load information and

plan new reassignments. However, these solutions reduce

the load balancing problem to a centralized problem, there-

fore, the single point of failure problem and limited scala-

bility are matter of concern.

This paper presents a distributed load balancing algo-

rithm with topology awareness in which those restrictions

do not hold. Our algorithm also uses the concept of vir-

tual servers formerly suggested in Chord [7]. In our ap-

proach, each node collects neighborhood load information

from close nodes according to topology of underlying net-

work and reassigns load. Then virtual servers are trans-

ferred between physically close nodes. Consequently, it

provides rapid convergence on load balance, quick reply to

load imbalance, reduce the load transfer cost and improve-

ment on load balancing traf�c. This approach does not im-

pose any logical structure or overhead to overlay network,

978-1-4244-4254-6/09/$25.00 ©2009 IEEE 97

While collecting load information of nodes. Moreover, it

does well in term of scalability. Our parametric algorithm

increases the quality of load balancing among close nodes

of overlay and also provides a different kind of tradeoff be-

tween the quality of load balancing and load transfer cost

across overlay nodes. In addition, each node or group of

nodes can perform the proposed load balancing algorithm

based on its desired network distance. We perform our load

balancing algorithm on the RAQNet [1] overlay network. In

RAQNet overlay network, each node has a practical internet

coordinate(PIC) for estimating internet network distances

between nodes by the PIC mechanism [4].

This solution can be performed in other structured P2P

overlay networks if each overlay node knows its practical

internet coordinate [4]. The rest of this paper is organized

as follows. Section 2 provides a survey of related work. A

brief overview of RAQNet overlay network are presented in

section 3. Section 4 describes the topology aware load bal-

ancing algorithm. The experimental evaluations are shown

in section 5 and section 6 concludes the paper.

2 Related work

Most Structured P2P systems [3, 6, 7] suppose that ob-

ject IDs are distributed by the uniform hash function. Addi-

tionally, they suppose that all nodes have similar capacities

and load. Even so, the resulted load balance is not com-

pletely perfect and they have an O(log n) imbalance load.

Many load balancing methods have been suggested to

handle this problem in P2P systems. The �rst work has

been done by Chord [7]. They diminish load of overlay

nodes by using the concept of virtual servers. They allocate

log N virtual servers per physical node and suppose that all

overlay nodes are similar. However, their approach does not

practically resolve the load balancing problem.

CFS [15] does not ignore the heterogeneity of nodes. In

CFS, virtual servers are allocated to nodes according to their

capacities. Also, they use a simple solution to transfer extra

load from heavy nodes, but their method may cause other

nodes become overloaded.

Trianta�llou et al. [16] introduce the novel design to per-

form fair load distribution in the context of content and re-

source management in unstructured P2P systems. They col-

lect load objects by the meta-data and after that they com-

pute a reassignment of objects by using that information.

Karger and Ruhl [17] present dynamic load balancing al-

gorithms without using virtual servers. In their algorithms,

lightly loaded nodes should be neighbors of heavily loaded

nodes in order to reassign their load. They maximize uti-

lization of load in nodes but they do not completely consider

different node capacities. Moreover, It is not clear whether

their algorithms are practical or not.

Roa et al. [9] propose three simple load balancing al-

gorithms for DHT-based systems: one-to-one, one-to-many

and many-to-many. They transfer load from heavy nodes

to light nodes in every unit of virtual servers. In their load

balancing approach, they use directory nodes to store load

information of nodes and reassign virtual servers. one-

to-many and many-to-many are extended by Godfrey et

al. [10]to perform load balancing in dynamic P2P systems.

Their results have shown that their approach is so effective,

but they have two weak points. Firstly, their approach suf-

fers from a single point of failure problem because of using

directory nodes. Secondly, their approach does not notice

to link latency between light and heavy nodes while trans-

ferring load.

