
Approximating Edit Distance in Truly Subquadratic Time: Quantum

and MapReduce∗†

Mahdi Boroujeni ‡ Soheil Ehsani §‖ Mohammad Ghodsi ‡¶

MohammadTaghi HajiAghayi §‖ Saeed Seddighin §‖

Abstract

The edit distance between two strings is defined as the
smallest number of insertions, deletions, and substitu-
tions that need to be made to transform one of the
strings to another one. Approximating edit distance
in subquadratic time is “one of the biggest unsolved
problems in the field of combinatorial pattern match-
ing” [21]. Our main result is a quantum constant ap-
proximation algorithm for computing the edit distance
in truly subquadratic time. More precisely, we give
an O(n1.858) quantum algorithm that approximates the
edit distance within a factor of 7. We further extend
this result to an O(n1.781) quantum algorithm that ap-
proximates the edit distance within a larger constant
factor.

Our solutions are based on a framework for approx-
imating edit distance in parallel settings. This frame-
work requires as black box an algorithm that computes
the distances of several smaller strings all at once. For
a quantum algorithm, we reduce the black box to met-
ric estimation and provide efficient algorithms for ap-
proximating it. We further show that this framework
enables us to approximate edit distance in distributed
settings. To this end, we provide a MapReduce algo-
rithm to approximate edit distance within a factor of
3, with sublinearly many machines and sublinear mem-
ory. Also, our algorithm runs in a logarithmic number
of rounds.

∗Portions of this research were completed while the first, third,
and fifth authors were visitors at the Simons Institute for the
Theory of Computing.
†The omitted proofs can be found in the full version of this

paper.
‡Sharif University of Technology. Email:

safarnejad@ce.sharif.edu, ghodsi@sharif.edu
§University of Maryland. Email:

{ehsani,hajiagha}@cs.umd.edu, sseddigh@umd.edu
¶Institute for Research in Fundamental Sciences (IPM).
‖Supported in part by NSF CAREER award CCF-1053605,

NSF BIGDATA grant IIS-1546108, NSF AF:Medium grant CCF-
1161365, DARPA GRAPHS/AFOSR grant FA9550-12-1-0423,
and another DARPA SIMPLEX grant.

1 Introduction

The edit distance (a.k.a Levenshtein distance) is a
well-known metric to measure the similarity of two
strings. This metric has been extensively used in several
fields such as computational biology, natural language
processing, and information theory. The algorithmic
aspect of the problem is even more fundamental; the
problem of computing the edit distance is a textbook
example for dynamic programming.

The edit distance between two strings is defined
as the smallest number of insertions, deletions, and
substitutions that need to be made on one of the strings
to transform it to another one. For two strings s1
and s2 with n characters in total (|s1| + |s2| = n), a
classic dynamic program finds the edit distance between
them in time O(n2). The idea is to define auxiliary
variables di,j ’s which denote the edit distance between
the first i characters of s1 and the first j characters
of s2. Next, we iteratively determine the values of the
auxiliary variables based on the following formula

di,j =

{
di−1,j−1, if s1[i] = s2[j]

1 + min{di−1,j−1, di,j−1, di−1,j} if s1[i] 6= s2[j].

Despite the simplicity of the above solution, it has
remained one of the most efficient algorithms from a
theoretical standpoint to this day. Since the 1970s,
several researchers aimed to improve the quadratic
running time of the problem, however, thus far, the
best-known algorithm runs in time O(n2/ log2 n) [29].
The shortcoming of these studies is partly addressed by
the work of Backurs and Indyk [7] wherein the authors
show a truly subquadratic time algorithm is impossible
to achieve unless a widely believed conjecture (SETH1)
fails.

Unfortunately, the quadratic dependency of the
running time on the size of the input makes it impossible
to use such algorithms for large inputs in practice. For

1The strong exponential time hypothesis states that no algo-
rithm can solve the satisfiability problem in time 2n(1−ε).

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1170

D
ow

nl
oa

de
d

02
/0

9/
19

 to
 3

7.
14

8.
29

.2
34

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

example, a human genome consists of almost three bil-
lion base pairs that need to be incorporated in similarity
measurements. Therefore, several studies were focused
on improving the running time of the algorithm by con-
sidering approximation solutions. A trivial

√
n approx-

imation algorithm follows from an O(n+d2) exact algo-
rithm of Landau et al. [26] where d is the edit distance
between the two strings. Subsequent research improved

this to n3/7 [8], to n1/3+o(1) [9], to 2Õ(
√
logn) [5], and the

latest of which provides a polylogarithmic approxima-
tion guarantee in subquadratic time [3]. Note that al-
though the running times of these algorithms are almost
linear, even if one favors the approximation factor over
the running time, slowing down the algorithms to barely
subquadratic doesn’t yield an asymptotically better ap-
proximation guarantee. Despite persistent studies, find-
ing a subquadratic algorithm with a constant approxi-
mation factor which is the “holy grail” here is still open
(see Section 6 of Indyk [21]).

Quantum computation provides a strong framework
to substantially improve the running time of many algo-
rithmic problems. This includes a long list of problems
from algebraic computational problems, to measuring
graph properties, to string matching, to searching, to
optimizing programs, etc. [10, 11, 16, 22, 25, 28, 33, 34].
However, quantum techniques can only be applied to
limited structures. For instance, many classic problems
such as sorting or even counting the number of 1’s in
a 0-1 array are still as time-consuming even with quan-
tum computation. Indeed existing quantum techniques
offer no immediate improvement to the running time of
edit distance, neither to many classic DP-type problems
such as finding the lcs (longest common subsequence),
dtw (dynamic time wrapping) of two strings or deter-
mining the Fréchet distance between two polylines. To
the best of our knowledge, no exact or approximation al-
gorithm is known for edit distance in subquadratic time
via quantum computation.

In this work, we provide a framework to approx-
imate the edit distance between two strings within a
constant factor. This framework requires as black box
a procedure that takes several smaller strings as input
and approximates their distances all at once. For quan-
tum computers, we reduce this black box to finding the
distances of a metric, namely metric estimation. In
this problem, we are given a metric space where any
distance is available by a query from a distance ora-
cle. We show that metric estimation cannot be approx-
imated within a factor better than 3 with a subquadratic
number of quantum queries. On the contrary, we pro-
vide positive results for approximation factor 3 and also
larger constant factors. We show our bounds are tight
up to constant factors by proving lower bounds on the

query complexity of metric estimation.Our metric esti-
mation quantum algorithms are general tools and may
find their applications in other distance-related prob-
lems as well. Combining this black box with our frame-
work yields subquadratic quantum algorithms for ap-
proximation edit distance within a constant factor. Our
work is similar in spirit to the work of Le Gall [17] and
Dürr et al. [14] where combinatorial techniques are used
to obtain efficient quantum algorithms. We believe that
our work opens an avenue to further investigation of edit
distance in quantum setting and perhaps achieving near
linear time quantum algorithm for edit distance.

As another application of our framework, we de-
sign a MapReduce algorithm for approximating edit dis-
tance within an approximation factor of 3. MapReduce
is one of the most recent developments in the area of
parallel computing. It has the benefits of both sequen-
tial and parallel computation. Many tech companies
such as Google, Facebook, Amazon, and Yahoo designed
MapReduce frameworks and have used them to imple-
ment fast algorithms to analyze their data. In this pa-
per, we focus on the well-known MapReduce theoreti-
cal framework initiated by Karloff, Suri, and Vassilvit-
skii [24] (and later further refined by Andoni, Nikolov,
Onak, and Yaroslavtsev [4]) Designing MapReduce algo-
rithms for simulating sequential dynamic programs for
important problems was recently initiated by Im, Mose-
ley, and Sun [20]. They study DP-type problems with
two key properties, monotonicity and decomposability.
Their framework does not apply here since edit distance
is neither monotone nor decomposable. Our algorithm
runs in a logarithmic number of rounds with a sublin-
ear number of machines and sublinear memory of each
machine. Moreover, the running time of each machine
is subquadratic.

To the best of our knowledge, both our quantum
algorithms and our MapReduce algorithm are first to
improve upon the trivial O(n2) classic algorithm beyond
subpolynomial factors for approximating edit distance2

in these settings. We believe that our framework can
be useful to better understand edit distance in other
models, such as the streaming and the semi-streaming
models.

The closest works to our results are [5] and [2].
In particular, they use a space embedding approach
from [32] with dividing the string into blocks of smaller
size, but our main observations and structural lemmas
are completely different from their approach. We note
that to the best of our knowledge, the ideas of our
framework are novel and have not been used in any of
the previous work. In [6], the authors give a parallel

2within a constant factor

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1171

D
ow

nl
oa

de
d

02
/0

9/
19

 to
 3

7.
14

8.
29

.2
34

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

algorithm for determining the edit distance between
two strings. Their algorithm uses Õ(n2) processors
and a shared memory of O(n2). Note that their
algorithm cannot be used in MapReduce models, since
the number of machines and memory of each machine
in a MapReduce algorithm should be sublinear, and the
number of rounds should be O(polylog(n)) [24]. The
major advantage of our MapReduce algorithm over the
algorithm of [6] is that both the number of machines
and the memory of each machine is sublinear in our
algorithm. Moreover, the number of rounds in our
algorithm is O(log(n)).

A similar approach is taken in the work of Nayebi
et al. [31] wherein the authors study the computational
complexity of APSP on quantum computers. They give
an APSP algorithm for graph instances with small in-
teger weights. They also give a fine-grained reduction
from APSP to negative triangle via quantum comput-
ing.

2 Our Results and Techniques

In this section, we explain the ideas and techniques of
our framework and show how we obtain a subquadratic
algorithm for approximating the edit distance on quan-
tum computers. The basis of our MapReduce algorithm
is similar to what we explain here, though some de-
tails are modified to run the algorithm in a logarith-
mic number of MapReduce rounds. More details about
the MapReduce algorithm can be found in Section 5.
Our quantum algorithm is based on several known tech-
niques of quantum computing, algorithm design, and
approximation algorithms. On the quantum side, we
take advantage of Grover’s search [18] and amplitude
amplification [13] to improve the lookup time on an un-
ordered set. On the algorithmic side, we benefit from
classic algorithmic tools such as dynamic programming
techniques, divide and conquer, and randomized tech-
niques. In addition to this, we leverage the bootstrapping
technique to further improve the running time of our al-
gorithm, by allowing the approximation guarantee to
grow to larger constant numbers.

Recall that, the edit distance between two strings is
defined as the smallest number of insertions, deletions,
and substitutions, that one needs to perform on one of
the strings to obtain the other one. For two strings s1
and s2, we denote their edit distance by edit(s1, s2).
By definition, edit distance meets all of the identity
of indiscernibles3, symmetry4, and triangle inequality5

properties, thus for any set of strings M, 〈M, edit〉

3edit(s1, s2) = 0⇔ s1 = s2.
4edit(s1, s2) = edit(s2, s1).
5edit(s1, s2) + edit(s2, s3) ≥ edit(s1, s3).

forms a metric space6. Following this intuition, our
algorithm is closely related to the study of the metric
spaces.

In the following, we outline our algorithm in three
steps. First, we define an auxiliary problem, namely
metric estimation and present efficient approxima-
tion algorithms for this problem accompanied by tight
bounds on its quantum complexity. Roughly speaking,
in this problem, we are given a metric space with n
points and oracle access to the distances, and the goal is
to output an n×nmatrix which is an estimate to the dis-
tances between the points. One may think of the oracle
as an ordinary computer program, that we then convert
to the corresponding quantum code and unitary oper-
ator using a quantum compiler [15]. We give two ap-
proximation algorithms that solve the metric estimation
problem with approximation factors 3 + ε and em(ε) =

O(1/ε) with Õ(n5/3poly(1/ε)) and Õ(n3/2+εpoly(1/ε))
oracle queries, respectively. Notice that the running
times of the algorithms are O(n2poly(1/ε)), but the
query complexities are subquadratic. This allows us
to approximate metrics spaces with sublinear points for
which answering an oracle query is time-consuming. We
emphasize that our metric estimation results are general
and can be used for any metric. In the second step, we
show that any algorithm that solves the metric estima-
tion problem within an approximation factor α can be
used as a black box to obtain a 1+2α+ε approximation
solution for edit distance. As we show, the reduction
takes a subquadratic time and thus using our 3 + ε ap-
proximation algorithm for metric estimation, we obtain
a 7 + ε approximation algorithm for edit distance. Fi-
nally, we devise a bootstrapping technique to further
improve the running time of the algorithm by taking a
hit on the approximation guarantee. In what follows,
we explain each of the steps in more details. Before we
delve into the algorithm, we would like to note some
comments.

• The only step of the algorithm where quantum
computation plays a role is the first step where
we discuss metric estimation. Nevertheless, every-
where we use the term algorithm, we mean a quan-
tum algorithm unless otherwise is stated.

• In this section, we explain the abstract ideas and
steps of the algorithm. Therefore, sometimes we do
not provide formal proofs for some of the arguments
that we make. The reader can find a detailed
discussion of all statements in Sections 3 and 4.

6A set of points M and a distance function d form a metric
space 〈M, d〉, if d meets all of the aforementioned properties.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1172

D
ow

nl
oa

de
d

02
/0

9/
19

 to
 3

7.
14

8.
29

.2
34

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

The proofs can be found in the full version of this
paper.

• Everywhere we use the word operation, we refer to
insertion, deletion, or substitution.

2.1 Metric Estimation As mentioned earlier, in
the metric estimation problem, we are given a metric
space 〈M, d〉 and an oracle O that reports d(x, y)
for two points x and y in an invocation. The goal
of the problem is to estimate the distance matrix
of the points with as few oracle calls as possible.
Due to the impossibility results for exact or even
solutions with small approximation factors for this
problem (see the rest for more details), our aim is to
find an approximation solution.

Metric Estimation

Input: a metric space 〈M, d〉 with n points where
M = {p1, p2, . . . , pn} and an oracle function O to
access the distances.

Guarantee: all the distances are integer numbers in
the interval [l, u]. We assume u is O(poly(n)).

An output (with approximation factor α > 1): an
n×nmatrixA, where d(pi, pj) ≤ A[i][j] ≤ αd(pi, pj)
holds for every 1 ≤ i, j ≤ n.

Before we state the main ideas and results, we
briefly explain two key tools that we borrow from
previous work and use as black boxes in our algorithms.
The first tool is the seminal work of Grover [18] for
making fast searches in an unordered database. Suppose
we are given a function f : [n] → {0, 1}, where [n] =
{1, 2, 3, . . . , n}, and we wish to list up to m distinct
indices for which the value of the function is equal to 1.
We refer to this problem as element listing.

Element Listing

Input: integers n and 0 ≤ m ≤ n, and access to an
oracle that upon receiving an integer i, reports the
value of f(i). f is defined over [n] and maps each
index to either 0 or 1.

Output: a list of up to m indices for which the value
of f is equal to 1. If the total number of such indices
is not more than m, the output should contain all
of them.

The pioneering work of Grover [18] implies that the ele-
ment listing problem can be solved with only O(

√
nm)

oracle calls via quantum computation. We subsequently
make use of this algorithm in this section.

Theorem 2.1. (proven in [12]) The listing problem
can be solved with O(

√
nm) oracle queries via quantum

computation.

The second quantum technique that we use in this
paper is a tool for proving lower bounds on the quantum
complexity of the problems. Let f : [n]→ {−1, 1} be a
function defined over the numbers 1, 2, . . . , n that maps
each index to either −1 or 1 and par(f) =

∏
i∈[n] f(i).

In the parity problem, we are given oracle access to f
and the goal is to determine par(f) with as few oracle
calls as possible.

Parity

Input: an integer n, and access to an oracle O that
upon receiving an integer i reports the value of f(i).
f is defined over [n] and maps each index to either
−1 or 1.

Output: par(f) =
∏
i∈[n] f(i).

Of course, if the numbers of −1’s or 1’s are substantially
smaller than n (o(n)), one can use Grover’s search to list
all of such indices and compute the parity with fewer
than Ω(n) oracle calls. However, if this is not the case
for either −1 or 1, such an approach fails. The seminal
work of Farhi et al. [15], showed that at least Ω(n)
queries are necessary for solving the parity problem and
thus quantum computation offers no speedup in this
case.

Theorem 2.2. (proven in [15]) The parity problem
cannot be solved with fewer than Ω(n) queries with
quantum computation.

Based on the result of Farhi et al. [15], we begin
with showing an impossibility result. Our first result
for metric estimation is a hardness of approximation
for factors smaller than 3 using a subquadratic number
of queries. More precisely, in Section 3, we show
that any quantum algorithm that approximates metric
estimation within a factor smaller than 3, needs to make
at least Ω(n2) oracle queries.

Theorem 3.1 [restated]. Any quantum algorithm
for solving the metric estimation problem with an
approximation factor smaller than 3 needs to make at
least Ω(n2) oracle calls.

The idea is to show a reduction from parity to
metric estimation. Suppose we are given an instance I
of the parity problem. Roughly speaking, we construct
an instance Cor(I) of the metric estimation and prove
that Cor(I) has a valid metric as input. Next, we show

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1173

D
ow

nl
oa

de
d

02
/0

9/
19

 to
 3

7.
14

8.
29

.2
34

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

that any algorithm that approximates metric estimation
within a factor smaller than 3 with o(n2) queries can be
turned into a quantum algorithm for solving parity with
o(n) queries which is impossible due to Farhi et al. [15].

Despite this hardness of approximation for factors
better than 3, we show the problem is significantly more
tractable when we allow the approximation guarantee to
be slightly more than 3. In Section 3, we show that for
any ε > 0, a 3 + ε approximation of metric estimation is
possible via Õ(n5/3poly(1/ε)) queries.

Theorem 3.2 [restated]. For any ε > 0, there exists
a quantum algorithm that solves metric estimation
with Õ(n5/3poly(1/ε)) queries within an approximation
factor of 3 + ε. Moreover, the running time of the
algorithm is Õ(n2poly(1/ε)).

Our first take on the solution is to discretize the
problem at the expense of imposing an additional 1 + ε
factor to our guarantee. Notice that all of the distances
of the metric lie in the interval [l, u]. Therefore, one can

divide the distances into log1+ε/3(u/l) = Õ(poly(1/ε))
disjoint intervals where the distances within each inter-
val differ in at most a multiplicative factor of 1 + ε/3.
For every interval [x, (1 + ε/3)x] we can set a threshold
t = (1 + ε/3)x and find all pairs within a distance of at
most t with an approximation factor of 3. Then, based
on all these solutions, one can find a 3+ε approximation
distance for every pair of the points.

Now the problem boils down to the following: given
a threshold t, find all pairs (pi, pj) such that d(pi, pj) ≤
t. Of course, an exact solution for this problem is
hopeless due to our impossibility result. Therefore we
allow some false positive in our solution as well. More
precisely, we restrict our solution to contain all pairs
(pi, pj) such that (pi, pj) ≤ d, but additional pairs are
also allowed to appear, if (pi, pj) ≤ 3d. It is easy to
show that any solution that solves the above problem via
Õ(n5/3poly(1/ε)) queries, yields a 3 + ε approximation
factor algorithm for metric estimation that uses at most
Õ(n5/3poly(1/ε)) oracle calls.

In what follows, we describe the ideas to solve
the problem for a fixed threshold t. The algorithm is
explained in details in Section 3, therefore, here, we
just mention the tools and techniques. For convenience,
we construct a graph G with n nodes, and correspond
every point pi of the metric to a vertex vi of the graph.
For a pair of points (pi, pj), we add an undirected edge
(vi, vj) to the graph, if d(pi, pj) ≤ t. Notice that the
oracle functionO, provides us the exact value of d(pi, pj)
for any pi and pj , therefore we can examine whether
an edge exists between two vertices vi, vj with a single
oracle call. Recall that, Grover’s search allows us to

Table 1: Quality of the approximation algorithms for
metric estimation

Approx.
factor

α < 3 α = 3 + ε

Number of Ω(n2) Õ(n5/3poly(1/ε))
queries (Theorem 3.1) (Theorem 3.2)

Approx.
factor

α = em(ε) α = any constant

Number of Õ(n3/2+εpoly(1/ε)) Ω(n3/2)
queries (Theorem 3.4) (Theorem 3.7)

find as many as m elements with value 1 of a function
of size n via O(

√
nm) oracle calls. Therefore, if the

number of the edges of the graph is O(n4/3), we can use
Grover’s search (Theorem 2.1) to list all of the edges

with O(
√
n2 · n4/3) = O(n5/3) queries and solve the

problem. Therefore, the non-trivial part of the problem
is the case where the graph is dense. In this case, the
average degree of the vertices is at least Ω(n1/3). Now,
suppose we select a vertex vi whose degree is at least
n1/3, and with n − 1 query calls, find the distances
of its corresponding point pi from all other points of
the metric. Let set Dt, be the set of all points that
have a distance of at most t from pi and D2t be the of
points with a distance of at most 2t from pi. Trivially,
Dt ⊆ D2t. Due to the triangle inequality, all of the
edges incident to the vertices corresponding to set Dt

are from the vertices corresponding to D2t. Moreover,
the distances of all points of Dt from points of D2t

are bounded by 3t. Therefore, one can report all such
pairs in the solution and proceed by removing Dt from
the graph (however, some vertices of D2t remain in the
graph). Thus, all that remains is to solve the problem
for an instance with at most n−n1/3 nodes recursively.
Since we make at most O(n) query calls for every n1/3

vertices (an amortized of n2/3 per vertex), the total
number of queries is O(n5/3). More details about this
can be found in Section 3.