Yingwu et al. [11] use a k-ary tree and virtual servers to

perform load balancing in structured overlay networks. In

their algorithm, the load information is collected by the k-

ary tree and reassignments of virtual servers are scheduled

by nodes of the k-ary tree. They use landmark binning [14]

to manage virtual server assignments across nodes which

are close to each other according to topology of underlying

network. They determine close nodes by measuring from

the landmark sites. Thus, landmark sites become hot spots

while the P2P system size are increasing.

The topology-aware load balancing algorithm presented

in this paper is similar to a distributed load balancing al-

gorithm proposed by Zhenyu et al [8]. In both algorithms,

load are transferred based on topology information, but we

collect load information of close nodes by a restricted !ood-

ing algorithm with regard to topology of underlying net-

work. Our approach improves the load balancing traf�c and

also provides rapid convergence on load balance. Also, our

parametric algorithm increases the quality of load balancing

among close nodes of overlay and also provides a different

kind of tradeoff between the quality of load balancing and

load transfer cost across all overlay nodes. Moreover, each

node or group of nodes can perform the proposed load bal-

ancing algorithm based on its desired network distance to

transfer extra load.

3 Overview of RAQNet

RAQNet [1] is a multi-dimensional topology-aware

overlay network based on RAQ [2] data structure.

In RAQNet overlay network, the search space is d-

dimensional Cartesian coordinate space which is partitioned

among n nodes of the overlay network by a partition tree.

Each node has O(log n) links to other nodes. Each single
point query is routed via O(log n) message passing. Each
node is corresponded to a region and it is responsible for

the queries targeting any point in its region. In RAQNet

overlay, nodes are connected to each other if they have the

same labels and also are close to each other with respect

98

to the topology of the underlying network. A topological

match between an overlay and its underlying network re-

duces routing delays and network link traf�c. Every net-

work node xwhich corresponds to a leaf in the partition tree

is assigned a Plane Equation or PE to specify its region in

the whole space. RAQNet seeks to exploit topology aware-

ness from its underlying network in order to �ll its routing

table rows effectively. Topology aware neighbor selection

selects the collection of close nodes among nodes with PE

having the required pre�x. Topology awareness relies on a

proximity metric that indicates the �distance� between any

given pair of nodes. The choice of a proximity metric de-

pends on the desired quality of overlays (e.g., low delay,

high bandwidth). Our proximity metric in RAQNet overlay

is round trip delay, estimated by the PIC mechanism [4].

4 Topology Aware Load Balancing

In this section, we present the concept of virtual servers

and then introduce our topology-aware load balancing algo-

rithm.

4.1 Virtual Servers in RAQNet

The concept of virtual servers was �rst introduced in

Chord [7] to improve load balancing of overlay nodes. A

virtual server looks similar to a single node which is ac-

countable for a region of the search space. Several vir-

tual servers can be hosted by a physical node. Therefore,

any physical node possesses noncontiguous regions of the

search space. Each virtual server owns its routing tables

and stores data items with IDs falling into its accountable

region.

Any virtual server causes de�nite amount of load. For in-

stance, serving queries which fall into accountable region of

a virtual server generates load. Whenever a node becomes

overloaded, it transfers portion of its load to some lightly

loaded nodes to become light in which the basic unit of load

transfer is virtual servers [9, 10]. Therefore, transferring

virtual servers from heavy nodes to light nodes causes load

balance. The transfer of a virtual server is implemented as a

departure operation comes before a join operation, all over-

lays provide these operations.

When a node x leaves the overlay, its regions are taken

by other nodes which have contiguous regions with virtual

servers of node x [1]. If a virtual server v leaves the over-

lay, its responsible region is taken by another virtual server

which has contiguous region with v. If there is no such vir-

tual server, region of v is taken by a virtual server with PE

closer to v. In the same way, When a new node x joins the

overlay, it chooses numV S (number of virtual servers) ran-

dom pointX in the search space and sends its join request.

One disadvantage of using virtual servers is that any

overlay node maintains numV S routing states for its vir-

tual servers. Our experimental results show that our ap-

proach reaches good load balance when each node has

numV S = log N virtual servers. In our belief, this over-

head can be reasonable. One of the main bene�ts of using

virtual servers is that no overlay modi�cation is needed to

perform load balancing algorithms.

4.2 Topology Aware Load Balancing Al-
gorithm

The virtual server reassignments are done with regards

to topology information of underlying network. As we de-

scribed in RAQNet [1], RAQNet overlay nodes inherently

maintains information of close nodes. Our load balancing

algorithm use this information and the PIC mechanism [4]

to predicate network distance(i.e., round-trip delay or net-

work hops) between light and heavy nodes during virtual

server reassignments, described in section 4.4. The PIC

mechanism predicts the distance between two overlay nodes

only by having their practical internet coordinates.

We have two assumptions in our load balancing ap-

proach: we attempt to optimize only one bottleneck re-

source and we suppose that the load on a virtual server is

stable while carrying out our load balancing algorithm.

These are some de�nitions we use to explain our ap-

proach:

Utilization: ui is the ratio of node i load to its capacity;

ui = li
ci
. The li shows load of node i at a de�nite time

and each node i has a capacity ci which may represent

available storage, processor speed, or bandwidth.

Neighborhood Utilization: neighborhood utilization of

node i is de�ned as Neighutili =

l
i=1 Loadi

l
i=1 Capacityi

,

where s is a set of close nodes which announce their

load information to node i and l is the number of nodes

in set S.

Load transfer cost: Load transfer cost is de�ned as

LTC =
∑n

i=1 Loadi ∗ Disti, where Disti indicates

the network distance to transfer load of node i. The

amount of transferred load for node i is shown by

Loadi.

4.3 Neighborhood Load Information Col-
lection

We use a restricted !ooding schema to collect neighbor-

hood load information. The !ooding schema with a few

Time-to-Live (TTL) hops have been presented by S. Jiang

et al. [12]. They have shown that is extremely effective

and generates few excess messages. Regularly, each node

99

Procedure Reassign-VirtualServer

1. Node i calculates it�s neighborhood utilization

2. Ti = (Neighutili + ε) ∗ Ci

//Ti is target load of node i.

3. if (Li ≤ Ti)

4. return; // Node i is a light node.

5. end if

6. Candidate-VS = Node i chooses one of its VS to leave.

/* VS is abbreviation of Virtual server*/

7. Receiving-Node = Find-LightNode(Candidate− V S)

8. if (Receiving-Node!= null)

9. Transfer Candidate-VS to Receiving-Node

10. end if

Figure 1. Reassigning virtual servers.

i sends a probing message including the origin address in-

formation(IP), its practical internet coordinate(for estimat-

ing network distance), the DesiredV al value and a TTL

value to some nodes that exist in its routing table entries,

with network distance to node i less than the DesiredV al.

Node j which receives a probing message replies to the ori-

gin node i with its address information, current load, ca-

pacity and its practical internet coordinate. Then, The TTL

value is decreased by 1 and if the updated TTL value does

not reach to 0, it resends the received probingmessage to its

routing table entries with network distance to origin node i

less than the DesiredV al. When origin node i receives the

replied probing messages, it computes the round trip time

to the responding nodes by using the practical internet co-

ordinate of responding nodes and the PIC mechanism. Af-

ter that, node i stores this information to its neighborhood

load information set(NLISi). The member count of this set

can be represented as following: MemberCount(NLIS i) =
∑TTL

j=1 numV Sj = numV S∗(numV ST TL
−1)

numV S−1 =

O(numV STTL). In this formula, numV S represents

the number of virtual servers per overlay node. Based on

our experimental evaluations in section 5, our approach

reaches a ne load balance if numV S is O(log n) and TTL
is 2. So, The member count of NLISi is O(log2 n) in the
worst-case. We consider the worst-case to be sending the

probing messages to all nodes in the routing table entries

and it happens only if we assign the biggest possible value

to the DesiredV al.