In addition to Theorem 3.2, we show in Sec-
tion 3 that with a deeper analysis, one can use the
same ideas to further improve the query complexity to
Õ(n3/2+εpoly(1/ε)) by allowing the approximation guar-
antee to grow up to em(ε) = O(1/ε).

Theorem 3.4 [restated]. For any ε > 0, there exists a
quantum algorithm that solves metric estimation with
Õ(n3/2+εpoly(1/ε)) queries within an approximation
factor of em(ε) = O(1/ε). Moreover, the running time

of the algorithm is Õ(n2poly(1/ε)).

You can find a summary of the results explained in
this section in Table 1.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1174

D
ow

nl
oa

de
d

02
/0

9/
19

 to
 3

7.
14

8.
29

.2
34

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

2.2 Approximating Edit Distance within a Fac-
tor 7 + ε In the second step, we provide an algorithm
to approximate the edit distance between two strings in
subquadratic time, based on a reduction to metric esti-
mation. Our approach here is twofold. Suppose we are
given a guess d, on the actual edit distance between the
strings, and we want to find an approximation proof to
the guess. More precisely, we wish to find out whether d
is smaller than the actual distance of the strings, or re-
port a transformation of the strings with at most αd op-
erations7 where α is given as an approximation factor. If
d is substantially smaller than n, then the O(n+d2) ex-
act algorithm of Landau et al. [26] solves the problem in
subquadratic time. Therefore, the only hard instances
of the problem are when d is asymptotically close to
n. Therefore, we define a subtask of the edit distance
problem, in which we are given two strings s1 and s2 and
guaranteed that the edit distance between the strings is
at most δ(|s1|+ |s2|) where δ is not too small. The goal
is to find a transformation of the strings with at most
(δ ·α)(|s1|+ |s2|) operations, where α is the approxima-
tion factor of the algorithm. We refer to this subtask of
edit distance as the δ-bounded edit distance problem.

δ-bounded edit distance

Input: two strings s1 and s2, and a real number
0 ≤ δ ≤ 1.

Guarantee: edit(s1, s2) ≤ δ(|s1|+ |s2|).

Output (with an approximation factor α > 1): a
sequence of operations with size at most (δ ·α)(|s1|+
|s2|) that transforms s1 into s2.

We combine a divide and conquer technique with
dynamic programming in order to approximate δ-
bounded edit distance. In addition to this, we subse-
quently make use of the quantum techniques mentioned
earlier in our solution. Recall that the total number of
characters in the input is equal to n, i.e., |s1|+ |s2| = n.
For clarity, we define two parameters 0 < β < 1 and
γ > 1. γ is an integer number but β is a real number
between 0 and 1. We use β and γ as two parameters
of our algorithm, and after the analysis, we show which
values for β and γ give us the best guarantee.

We begin by defining the notion of a window and
construct a set of windows for each string. Let l =
bn1−βc be the window size and define a window of s1, as
a string of length l over the characters of s1. Moreover,
define g = bl/γc = O(n1−β/γ) as the gap size and
construct a collection W1 of windows for s1 as follows:
for every 0 ≤ i ≤ b |s1|−lg c, put a window [ig + 1, ig + l]

7insertion, deletion, or substitution

(i.e., a window from index ig + 1 to index ig + l of
s1) in W1. In other words, W1 contains tentatively
γ(|s1|/l) = O(γnβ) windows of length l where the
gap between the neighboring windows is equal to g.
Figure 1 illustrates how the windows of W1 span over
the characters of s1. Notice that some of the windows
overlap.

Similar to this, we construct a collection W2 of
windows for s2, using the same parameters l and g.
We define a transformation of s1 into s2, as a sequence
of insertions, deletions, and substitutions that turns
s1 into s2. After a transformation of s1 into s2, we
call a character of s2 old if it is either substituted
by a character of s1, or remained intact during the
transformation. In other words, if a character is not
inserted during a transformation, it is called old. Based
on this, we define the notion of a window-compatible
transformation as follows:

Definition 2.1. Let S = 〈w1, w2, . . . , wk〉 and S′ =
〈w′1, w′2, . . . , w′k〉 be two sequences of size k of non-
overlapping windows from W1 and W2, respectively. We
call a transformation of s1 into s2 window-compatible
with respect to S and S′, if (i) all old characters of s2
are in the windows of S′ and (ii) every old character of
s2 which is in a window w′i, was placed in window wi of
s1 prior to the transformation. We call a transforma-
tion window-compatible, if it is window-compatible with
respect to at least a pair of sequences of non-overlapping
windows from W1 and W2, respectively.

Intuitively, a window-compatible transformation with
respect to two sequences of windows S and S′ does
not allow the characters to move in between the win-
dows; if a character is initially placed in a window wi,
it should either be deleted or placed in window w′i of
s2 and vice versa. We emphasize that in order for
a transformation to be window-compatible, the corre-
sponding windows should be selected from W1 and W2,
respectively. A few examples of window-compatible and
window-incompatible transformations are illustrated in
Figure 2.

As we show in the following, window-compatible
transformations are well-structured. In fact, we show in
Section 4 that if the edit distances of the windows are
accessible in time O(1), a dynamic program can find an
optimal8 window-compatible transformation of s1 into
s2 in time O(n+ |W1||W2|).

Lemma 4.1 [restated]. Given a matrix of edit distances
between the substrings corresponding to every pair of
windows of W1 and W2, one can compute an optimal
window-compatible transformation of s1 into s2 in time

8a transformation with the smallest number of operations.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1175

D
ow

nl
oa

de
d

02
/0

9/
19

 to
 3

7.
14

8.
29

.2
34

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

s1

︷︸
︸︷

γ
la

ye
rs

︷ ︸︸ ︷window size = l

︷︸︸︷g ..
.

. . .
. . .

. . .
. . .

Figure 1: s1 is shown with a solid rectangle and windows of W1 are depicted via dashed rectangles.

a c b c b a c b

c a b a a a b b

77
33

7
3

(a) An example of a window-compatible
transformation.

a a b c b a c b

c b c a b a b b

7
3

(b) The transformation is not window-
compatible since character 5 of the sec-
ond string is old, but doesn’t lie in any
windows.

a a b c b a c b

c a b a a a b b

7
33

7

(c) The transformation is not window-
compatible since character 1 of the sec-
ond string is old, but prior to the trans-
formation, it was not placed in any win-
dows.

a c b c b d c b

c b d a a a b b

77
33

7
3

(d) The transformation is not window-
compatible since character 3 of the sec-
ond string is old, but prior to the trans-
formation, it was not placed in the cor-
responding window.

Figure 2: Figures 2a, 2b, 2c, and 2d show a few examples of window-compatible and window-incompatible
transformations. Solid arrows show substitutions, dashed arrows show the characters that remain in the string,
and other characters are either inserted or deleted.

O(n+ |W1||W2|).

Lemma 4.1 shows that window-compatible transfor-

mations are easy to find. It also follows from Lemma 4.1
that any α approximation matrix for the edit distances
of the windows suffices to find an approximately opti-

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1176

D
ow

nl
oa

de
d

02
/0

9/
19

 to
 3

7.
14

8.
29

.2
34

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

mal window-compatible transformation (with the same
approximation factor) in time O(n + |W1||W2|). This
makes the connection of edit distance and metric esti-
mation more clear.

We complement this observation by a structural
proof. In Section 4, we show that the length of the
shortest window-compatible transformation of s1 into
s2 is not far from δ(|s1| + |s2|). This enables us to use
the previously mentioned algorithms to find an approxi-
mately optimal window-compatible transformation, and
show this is in fact a constant approximation away from
δ(|s1|+ |s2|).

Lemma 4.2 [restated]. Given that edit(s1, s2) ≤ δn,
there exists a window-compatible transformation of s1
into s2 with at most (3δ + 1/γ)n+ 2l operations.

Now we can put things in perspective. Lemma 4.1,
in light of the results of metric estimation, provides us a
nice tool for finding an approximately optimal window-
compatible transformation, and Lemma 4.2 argues that
such a transformation is to some extent optimal. Based
on this, we outline our algorithm for δ-bounded edit
distance as follows:

1. Construct the windows of W1 and W2 for both s1
and s2.

2. Construct a metric 〈M, edit〉, whereM = W1∪W2

and the distance of two points inM is equal to the
edit distance between their corresponding windows.
We use the classic algorithm of edit distance to an-
swer every oracle invocation for reporting the edit
distance between two windows. Using the quantum
approximation algorithm of metric estimation, find
a 3+ ε approximation solution to the edit distances
for every pair of windows (Theorem 3.2).

3. Based on the estimated distances, find a 3 + ε ap-
proximately optimal window-compatible transfor-
mation (Lemma 4.1).

4. Report the transformation as an approximation
proof for the δ-bounded edit distance problem.

We show in Section 4, that by setting β = 6/7
and γ = 1/εδ, the above algorithm runs in time

Õ(n2−1/7poly(1/ε)) and has an approximation factor of
7 + ε.

Lemma 4.3 [restated] There exists a quantum algo-
rithm that solves the δ-bounded edit distance problem
within an approximation factor of 7 + ε in time
Õ(n2−1/7poly(1/ε)).