4.4 Node Categorization and Virtual
Server Reassignments

Whenever a neighborhood load information set is be-

come ready, each node i knows the load and capacity of

neighborhood nodes and then calculates its neighborhood

utilization, Neighutili, and its target load, Ti. After that,

if its current load, Li, is bigger than its target load, Ti, it

marks itself as a heavy node , then it chooses one of its vir-

tual servers to leave node i and makes it light. Finding a

proper virtual server takes O(numV S) time.
We use procedure Reassign − V irtualServer to re-

assign virtual servers. This process is described in g-

ure 1. ε is a parameter for a tradeoff between the amount

of load transferred and the quality of load balancing. ε

ideally is 0. Calculating the best reassignments is equiva-

lent to minimize maximum node utilization problem and is

NP-complete [13]. So, it is impossible to reassign virtual

servers across nodes perfectly but it can be solved by an

approximate algorithm.

Our approach provides a different kind of tradeoff be-

tween the quality of load balancing and load transfer cost,

based on parameter QLB. A heavy node chooses a light

node with the smallest utilization and network distance less

than the QLB. Otherwise it tries to nd the closest light

node with network distance more than the QLB, shown

from line 9 to 16.
The worst-case running time (to be sending the probing

message to all nodes in the routing table entries) of proce-

dure Find-LightNode is O(numV STTL), where the aver-
age number of virtual servers is shown by numV S. Based

on our experimental results, whenever numV S, TTL,

QLB and DesiredV al are equal to O(log N), 2, 130 and

400(based on GT-ITM[5]) , our algorithm achieves good

load balance. Additionally, the worst-case running time of

our proposed approach is O(log N + log2 N). So that it

does well in term of scalability.

4.5 Synchronization between Light and
Heavy Nodes

All overlay nodes collect load information and reassign

virtual servers concurrently. Therefore, some virtual servers

may be sent to a light node from different heavy nodes,

which causes a light node to become overloaded. Hence,

before sending virtual servers, a heavy node send a synch

message to a light node. If its load is not changed, it

acknowledges the heavy node and does not acknowledge

to others. After a distinct interval, if a heavy node does

not receive any acknowledge message from a light node, it

chooses another node to transfer its extra load.

5 Experimental Results

We present experimental results which evaluates our load

balance approach in RAQNet overlay network. The results

were achieved using a RAQNet overlay with 4096 nodes

running on an Internet topology model. We assume that

f is a fraction of the search space which belongs to a vir-

tual server that is exponentially distributed. Also, µ and σ

show the mean and the standard deviation of total load on

RAQNet overlay. We use Gaussian distribution with mean

100

µf and the standard deviation σ
√

f [9] for the load on vir-

tual servers. We also use Gnutella− like capacity for ca-

pacity of nodes. Consequently, 20 percent, 45 percent, 30

percent, 4.9 percent, and 0.1 percent of node capacity is 1,

10, 100, 1000, 10000.

Our experiments run on a simulated network topology

which was generated by the Georgia Tech transit-stub net-

work topology model [5]. Ts4k-small includes 4 transit do-

mains each with 4 transit nodes, 5 stub domains connected

to each transit node, and 55 nodes in each stub domain on

average.

5.1 The Effect of Load balancing Param-
eters

We assign DesiredV al = 400 and QLB = 130(based
on GT-ITM[5]) while performing our topology-aware load

balancing algorithm. Figure 2 shows that the TTL value af-

fects on node utilization. It improves the quality of load bal-

ancing while TTL value changes from 1 to 2 because there

exist more alternative light nodes in neighborhood load in-

formation set, as we said in section 4.3.