By Lemma 4.3, we can approximate the δ-bounded
edit distance problem in truly subquadratic time in

case the guarantee holds. Of course, if this algorithm
provides a larger or invalid transformation, one can
immediately imply that the guarantee edit(s1, s2) ≤
δ(|s1|+ |s2|) is violated. The rest of the solution for edit
distance follows from a simple multiplicative method. In
order to solve edit distance, we first check whether the
two strings are equal and in that case, we report that
their distance is equal to 0. Otherwise edit(s1, s2) ≥ 1.
Now, we start with ρ = 1/n and every time run our
solution for δ-bounded edit distance with parameter δ =
ρ, to find an approximation proof for edit(s1, s2) = ρn.
If our algorithm finds a proper transformation with at
most (7ρ+ ε)n operations, then we report that solution.
Otherwise, we know that edit(s1, s2) > ρn, and thus
multiply ρ by a factor 1 + ε. Of course, this comes
at the expense of an additional multiplicative factor of
1 + ε to the approximation factor; however, the running
time remains Õ(n2−1/7poly(1/ε)). We later refer to this
technique as guess and multiply.

Theorem 4.1 [restated] There exists a quantum algo-
rithm that solves edit distance within an approximation
factor of 7 + ε in time Õ(n2−1/7poly(1/ε)).

2.3 Improving the Running Time via Boot-
strapping So far, we discussed how to use divide and
conquer and metric estimation to approximate edit dis-
tance in subquadratic time. In this section, we explain
the ideas to improve the running time of the algorithm
by taking a hit on its approximation factor.

Recall that, in order to approximate the edit dis-
tance, we first construct a set of windows. Next, we use
metric estimation to estimate the edit distances of the
windows, and finally, we use a dynamic programming al-
gorithm to find an almost optimal window-compatible
transformation. As discussed before, such a solution
approximates the edit distance within a constant fac-
tor. The components of this algorithm are illustrated in
Figure 3.

Now, we show that we can improve the algorithm
at two points. Firstly, instead of using the 3 + ε ap-
proximation algorithm for metric estimation, we can
lose a factor of em(ε) in the approximation and esti-

mate the distances in time Õ(n3/2+εpoly(1/ε)) (Theo-
rem 3.4). In addition to this, as an oracle function for
metric estimation, we do not really need to compute
the exact edit distances of the windows; a constant es-
timation to the distances suffices. Therefore, one can
use our algorithm for approximating edit distance to
implement the oracle in subquadratic time. Of course,
this again comes at the expense of deteriorating the ap-
proximation guarantee but the running time improves.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1177

D
ow

nl
oa

de
d

02
/0

9/
19

 to
 3

7.
14

8.
29

.2
34

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

7 + ε Edit Distance

7 + ε
δ-bounded edit

distance

3 + ε
Metric Estimation

Dynamic
Programming

Õ(n2−1/7poly(1/ε))

Landau et al.

Õ((1/δ)2n2−2/7poly(1/ε))

O(n+ d2)

Õ(n5/3poly(1/ε)) O(n2)

δ ≤ n−1/14

δ > n−1/14

Figure 3: The diagram depicts the components of the 7 + ε algorithm for edit distance. x → y shows that
component x uses component y as a black box.

In this section, we show how we combine these ideas

to achieve an Õ(n2−(5−
√
17)/4+εpoly(1/ε)) ' Õ(n1.781)

time algorithm. As to why the exponent converges to
2 − (5 −

√
17)/4, we refer the reader to a discussion in

the full version of this paper.
To formalize the above ideas, suppose we are given

two strings s1 and s2, and would like to approxi-
mate the edit distance between the strings in time

Õ(n2−(5−
√
17)/4+εpoly(1/ε)). We call our algorithm for

this problem A(ε), and refer to its time complexity and
approximation factor with te(ε) and ee(ε), respectively.
We inductively show that

te(ε) = Õ(n2−(5−
√
17)/4+εpoly(1/ε))

and ee(ε) = O(1/ε)O(log 1/ε). Notice that if 2 − (5 −√
17)/4 + ε ≥ 2, A(ε) can be trivially implemented

with the classic O(n2) algorithm and the approximation
factor ee(ε) = 1. Now, assume that 2−(5−

√
17)/4+ε <

2.
An Õ((1/δ)2n2−(5−

√
17)/2+2εpoly(1/ε)) time algo-

rithm for δ-bounded edit distance suffices to design

A(ε). If δ ≤ n−(5−
√
17)/8+ε/2 we run the O(n + δ2n2)

of Landau et al. [26], otherwise the running time of our

algorithm is Õ(n2−(5−
√
17)/4+εpoly(1/ε)). Moreover, a

similar guess and multiply method explained in Section
2.2 extends this solution to edit distance. Therefore, all
we need is to approximate the δ-bounded edit distance

problem in time Õ((1/δ)2n2−(5−
√
17)/2+2εpoly(1/ε)). To

this end, we again define two parameters β and γ and
set the window size equal to bn1−βc and the gap size
equal to g = bl/γc. Similar to what explained before,
we construct two sets of windows W1 and W2 for s1 and
s2 based on the windows size and gap size. Now, we use
the same algorithm for finding the edit distance between
s1 s2, with two modifications.

1. Construct the windows of W1 and W2 for both s1
and s2.

2. Construct a metric 〈M, edit〉, whereM = W1∪W2

and the distance of two points inM is equal to the
edit distance between their corresponding windows.
We use A(2ε) (a slightly slower version of our algo-
rithm) for estimating the edit distances of the win-

dows in time te(2ε) = Õ(n2−(5−
√
17)/4+2εpoly(1/ε))

as on oracle function. Using the approximation al-
gorithm of metric estimation, find an em(ε)ee(2ε)
approximation solution to the edit distances for ev-
ery pair of windows (Theorem 3.4).

3. Based on the estimated distances, find an
em(ε)ee(2ε) approximately optimal window-
compatible transformation (Lemma 4.1).

4. Report the transformation as an approximation
proof for the δ-bounded edit distance problem.

Notice that there are two modifications to the
previous algorithm. First, instead of using the 3 + ε
factor algorithm for metric estimation, here, we use an
em(ε) approximation factor algorithm that runs in time

Õ(n3/2+εpoly(1/ε)). Moreover, instead of implementing
the oracle function via the classic O(n2) algorithm, we
use A(2ε) for approximating the edit distances. By
setting the right values for parameters β and γ, the
running time and approximation factor of algorithm

A(ε) would be Õ(n2−(5−
√
17)/4+εpoly(1/ε)) and ee(ε) =

O(1/ε)O(log 1/ε), respectively.

Theorem 4.3 [restated] There exists an

Õ(n2−(5−
√
17)/4+ε) time quantum algorithm

that approximates edit distance within a factor

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1178

D
ow

nl
oa

de
d

02
/0

9/
19

 to
 3

7.
14

8.
29

.2
34

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

ee(ε) = O(1/ε)O(log 1/ε).

Figure 4 shows the components of A(ε).

3 Metric Estimation

In this section, we discuss the metric estimation prob-
lem. Although the results of this section are only auxi-
lary observations to be later used for edit distance, these
results are of independent interest and may apply to fu-
ture work. As defined previously, in this problem, we
wish to estimate the distance matrix of a metric space
〈M, d〉 with n points. Notice that, an estimation of a
distance d(pi, pj) with approximation factor α lies in
the range [d(pi, pj), αd(pi, pj)], therefore, the estimated
value cannot be less than the actual distance. However,
it can be more than the actual distance by a multi-
plicative factor of α. We tend to minimize the query
complexity and the approximation factor, however, our
algorithm is allowed to run in time Õ(n2). Throughout
this section, we show a tradeoff between the approx-
imation factor and the quantum query complexity of
metric estimation. First, we present an impossibility re-
sult that shows the approximation factor cannot be less
than 3 unless we make a quadratic number of queries.
Next, in Section 3.2, we present our desired 3 + ε ap-
proximation algorithm for metric estimation with a sub-
quadratic query complexity. Afterward, we adjust our
algorithm to make as few as Õ(n3/2+εpoly(ε)) oracle call
for a larger constant approximation em(ε) = O(1/ε).

3.1 Hardness of Approximation for α < 3 As
aforementioned, the purpose of this section is to show
an impossibility result for approximating metric estima-
tion within a factor smaller than 3 with subquadratic
query complexity. To this end, we give a reduction
from the well-known parity problem to the metric es-
timation problem. Parity is one of the problems for
which quantum computers cannot perform better than
classical computers. Recall the definition of the parity
problem from Section 2.1.

Parity

Input: an integer n, and access to an oracle O that
upon receiving an integer i reports the value of f(i).
f is defined over [n] and maps each index to either
−1 or 1.

Output: par(f) =
∏
i∈[n] f(i).

Note that, par(f) is either +1 or −1 for every
function f . Farhi et al. [15] proved that at least
Ω(n) oracle queries are necessary to find par(f). A
classic method to show lower bounds on the time/query

complexity of problems is via a reduction from parity.
This method has been used to show lower bounds on the
quantum query complexity of many problems [14, 30].
We are now ready to present our reduction.

The idea is to construct a metric space from a given
function f , and show that any estimation of the metric
with an approximation factor smaller than 3 can be used
to compute the parity of f . A metric space should sat-
isfy three properties: identity, symmetry and triangle
inequality. Keep in mind that our construction should
be in such a way that the metric meets all of the men-
tioned properties. For a function f : [n2]→ {−1, 1}, we
construct a metric M = {a1, a2, . . . , an, b1, b2, . . . , bn}
with 2n points. We divide the points into two groups,
namely ai’s and bi’s, where the distances of the points
within each group are all equal to 1. Moreover, for ev-
ery pair of points (ai, bi), the distance of ai from bi is
either 1/2 or 3/2, depending on function f . We show
that, given an α < 3 approximation estimation for the
distances of M, one can determine par(f) uniquely.

Theorem 3.1. Any quantum algorithm that approxi-
mates the metric estimation problem with an approx-
imation factor smaller than 3 needs to make at least
Ω(n2) oracle calls.

3.2 A 3 + ε Approximation Algorithm with
Õ(n5/3poly(1/ε)) Queries In this section, we present a
quantum algorithm to estimate the distances of a metric
space within an approximation factor of 3 + ε. Our
algorithm makes Õ(n5/3poly(1/ε)) oracle calls.

The first idea of our algorithm is to discretize the
distances. Recall that, the distances of the metric are
non-negative integers in the interval [l, u]. We separate
the numbers into disjoint intervals. If l = 0, we put a
separate interval [0, 0] for 0 and continue on with the
numbers in [1, u]. Every time, we find the smallest
number l ≤ x ≤ u which is not covered in the previous
intervals and add a new interval [x, (1 + ε)x] to the
list. Since u = poly(n), the number of intervals is

poly(log n)poly(1/ε) = Õ(poly(1/ε)). Now, by losing a
factor 1 + ε in the approximation, we can round up
all of the numbers within an interval to its highest
value and solve the problem for each interval separately.
Therefore, the problem boils down to the following:
given a threshold t, find all pairs of the points with a
distance of at most t. We call this problem threshold
estimation. Note that, since we wish to find a 3
approximation solution for threshold estimation, a false
positive is also allowed in the solution. More precisely,
the solution should contain all pairs of points within a
distance of at most t, but pairs within distances up to
3t are also allowed to be included.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1179

D
ow

nl
oa

de
d

02
/0

9/
19

 to
 3

7.
14

8.
29

.2
34

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

A(ε)
ee(ε) Edit Distance

ee(ε)
δ-bounded edit

distance

O(1/ε)
Metric Estimation

Õ(n1.781+εpoly(1/ε))

Landau et al.