Increasing QLB , the algorithm gives priority to the

quality of load balancing and it ignores the load trans-

fer cost. When we assign the biggest possible amount

to DesiredV al and QLB, our approach performs topol-

ogy unaware load balancing. By decreasing the value of

DesiredV al, fewer nodes will report their load informa-

tion to requesting nodes and the quality of load balancing

will be decreased in overlay network. When TTL value

is increased up to 4 or even more, the quality of load bal-

ancing will be decreased surprisingly. This is because it

may ignore the nodes with small utilization and far network

distance. However, the values of QLB and desiredV al

will affect the quality of load balancing. Thus, each over-

lay node can compromise between load transfer cost and

its utilization. We separately compute the LTC (load trans-

fer cost), de ned in section4.2, with and without consid-

ering topology awareness. Then, we calculate Benefit

=
LTCWithouttopology−LTCtopology

LTCWithouttopology
. Benefit is 43% in GT-

ITM topology model. Therefore, the network bandwidth is

saved greatly in our approach.

5.2 Topology Aware Load Balancing

In this section, we show the effect of topology aware-

ness on load balancing. In gure 3, cumulative distribu-

tion of transferred load is illustrated. It shows that 50%

of load is transferred via the network distance with aver-

age link latency of 100 in GT-ITM topology. Also, more

than 80% of load traverses the links with total average la-

tency of 200. In contrast, regardless of topology awareness,

the 50% of load is transferred having average of about 280

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8 9 10

Time

9
9

.5
th

 P
e

r
c
e

n
ti

le
 N

o
d

e
 U

ti
li

z
a

ti
o

n

TTL=1 and DesiredVal=400

TTL=2 and DesiredVal=400

TTL=4 and DesiredVal=400

TTL=1 and DesiredVal=200

TTL=2 and DesiredVal=200

Figure 2. The effect of various load balancing

parameters on node utilization.

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 300 400 500 600 700 800

Physical Distance by Link Latency

P
e

rc
e

n
ta

g
e

 o
f

T
ra

s
fe

re
d

 L
o

a
d

Topology unaware load balancing

Topology aware load balancing

Directory, d=10

Figure 3. Cumulative distribution of trans-

ferred load in GT-ITM topology.

of link latency. Consequently, extra load of heavily loaded

nodes is transferred among close nodes and it imposes less

traf c to underlying network. Thus, Topology aware load

balancing saves bandwidth considerably. Moreover, this al-

gorithm converges quickly because it chooses nodes from

close groups which are physically close together and there-

fore reduces the cost of transferring load. In gure 3 the

load balancing algorithm, suggested by Godfrey et al [10],

is indicated by �directory� line. It is obvious that their

method is similar to topology unaware load balancing.

The scatter plots of load for the Gaussian distribution are

shown in gure 4 and gure 5 and we use aGnutella−like

capacity in our node capacity model. Our load balancing

approach helps to rearrange a bad load distribution into an

acceptable arrangement and eventually each overlay node

will have the load proportional to its capacity.

6 Conclusion

This paper presents a simple distributed load balanc-

ing algorithm with topology-aware property for structured

P2P overlay networks. In our approach, each node collects

101

10

100

1000

10000

0.1 1 10 100 1000 10000 100000

Node Capacity

N
o

d
e
 L

o
a
d

Figure 4. The scatter plots of load and capac-

ities before load balancing.

0.1

1

10

100

1000

10000

100000

0.1 1 10 100 1000 10000 100000

Node Capacity

N
o

d
e
 L

o
a
d

Figure 5. The result of load balancing algo-

rithm.

neighborhood load information from close nodes and then

it reassigns its own extra load according to topology of un-

derlying network. Consequently, it provides rapid conver-

gence on load balance and reduces the load transfer cost.

Our parametric algorithm increases the quality of load bal-

ancing among close nodes and also provides a different kind

of tradeoff between the quality of load balancing and load

transfer cost. The experimental results show that this ap-

proach is effective and considerably saves network band-

width.

We plan to enhance our load balancing approach to adapt

in a dynamic system. Moreover, as a future improvement to

our approach, imposing other constraints (e.g. utilization of

nodes) during collecting the load information of nodes, may

be considerably helpful.

Acknowledgments.

The authors would like to thank Yashar Heidari and Kam-

bakhsh Jafari for their supports.

References

[1] Seyed Iman Mirrezaei, J. Shahparian, and M. Ghodsi.

RAQNet: A Topology-aware Overlay Network. Autonomous

Infrastructure, Management and Security Conference, to ap-

pear, AIMS�2007, LNCS 4543 by Springer-Verlog, pp. 13-24,

2007.

[2] H.Nazerzadeh, and M.Ghodsi, RAQ: A range queriable dis-

tributed data structure (extended version). In Proceeding of

Sofsem 2005, 31st Annual Conference on Current Trends in

Theory and Practice of Informatics, LNCS 3381 by Springer-

Verlog, pp. 264-272, February 2005.

[3] A. Rowstron, and P. Druschel. Pastry: Scalable,distributed

object location and routing for large-scale peer-to-peer sys-

tems. In Proc. IFIP/ACMMiddleware 2001, Heidelberg, Ger-

many, Nov. 2001

[4] M. Costa, M. Castro, A. Rowstron, and P. Key. PIC: Practical

Internet Coordinates for Distance Estimation. In 24th IEEE

International Conference on Distributed Computing Systems

(ICDCS� 04), Tokyo, Japan, March 2004.

[5] E. Zegura, K. Calvert, and S. Bhattacharjee. How to model

an internetwork. In INFOCOM96, 1996

[6] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.

Shenker. A Scalable Content-Addressable Network. In Proc.

of ACM SIGCOMM, Aug. 2001.

[7] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-

akrishnan. Chord: A scalable peer-to-peer lookup service for

internet applications. In Proceedings of the ACM SIGCOMM

01 Conference, San Diego, California, August 2001.

[8] Zhenyu Li, and Gaogang Xie. A Distributed Load Balancing

Algorithm for Structured P2P Systems. Proceedings of the

11th IEEE Symposium on Computers and Communications

(ISCC�06), 2006.

[9] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Sto-

ica. Load Balancing in Structured P2P Systems. Proc. Second

Intl Workshop Peer-to-Peer Systems (IPTPS), pp. 68-79, Feb.

2003.

[10] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and I.

Stoica. Load Balancing in Dynamic Structured P2P Systems.

Proc. IEEE INFOCOM, Mar. 2004.

[11] Y. Zhu, and Y. Hu. Ef cient. Proximity-Aware Load Balanc-

ing for DHT-Based P2P Systems. In IEEE Transactions on

parallel and distributed systems, Vol. 16, No.4, April 2005.

[12] S. Jiang, L. Guo, and X. Zhang. Ligh!ood: an ef�cient

!ooding scheme for �le search in unstructured peer-to-peer

systems. In Proceedings of ICPP 2003.

[13] Horowitz, E., and Sahni, and S. K. Exact and approximate

algorithms for scheduling nonidentical processors.Journal of

ACM, Vol. 23, No. 2, April 1976.

[14] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.

Topologically-aware overlay construction and server selec-

tion. In Proceedings of INFOCOM 2002.

[15] F. Dabek and M. F. Kaashoek and D. Karger and R. Morris

and I. Stoica. Wide-area Cooperative Storage with CFS.Proc.

ACM SOSP 2001.

[16] P. Trianta�llou and C. Xiruhaki and M. Koubarakis and N.

Ntarmos, Towards High Performance Peer-to-Peer Content

and Resource Sharing Systems. Proc. of CIDR, 2003.

[17] David Karger and Matthias Ruhl. New Algorithms for Load

Balancing in Peer-to-Peer Systems. Tech. Rep. MIT-LCS-TR-

911, MIT LCS, July 2003.

102