Õ((1/δ)2n1.562+εpoly(1/ε))

O(n+ d2)

Õ(n3/2+εpoly(1/ε))

A(2ε) A(4ε) DP

O(n2)

δ ≤ n−(5−
√

17)/8+ε/2

Figure 4: The diagram illustrates the bootstrapping technique to achieve an Õ(n1.781) time quantum algorithm
for approximating edit distance. x→ y shows that component x uses component y as a black box.

In order to approximate threshold estimation, we
subsequently make use of Grover’s search algorithm [12].
Think of the metric as a graph G where every point
corresponds to a vertex of the graph and two vertices
are adjacent if the distance of their corresponding points
is at most t. Let 0 < τ < 1 be a fixed parameter. We
call a vertex v of the graph low degree if the number of
edges incident to v are bounded by nτ and high degree
otherwise. Our algorithm deals with low degree vertices
and high degree vertices differently. We set the value of
τ after the analysis and show it gives us the best bound.

In our algorithm, we iterate over the vertices of the
graph and find their neighbors one by one. To this end,
fix a vertex vi and suppose we wish to find all of its
neighbors. Due to Grover’s search (Theorem 2.1), we
can list up to nτ neighbors of vi with

√
nτn = n(1+τ)/2

queries. Moreover, with an additional Grover’s search,
we can determine whether the degree of vi is more nτ

with O(
√
n) queries. If vi is low degree, we already have

all its neighbors, and thus we can report those edges
and remove vi from the graph. Otherwise, the degree
of vi is more than nτ . In this case, we make O(n)
oracle calls and find the distances of all other points
from the corresponding point of vi, namely pi. Based
on these distances, we construct two sets of vertices
N(vi, t) and N(vi, 2t) where the former contains all
vertices corresponding to points within a distance of at
most t of pi and the latter contains all of the vertices
corresponding to points within a distance of at most 3t
from pi. We then proceed by reporting all the edges
between N(vi, t) and N(vi, 2t) and removing N(vi, t)
from the graph. A pseudocode for this algorithm is
shown in Algorithm 1.

Theorem 3.2. For τ = 1/3, Algorithm 1 approximates
threshold estimation within a factor of 3 with O(n5/3)
oracle calls. Moreover, the running time of Algorithm 1

Algorithm 1: EstimateWithThreshold(n,O, t)
Data: The number of points in the metric

space M = {p1, p2, . . . , pn}, oracle access
to the distances between points, and a
threshold t.

Result: A 0-1 matrix A of size n× n, where for
each d(pi, pj) ≤ t we have Ai,j = 1, and
for each Ai,j = 1 we have d(pi, pj) ≤ 3t.

1 Initialize a graph G with n vertices;
2 while V (G) is not empty do
3 Select a vertex vi from V (G);
4 List up to nτ neighbors of vi and find out

whether vi is high degree or low degree;
5 if vi is low degree then
6 Update the matrix A according to the

edges of vi;
7 Remove vi from V (G);

8 else
9 Find the distances of pi from all other

points;
10 Construct N(vi, t) and N(vi, 2t) based on

the distances;
11 For every x ∈ N(vi, t) and y ∈ N(vi, 2t),

set Ax,y = 1;
12 V (G)← V (G) \N(vi, t);

13 Output A;

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1180

D
ow

nl
oa

de
d

02
/0

9/
19

 to
 3

7.
14

8.
29

.2
34

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

is O(n2).

Now, we are ready to present our 3 + ε approxima-
tion algorithm with query complexity Õ(n5/3poly(1/ε)).

For each i, using Algorithm 1, we can find all
distances in range [0, l(1 + ε/3)i+1] with some false
positive distances in range [l(1+ε/3)i+1, 3l(1+ε/3)i+1].
By knowing the same information for i− 1, we have all
points in range [0, l(1 + ε/3)i] with some false positive
distances in range [l(1+ε/3)i, 3l(1+ε/3)i]. Thus we can
find all points in range [l(1 + ε/3)i], l(1 + ε/3)i+1], some
false positives in range [l(1+ε/3)i+1, 3l(1+ε/3)i+1], and
some false negatives that estimated correctly before. All
of these distances are in range [l(1+ε/3)i, 3l(1+ε/3)i+1].
Therefore we can estimate these distances as 3l(1 +

ε/3)i+1 and the approximation factor is 3l(1+ε/3)i+1

l(1+ε/3)i =

3(1 + ε/3) = 3 + ε. The time and query complexity
of this algorithm is the time and query complexity of
Algorithm 1 times log1+ε/3(u/l) = Õ(1/ε). We handle
zero distances separately. You can find the pseudocode
of this algorithm in the following.

Algorithm 2: EstimateMetric(n,O, ε, l, u)

Data: The number of points in the metric space
M = {p1, p2, . . . , pn}, oracle access to the
distances between points, a small number
ε > 0, a lower bound, and an upper
bound for the distances.

Result: An n× n matrix A, where Ai,j is a
3 + ε approximation of d(pi, pj)

1 Initialize three matrices A, A◦ and A•;
2 A◦ ← EstimateWithThreshold(n,O, 0);
3 Initialize the threshold: t← max(1, l);
4 while t ≤ u do
5 t← t · (1 + ε/3);
6 A• ←EstimateWithThreshold(n,O, t);
7 A← A+ (A• −A◦) · 3t;
8 A◦ ← A◦ ∨A•

9 output A

Theorem 3.3. Algorithm 2 solves metric estimation
problem with approximation factor 3+ε, quantum query
complexity Õ(n5/3) and time complexity of Õ(n2) for an
arbitrary small constant ε > 0.

In this section, we achieved an algorithm with sub-
quadratic query complexity and approximation factor
3 + ε for any ε > 0 which is nearly optimal due to The-
orem 3.1. In Section 3.3, we reduce the quantum query
complexity to O(n3/2+ε), but the approximation factor
grows to larger constants.

3.3 A Constant Approximation Algorithm with
Õ(n3/2+εpoly(1/ε)) Queries In Sections 3.1 and 3.2,
we showed that the best approximation factor that we
can get with subquadratic oracle calls are bounded from
below by 3 and that a 3 + ε approximation is possible.
In this section, we complement this result by showing
that the query complexity can be further reduced to
Õ(n3/2+εpoly(1/ε)), and moreover, we show that the
required query complexity is at least Ω(n3/2) for any
constant approximation factor. To this end, we present
a quantum algorithm with expected query complexity
Õ(n3/2+εpoly(1/ε)) where the approximation factor and
the expected running time are em(ε) = O(1/ε) and

Õ(n2poly(1/ε)), respectively.
As stated before, the problem reduces to threshold

estimation. Similar to what we did for Theorem 3.3,
we divide the vertices into two categories low degree
and high degree. Low degree vertices are easy to deal
with; we simply list all of their neighbors using Grover’s
search and report all of them. If a vertex is high degree
though, the algorithm needs to be more intelligent.

The overall idea is summarized in the following: we
find a small group of vertices, namely representatives,
that hits at least one vertex from the neighborhood of
any large degree vertex. Using a standard argument
of hitting sets, we can show that a subset of Õ(n/η)
vertices chosen uniformly at random, as representatives,
hits every neighborhood of size at least η with high prob-
ability. Notice that these neighborhoods are at most n
fixed but unknown subsets. Other vertices outside rep-
resentatives are either low degree vertices, or followers
which have at least one neighbor in representatives, or
both. Next, we run the following procedure: for every
vertex vi which is not in representatives, we first check
if it is a follower. For a follower vertex which has at
least one neighbor in representatives, we select one such
vertex and call that the leader of vi. Otherwise, if there
is no such neighbor, we conclude that vi is indeed low
degree; thus we can find all its neighbors via Grover’s
search and update the solution. Next, we solve the prob-
lem recursively for all of the representatives. For any vi
and vj which are connected, we want the leader of vi
and the leader of vj to become connected in the recur-
sive result. As a consequence of the triangle inequality,
we can achieve this by tripling the threshold. Finally,
we construct our solution based on the approximated
solution of the representatives and the leader-follower
relations, simply by connecting any two vertices, where
their leaders are connected. The approximation factor
increases with each recursion, but since the number of
recursions is a constant, we achieve a constant approx-
imation factor. Furthermore, in each recursion call, we
can increase the degree threshold as far as it doesn’t

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1181

D
ow

nl
oa

de
d

02
/0

9/
19

 to
 3

7.
14

8.
29

.2
34

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

increase the query complexity too much. By increas-
ing the degree threshold to its 3rd power, we have this
property. The number of vertices in nested recursions
depleted, as soon as the degree threshold become larger
that the number of vertices, in which case we treat all
vertices as low degree, thus the next time we have zero
vertices and the process finishes.

The pseudocode of the algorithm is shown below.

Algorithm 3: FastEstimateWithThresh-
old(M,O, t, ε, n0τ)
Data: The number of points in the metric space

M = {p1, p2, . . . , pn}, oracle access to the
distances between points, a threshold t, a
small number ε, and a degree threshold
n0
τ

Result: An n× n matrix A, where Ai,j is an
em(ε) approximation of d(pi, pj).

1 if n = 0 then
2 Output an empty matrix;

3 else
4 Sample a hitting set R with O((n/n0

τ) log n)
points;

5 Initialize an n× n matrix A;
6 for all points in M as vi do
7 Find a neighbor of vi or vi itself in R and

save it as l(vi) (the leader of vi);
8 if no such neighbor of vi exists and vi is

not in R then
9 List all neighbors of vi;

10 A′ ←
FastEstimateWithThreshold(R,O, 3t, 3ε, (n0τ)3);

11 for all pairs of points in M as (vi, vj) where
l(vi) 6= ∅ and l(vj) 6= ∅ do

12 if A′(l(vi), l(vj)) = 1 then
13 A(vi, vj)← 1;

14 A← A ∨A′;
15 Output A;

Theorem 3.4. Algorithm 3 called with the threshold t,
the parameter ε and the degree threshold n2ε finds all
distances less than t with some false positive distances
in range [t, em(ε) · t] where em(ε) = O(1/ε), in expected

query complexity Õ(n3/2+ε) and expected time complex-

ity Õ(n2).

In what follows, we complete our algorithm using
Algorithm 3 with several thresholds. This is the same

as Algorithm 2 with minor differences such as line 8
where 3 has been replaced with em(ε).

Algorithm 4: FastEstimateMetric(M,O, ε, l, u)

Data: The number of points in the metric space
M, oracle access to the distances
between points, a small number ε > 0, a
lower bound, and an upper bound for the
distances

Result: An n× n matrix A, where Ai,j is a
em(ε) approximation of d(pi, pj) in
〈M, d〉

1 Initialize the distance estimation matrix A, A◦

and A•;
2 A◦ ←FastEstimateWithThreshold(n,O, 0, ε, n2ε);
3 Initialize the threshold: t← max(1, l);
4 while t ≤ u do
5 t← t · (1 + ε);
6 A• ←FastEstimateWithThreshold(n,O, t, ε, n2ε);

7 A← A+ (A• −A◦) · em(ε);
8 A◦ ← A◦ ∨A•;
9 Output A;

Theorem 3.5. Algorithm 4 solves the metric esti-
mation with approximation factor em(ε) = O(1/ε),

with query complexity Õ(n3/2+εpoly(1/ε)) in time

Õ(n2poly(1/ε)).

3.4 An Ω(n3/2) time lower bound Last but not
least, we show that the query complexity of metric
estimation cannot be reduced any further, so long as
the approximation factor is constant, i.e., we need at
least Ω(n3/2) queries to approximate metric estimation
within a constant factor. We use Ambainiss lower bound
technique [1].

Theorem 3.6. (proven in [1], Theorem 6) Let
f(x1, . . . , xn) be a function of n variables with values
from some finite set and X,Y be two sets of inputs such
that f(x) 6= f(y) if x ∈ X and y ∈ Y . Let R ⊂ X × Y
be such that

1. For every x ∈ X, there exist at least m different
y ∈ Y such that (x, y) ∈ R.

2. For every y ∈ Y , there exist at least m′ different
x ∈ X such that (x, y) ∈ R.

Let lx,i be the number of y ∈ Y such that (x, y) ∈ R
and xi 6= yi and ly,i be the number of x ∈ X such that
(x, y) ∈ R and xi 6= yi. Let lmax be the maximum of

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1182

D
ow

nl
oa

de
d

02
/0

9/
19

 to
 3

7.
14

8.
29

.2
34

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

lx,ily,i over all (x, y) ∈ R and i ∈ {1, . . . , N} such that
xi 6= yi. Then, any quantum algorithm computing f

uses Ω(
√

mm′

lmax
) queries.

Now we use an intermediate problem to prove the
desired lower bound. A permutation matrix is a boolean
n × n matrix, which has exactly one entry 1 in each
row and each column. It corresponds to a permutation
π where entries of 1 are in the form of (i, π(i)). The
sign of a permutation matrix is defined as the sign of
its corresponding permutation. The next lemma about
the problem of determining the sign of a permutation
matrix is the main part of out lower bound.

Lemma 3.1. Any quantum algorithm which takes an
n × n permutation matrix as the input and outputs the
sign of the permutation matrix has a query complexity
of at least Ω(n3/2).

The problem of determining the sign of an n ×
n permutation matrix can be easily reduced to our
problem, by constructing a bipartite graph with parts
X and Y , n vertices in each part and n edges that
form a complete matching between X and Y . Every
matching has a corresponding permutations and vice
versa. Therefore, we have the following theorem.

Theorem 3.7. Any quantum algorithm which esti-
mates distances of a metric space of n points with a
constant approximation factor has a query complexity
of at least Ω(n3/2).

4 Edit Distance

In this section, we use the results of Section 3 to design a
quantum approximation algorithm for the edit distance
problem. Our algorithm has an approximation factor
of 7 + ε for an arbitrarily small number ε > 0 and
time complexity Õ(n2−1/7poly(1/ε)). The outline of the
algorithm is presented in Section 2. Here we provide
detailed proofs of the lemmas and theorems that are
previously used for edit distance.

Lemma 4.1. Given a matrix of edit distances between
the substrings corresponding to every pair of windows
of W1 and W2, one can compute the optimal window-
compatible transformation of s1 into s2 in time O(n +
|W1||W2|).

Corollary 4.1. Given an α-approximation matrix of
edit distances between the substrings corresponding to
every pair of windows of W1 and W2, one can compute
an α-approximation of the optimal window-compatible
transformation of s1 into s2 in time O(n+ |W1||W2|).

Lemma 4.2. Given that edit(s1, s2) ≤ δn, there exists
a window-compatible transformation of s1 into s2 with
respect to W1 and W2 that has at most (3δ+ 1/γ)n+ 2l
operations.

The next lemma proves the approximation factor
and time complexity of our 7 + ε approximation algo-
rithm for the δ-bounded edit distance problem.

Lemma 4.3. There exists a quantum algorithm that
solves the δ-bounded edit distance problem within an ap-
proximation factor of 7 + ε in time Õ(n2−1/7poly(1/ε)).

Theorem 4.1. There exists a quantum algorithm that
solves edit distance within an approximation factor of
7 + ε in time Õ(n2−1/7poly(1/ε)).

5 Approximating Edit Distance in MapReduce

Edit distance has been studied in parallel and dis-
tributed models since the 90s. However, the sequential
nature of the dynamic programming solution makes it
difficult to parallelize; therefore most of these solutions
are slow or require lots of memory/communication.
Using our framework, we give a somewhat balanced
parallel algorithm for the edit distance problem in
MapReduce model. More precisely, we give a (3 + ε)-
approximation algorithm which uses O(n8/9) machines,
each with a memory of size O(n8/9). Moreover, our al-
gorithm runs in a logarithmic number of rounds and
has time complexity O(n1.704) on one machine which is
truly subquadratic. The overall communication and to-
tal memory of our algorithm are also truly subquadratic,
due to the sublinearity of the number of machines and
the memory of each machine.

Our algorithm is significantly more efficient than
previous PRAM algorithms, for instance [6] in terms
of the number of machines, the overall memory, and
the overall communication. In addition, this is the first
result of its kind for edit distance in MapReduce model.
Although this subject has been studied before, previous
studies targeted a different aspect of the problem, such
as giving a heuristic algorithm, an algorithm for inputs
from a particular distribution model, or an algorithm for
edit distance between all pairs of several strings [23].

We begin by stating some of the MapReduce notions
and definitions in Section 5.1 and next explain our
algorithm is Section 5.2.

5.1 MapReduce Basics In this section, we give a
brief overview of the MapReduce setting and later show
how our framework can be used to design a MapReduce
algorithm for edit distance.

In the MapReduce model, an algorithm consists of
several rounds. Each round has a mapping phase and a

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1183

D
ow

nl
oa

de
d

02
/0

9/
19

 to
 3

7.
14

8.
29

.2
34

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

reducing phase. Every unit of information is represented
in the form of a 〈key; value〉 pair in which both key and
value are strings. The input, therefore, is a sequence
of 〈key; value〉 pairs specifying the input data and their
corresponding positions. For instance, in the case of edit
distance, we assume the input pairs are either in the
form of 〈(s1, i); s1[i]〉 or 〈(s2, i); s2[i]〉 where the value
represents a character, and the key shows the position
of this character in either s1 or s2.

Each round of a MapReduce algorithm is performed
as follows: every single input pair is given to a mapper
separately and depending on the mapping algorithm,
a sequence of 〈key; value〉’s is generated with respect
to the input key. Note that the mappers have to be
stateless in the sense that the output of every mapper
is only dependent on the single 〈key; value〉 pair given
to it. Since the mappers are stateless, parallelism in
the mapping phase is straightforward; all the inputs
are evenly distributed between the machines. Moreover,
there is no limit on the types of the 〈key; value〉 outputs
that the mappers generate. Once all the mapper jobs
are finished, the reducers start to run. Let K be
the set of all keys generated by the mappers in the
mapping stage. In the reducing stage, every key ∈ K
along with all its associated values is given to a single
machine. Note that there is no limit on the number of
keys generated in the mapping phase as long as all the
outputs together fit in the total memory of all machines.
However, the values associated with every key should
fit in the memory of a single machine since all such
values are processed at once by a single reducer. Every
reducer, upon receiving a key and a sequence of values
associated to it 〈key; v1, v2, v3, . . . , vl〉 runs a reducer-
specific algorithm and generates a sequence of output
pairs. Unlike the mapping phase, the output keys of a
reducer should be identical to the input key given to
them. Moreover, the reducers are not stateless since
they have access to all values of a key at once, but they
can only access their given key and the values associated
with it and should be regardless of the other 〈key; value〉
pairs generated in the mapping phase. Similar to the
mapping phase, the total size of the outputs generated
by all reducers should no exceed the total memory of all
machines together. In addition to this, the total outputs
of a reducer should not be more that its memory. Once
all reducers finished their jobs, the outputs are fed to
the mappers for the next round of the algorithm.

For a problem with input length n, the goal is to de-
sign a MapRuduce algorithm running on Np machines
each having a memory of Nm. Np and Nm have to be
sublinear in n since the input is assumed to be huge in
this setting. Moreover, since the overhead of a MapRe-
duce round is time-consuming, the number of MapRe-

duce rounds of the algorithms should be small (either
constant or polylogarithmic). Many classic computa-
tional problems have been studied in the MapReduce
setting. For instance, Karloff, Suri, and Vassilvitskii [24]
provide a MapReduce algorithm to compute an MST of
a graph with a sublinear number of machines and a sub-
linear memory for every machine. Lattanzi et al. [27]
design a filtering method and based on that, provide
MapReduce algorithms for fundamental graph problems
such as maximal matchings, weighted matchings, vertex
cover, edge cover, and minimum cuts.

We show in Section 5.2 that using O(n8/9) machines
and O(n8/9) memory on each machine, one can design
a MapReduce algorithm for edit distance that runs in
O(log n) MapReduce rounds. Moreover, the running
time of the algorithm is subquadratic.

5.2 Edit Distance in MapReduce Our solution
for approximating edit distance in MapReduce uses the
same framework explained in Section 4. Therefore, we
solve the problem by solving the δ-bounded edit dis-
tance problem several times. The difference is that here
we solve all of these subproblems simultaneously. This
only imposes a multiplicative factor of O((1/ε) log n) to
the number of machines and a multiplicative factor of
1 + ε to the approximation factor, hence in the follow-
ing, we focus on solving the δ-bounded edit distance
problem.

We use two different approaches for large δ’s and
small δ’s. For large δ’s, we use our framework and com-
pute the edit distance between some pairs of windows
of s1 and s2 all at once. For small δ’s though, we use
a new method based on (min,+) matrix multiplication,
also known as distance multiplication. We denote it by
?. We separate the large and the small δ’s with a critical
value based on the number of machines9.

For (min,+) matrix multiplication in the MapRe-
duce model, we use a parameterized version of the algo-
rithm presented in [19].

Theorem 5.1. (Proved in [19]) For any two n × n
matrices A and B and 0 < x ≤ 2, A ? B can be
computed with n3(1−x/2) machines and memory O(nx)
in 1 + d(1− x/2)/xe MapReduce rounds. Moreover, the
total running time of the algorithm is O((1/x)n3).

Given that we have a chain of matrices to be
multiplied instead of just two matrices, we can use
Theorem 5.1 to halve the number of matrices in two
rounds; therefore we have the following corollary.

Corollary 5.1. (of Theorem 5.1) The (min,+)
multiplication of na matrices of size nb × nb can be

9for n8/9 machines δ∗ = n−8/27.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1184

D
ow

nl
oa

de
d

02
/0

9/
19

 to
 3

7.
14

8.
29

.2
34

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

computed in 2da log2 ne rounds of MapReduce with ny

machines for any 0 ≤ y ≤ a + 3b/2, with a memory
of O(n2(a+3b−y)/3) for each machine. Moreover, the
running time of the algorithm (for one machine) is

Õ(na+3b−y).

Notice that for two n×n matrices in Corollary 5.1,
we have a = 0 and b = 1, hence the number of machines
is ny and the memory of each machine is O(n2−2y/3)
which is the same as Theorem 5.1 where x = 2− 2y/3.
Also note that for 0 ≤ y ≤ a + 3b/2, we use Theorem
5.1 with 1 ≤ x ≤ 2, hence all 1/x terms are ignored.

In Sections 5.2.1 and 5.2.2, we discuss our approach
for large δ’s and small δ’s, respectively. In Section 5.2.3,
we discuss the remaining details of the algorithm.

5.2.1 Our Approach for Large δ’s The overall
idea of our solution for large δ’s is to use our framework
as follows: we first construct some windows for each
string, then we find the edit distance between some pairs
of windows, and afterward we find a window-compatible
transformation, which is a good approximation to the
desired edit distance between two input strings.

The first step of our approach is to find the edit
distance between some pairs of windows. Previously, we
found an approximated edit distance between all pairs
of windows using metric estimation. On the contrary,
here we can do better than finding the edit distance
between all pairs based on the following observation.

Lemma 5.1. Given that edit(s1, s2) ≤ δn, there exists
a window-compatible transformation of s1 into s2 with
respect to W1 and W2, that for each window wi ∈ W1

that matches to a window w2 ∈ W2, their indices do
not differ by more than dδn/ge, and the number of
operations is at most (3δ + 1/γ)n+ 2l.

We find the edit distance between useful pairs
of windows in the first round. To do this, we give
some pairs of windows to a machine and use the näıve
DP-based algorithm to find the edit distance between
them. In the next round, we combine the results
of the first round to find the best window-compatible
transformation. The second round is similar to Lemma
4.1; the difference is that the memory and the running
time is slightly reduced by Lemma 5.1. The second
round uses only one machine.

We have the following lemma for large δ’s (or small
α’s). To simplify the notation, let δ = n−α.

Lemma 5.2. We can solve the δ-bounded edit distance
problem for

• 0 ≤ x ≤ 13/20 and α ≤ 3(x + 1)/16 with nx

machines, and O((1/ε2)n(11−5x)/8+ε
′
) memory for

each machine in time O((1/ε2)n(35−13x)/16) (for
one machine), and for

• 13/20 ≤ x ≤ 7/6 and α ≤ 2(4 − x)/21 with nx

machines, and O((1/ε2)n2(4−x)/7+ε
′
) memory for

each machine in time O((1/ε2)n(50−23x)/21) (for
one machine).

in two MapReduce rounds, where ε′ > 0 is an arbitrary
constant.

5.2.2 Our Approach for Small δ’s The other side
of the edit distance problem is the case when the
two given strings are similar. In this case, if we try
to use our framework, we would encounter too many
windows, and this exceeds the time and memory given
to the algorithm. Previously, in this case, we used the
algorithm of Landau et al. [26] with time O(n+d2). This
solution cannot (trivially) become parallel. Here, we
instead use a novel approach based on (min,+) matrix
multiplication. We again use the fact that a character
c1 from s1 can only be transformed (with no change
or a substitution) to a character c2 in s2 only if their
positions differ by at most edit(s1, s2) (Corollary 1 of
[35]).

Let d(i, j+1, i′, j′+1) be the edit distance between
two substrings of s1[i, . . . , j] and s2[i′, . . . , j′]. We have
the following lemma.

Lemma 5.3. For an arbitrary k, i < k ≤ j, we have:

d(i, j + 1, i′, j′ + 1) = min
i′−1≤k′≤j′

{
d(i, k + 1, i′, k′ + 1)

+d(k + 1, j + 1, k′ + 1, j + 1)
}
.

Moreover, computing d(i, j + 1, i′, j′ + 1) is useful
only when |i − i′| ≤ d and |j − j′| ≤ d (Corollary 1 of
[35]), therefore for a fixed i and j, all of these useful
values form a (2δn+1)×(2δn+1) matrix, namely Di,j .
Rewriting Lemma 5.3 in matrices, we have the following
corollary.

Corollary 5.2. (of Lemma 5.3) For an arbitrary k,
i ≤ k ≤ j, we have Di,j = Di,k ? Dk,j, where ? is the
(min,+) matrix multiplication operator.

Notice that edit(s1, s2) = d(1, |s1| + 1, 1, |s2| + 1),
which is an element of D1,|s1|. To compute this matrix,
we do as follows: for a parameter y, 0 ≤ y ≤ 1,
which we’ll fix later, we partition s1 into ny substrings
of length at most n1−y. Each of these substrings
has a matching substring in s2 with a length at most
n1−y + 2δn. Using the näıve DP-based algorithm, we
construct a (2δn + 1) × (2δn + 1) matrix for each of
these ny substrings in the first round. The matrices are
D1,t, Dt+1,2t, . . . , D(d|s1|/te−1)t+1,|s1| where t = n1−y.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1185

D
ow

nl
oa

de
d

02
/0

9/
19

 to
 3

7.
14

8.
29

.2
34

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

By Corollary 5.2 we have D1,|s1| = D1,t ? Dt+1,2t ?
· · · ? D(d|s1|/te−1)t+1,|s1|. Therefore, we obtain the
result in remaining rounds by the matrix multiplication
algorithm of Corollary 5.1.

Lemma 5.4. We can solve the δ-bounded edit distance
problem for

• 0 ≤ x ≤ 13/20 and α ≥ 3(x + 1)/16 with nx ma-
chines, and O(n(11−5x)/8) memory of each machine
in time O(n(51−29x)/16) (for one machine), and for

• 13/20 ≤ x ≤ 7/6 and α ≥ 2(4− x)/21 with nx ma-
chines, and O(n2(4−x)/7) memory of each machine
in time O(n(58−25x)/21) (for one machine).

in at most O(log n) MapReduce rounds.

5.2.3 Conclusion We compute edit distance by solv-
ing the δ-bounded edit distance problems for several δ’s
in parallel. For each δ = n−α we use the appropriate
MapReduce algorithm based on the value of x and α.
When all subproblems are finished, we also have a final
round for combining the results of these subproblems to
obtain the final (approximated) edit distance. There-
fore, the desired MapReduce (3 + ε)-approximation al-
gorithm for edit distance is as follows.

Theorem 5.2. We can solve the edit distance problems
in MapReduce model in at most O(log n) MapReduce

rounds with Õ((1/ε)nx) machines and for

• 0 ≤ x ≤ 13/20 with a memory of at most
O((1/ε2)n(11−5x)/8+ε

′
) for one machine in time

O(n(51−29x)/16) (for one machine), and for

• 13/20 ≤ x ≤ 7/6 with a memory of at most
O((1/ε2)n2(4−x)/7+ε

′
) in time O(n(58−25x)/21) (for

one machine).

By setting x = 8/9, we minimize the maximum
of the number of machines and the memory of each
machine. This is shown in Figure 5.

Corollary 5.3. We can solve the edit distance prob-
lems in MapReduce model with an approximation factor
of 3+ ε in O(log n) rounds with Õ((1/ε)n8/9) machines,
a memory of O((1/ε2)n8/9+ε

′
) for each machine, and in

time O(n2−8/27) (for one machine), where ε′ > 0 is an
arbitrary constant.

6 Other Similarity Measures

Edit distance is one of many similarity measures for
comparing two strings. Furthermore, it is one of many
problems with a simple two-dimensional DP solution.
Other measures and similar problems include longest

common subsequence (lcs), Fréchet distance (fre) and
dynamic time warping (dtw). While the O(n2) solution
for these problems are very analogous, unfortunately,
our approach does not directly apply to them. In the
following, we discuss some reasons behind this difficulty.
The update rule of these measures are defined as follows:

edit(i, j) = min
{
edit(i− 1, j) + 1, edit(i, j − 1) + 1,

edit(i− 1, j − 1) + (s1[i] 6= s2[j])
}

lcs(i, j) = max
{
lcs(i− 1, j), lcs(i, j − 1),

lcs(i− 1, j − 1) + (s1[i] 6= s2[j])
}

dtw(i, j) = min
{
dtw(i− 1, j), dtw(i, j − 1),

dtw(i− 1, j − 1)
}

+ dis(i, j)

fre(i, j) = max
{
min{fre(i− 1, j), fre(i, j − 1),

fre(i− 1, j − 1)}, dis(i, j)
}

Our framework for approximating edit distance
is based on two assumptions. First, the usability
of Lemma 4.2, which states that there is a window-
compatible solution which is a good approximation
to the optimal solution. Second, to use the metric
estimation, the desired measure should be a distance
function, namely a metric.

Two similarity measures dtw and lcs are not metric,
moreover they cannot be approximated by any metric.
For example, for dtw consider s1 = a2k+1, s2 = akbak

and s3 = ab2k−1a. We have dtw(s1, s2) = 1 and
dtw(s2, s3) = 0, but dtw(s1, s3) = 2k − 1. Therefore
the triangle inequality does not hold here.

The similarity measure lcs is in fact, the opposite
of a metric function, i.e., for two similar strings, their
lcs is large, and for two different strings, their lcs is
small. The first property of a distance function does not
hold here, for a non-empty string s, lcs(s, s) 6= 0. The
other part of our approach where lcs has a drawback
is the Lemma 4.2. For a window size l, one can
consider s1 = (abl−1al−1)t and s2 = (alcl−1)t. We
have lcs(s1, s2) = lt, but lcs of a windows-compatible
transformation is at most t.

Likewise, approximating lcs in classic computers is
also harder that edit. None of the results for approxi-
mating edit is shown for lcs, unless when lcs(s1, s2) =
Ω(n). Another way around this is to approximate co-
lcs instead of lcs, where co-lcs(s1, s2) = |s1| + |s2| −
lcs(s1, s2). This measure is very similar to edit dis-
tance but without the substitution operation. Using our
framework, we can approximate co-lcs with the same ap-
proximation factor of 7 + ε in quantum computers and
an approximation factor of 3 + ε in MapReduce.

Fréchet distance is rather a similarity measure for
curves instead of strings. For strings, the problem
becomes trivial, i.e., zero for same strings and one for

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1186

D
ow

nl
oa

de
d

02
/0

9/
19

 to
 3

7.
14

8.
29

.2
34

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

0 0.2 0.4 0.6 0.8 1 1.2
0.2

0.4

0.6

0.8

1

1.2

1.4

x (exponent of the number of machines)

ex
p

on
en

t
of

m
em

or
y

The trade-off between the number of machine and memory of each machine

Figure 5: The trade-off between the number of machines and memory of each machine is shown. In x = 8/9 the
maximum of the number of machines and the memory of each machine is minimized.

different strings. However, fre on curves has a similar
dynamic programming solution to edit. This similarity
in solution leads us to consider this problem, too. If we
study the problem regardless of its geometric properties,
i.e. all distances are given as a matrix, we can prove
that approximating fre is as hard as computing its exact
value.

Theorem 6.1. If there exists a quantum (or MapRe-
duce) approximation algorithm for Fréchet distance with
a constant approximation factor in time O(n2−ε), which
takes distances as a matrix in the input, there also exists
a quantum or MapReduce algorithm which computes the
exact Fréchet distance in time O(n2−ε).

Theorem 6.1 does not rule out the possibility of a
subquadratic quantum algorithm or MapReduce algo-
rithm for Fréchet distance, but it states that relaxing
the problem in this way does not make the problem
easier.

7 Open Problems

Indeed the most important open problem concerning
edit distance is whether a subquadtaric time algorithm
can approximate the edit distance of two strings within
a constant factor? In addition to this, our work gives
raise to a number of questions that we believe are
important to study in future work.

• Is there a quantum algorithm that approximates
edit distance within a factor better than 7 in truly

subquadratic time?

• Can a quantum algorithm approximate the edit
distance of two strings within a constant factor in
near-linear time?

• Is it possible to show a non-trivial lower bound on
the quantum computational complexity of comput-
ing edit distance?

8 Acknowledgment

We would like to thank Andrew Childs, Omid Etesami,
Salman Beigi, and Mohammad Ali Abam for their
comments on an earlier version of the paper.

References

[1] A. Ambainis. Quantum lower bounds by quantum
arguments. In STOC, pages 636–643. ACM, 2000.

[2] A. Andoni and R. Krauthgamer. The smoothed
complexity of edit distance. In ICALP, pages 357–
369. Springer, 2008.

[3] A. Andoni, R. Krauthgamer, and K. Onak. Poly-
logarithmic approximation for edit distance and
the asymmetric query complexity. In FOCS, pages
377–386. IEEE, 2010.

[4] A. Andoni, A. Nikolov, K. Onak, and G. Yaroslavt-
sev. Parallel algorithms for geometric graph prob-
lems. In STOC, pages 574–583. ACM, 2014.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1187

D
ow

nl
oa

de
d

02
/0

9/
19

 to
 3

7.
14

8.
29

.2
34

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

[5] A. Andoni and K. Onak. Approximating edit
distance in near-linear time. In STOC, pages 199–
204. ACM, 2009.

[6] A. Apostolico, M. J. Atallah, L. L. Larmore, and
S. McFaddin. Efficient parallel algorithms for string
editing and related problems. SIAM Journal on
Computing, 19(5):968–988, 1990.

[7] A. Backurs and P. Indyk. Edit distance cannot
be computed in strongly subquadratic time (unless
SETH is false). In STOC, pages 51–58. ACM, 2015.

[8] Z. Bar-Yossef, T. Jayram, R. Krauthgamer, and
R. Kumar. Approximating edit distance efficiently.
In FOCS, pages 550–559. IEEE, 2004.

[9] T. Batu, F. Ergun, and C. Sahinalp. Oblivious
string embeddings and edit distance approxima-
tions. In SODA, pages 792–801. SIAM, 2006.

[10] R. Beals. Quantum computation of fourier trans-
forms over symmetric groups. In STOC, pages 48–
53. ACM, 1997.

[11] A. Belovs. Learning-graph-based quantum algo-
rithm for k-distinctness. In FOCS, pages 207–216.
IEEE, 2012.

[12] M. Boyer, G. Brassard, P. Høyer, and A. Tapp.
Tight bounds on quantum searching. Fortschritte
der Physik, 46(4-5):493–505, 1998.

[13] G. Brassard, P. Høyer, M. Mosca, and A. Tapp.
Quantum amplitude amplification and estimation.
Contemporary Mathematics, 305:53–74, 2002.

[14] C. Dürr, M. Heiligman, P. Høyer, and M. Mhalla.
Quantum query complexity of some graph prob-
lems. SIAM Journal on Computing, 35(6):1310–
1328, 2006.

[15] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser.
A Limit on the speed of quantum computation
in determining parity. Physical Review Letters,
81:5442–5444, 1998.

[16] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser.
Invariant quantum algorithms for insertion into
an ordered list. arXiv preprint quant-ph/9901059,
1999.

[17] F. L. Gall. Improved quantum algorithm for
triangle finding via combinatorial arguments. In
FOCS, pages 216–225, 2014.

[18] L. K. Grover. A fast quantum mechanical algo-
rithm for database search. In STOC, pages 212–
219. ACM, 1996.

[19] M. HajiAghayi, S. Lattanzi, S. Seddighin, C. Stein,
and S. Vassilvitskii. MapReduce meets fine-
grained complexity: MapReduce algorithms for
APSP, matrix multiplication, 3-SUM, and beyond.
Manuscript submitted for publication.

[20] S. Im, B. Moseley, and X. Sun. Efficient massively
parallel methods for dynamic programming. In
STOC, pages 798–811. ACM, 2017.

[21] P. Indyk. Algorithmic applications of low-
distortion geometric embeddings. In FOCS, pages
10–33. IEEE, 2001.

[22] S. Jeffery, R. Kothari, and F. Magniez. Nested
quantum walks with quantum data structures. In
SODA, pages 1474–1485. SIAM, 2013.

[23] S. Jhaver, L. Khan, and B. Thuraisingham. Cal-
culating edit distance for large sets of string pairs
using MapReduce. Paper presented at ASE Inter-
national Conference on Big Data, Beijing, China,
August 2014.

[24] H. Karloff, S. Suri, and S. Vassilvitskii. A model
of computation for MapReduce. In SODA, pages
938–948. SIAM, 2010.

[25] H. Krovi and A. Russell. Quantum fourier trans-
forms and the complexity of link invariants for
quantum doubles of finite groups. Communications
in Mathematical Physics, 334(2):743–777, 2015.

[26] G. M. Landau, E. W. Myers, and J. P. Schmidt.
Incremental string comparison. SIAM Journal on
Computing, 27(2):557–582, 1998.

[27] S. Lattanzi, B. Moseley, S. Suri, and S. Vassilvit-
skii. Filtering: a method for solving graph prob-
lems in MapReduce. In SPAA, pages 85–94. ACM,
2011.

[28] F. Le Gall. Improved quantum algorithm for
triangle finding via combinatorial arguments. In
FOCS, pages 216–225. IEEE, 2014.

[29] W. J. Masek and M. S. Paterson. A faster algo-
rithm computing string edit distances. Journal of
Computer and System Sciences, 20(1):18–31, 1980.

[30] A. Montanaro, R. Jozsa, and G. Mitchison. On
exact quantum query complexity. Algorithmica,
71(4):775–796, 2015.

[31] A. Nayebi and V. V. Williams. Quantum algo-
rithms for shortest paths problems in structured
instances. arXiv preprint arXiv:1410.6220, 2014.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1188

D
ow

nl
oa

de
d

02
/0

9/
19

 to
 3

7.
14

8.
29

.2
34

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

[32] R. Ostrovsky and Y. Rabani. Low distortion
embeddings for edit distance. In STOC, pages 218–
224, New York, NY, USA, 2005. ACM.

[33] H. Ramesh and V. Vinay. String matching in

Õ(
√
n +
√
m) quantum time. Journal of Discrete

Algorithms, 1(1):103–110, 2003.

[34] P. W. Shor. Algorithms for quantum computation:
Discrete logarithms and factoring. In FOCS, pages
124–134. IEEE, 1994.

[35] E. Ukkonen. Algorithms for approximate string
matching. Information and Control, 64(1-3):100–
118, 1985.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1189

D
ow

nl
oa

de
d

02
/0

9/
19

 to
 3

7.
14

8.
29

.2
34

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

	Introduction
	Our Results and Techniques
	Metric Estimation
	Approximating Edit Distance within a Factor 7+
	Improving the Running Time via Bootstrapping

	Metric Estimation
	Hardness of Approximation for < 3
	A 3+ Approximation Algorithm with O"0365O(n5/3poly(1/)) Queries
	A Constant Approximation Algorithm with O"0365O(n3/2+poly(1/)) Queries
	An (n3/2) time lower bound

	Edit Distance
	Approximating Edit Distance in MapReduce
	MapReduce Basics
	Edit Distance in MapReduce
	Our Approach for Large 's
	Our Approach for Small 's
	Conclusion

	Other Similarity Measures
	Open Problems
	Acknowledgment

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 14.40 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 14.4000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 20
 19
 20

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 9.00 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 9.0000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 20
 0
 1

 1

 HistoryList_V1
 qi2base

