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Abstract

We consider a market in which two competing sellers offer twosimilar products on a social network. In this market, each agent
chooses iteratively between the products based on her neighbors reactions and prices. This introduces two games; one between
the agents and one between the sellers. We show the first game is a full potential game and provide an algorithm to compute its
convergence point. We also study various properties of the second game such as its equilibrium points and convergence.

Keywords: Social Network, Pricing, Population Game, Algorithm, Market

1. Introduction

How can a seller make profit out of a social network? One
reasonable policy for monetizing social networks is to spread
the product in a population through the network of individual
interactions. Because of the rapid growth and popularity ofon-
line social networks, the topic has attracted interest among re-
searchers seeking clever policies. For example, several papers
have studied agents’ behaviors in social markets [1, 2, 3, 8,10].

In this paper, we study a new model for the market; two
competing companies sell two comparable products with net-
works externalities. Like the classic approach, the socialnet-
work is modelled by a graph whose edges represent the inter-
action between people. The main difference, however, is that
the nodes of the graph represent communities in the society
rather than individuals. Each community consists of a contin-
uum of potential small agents which interact anonymously. So,
the market is modeled based on population games [12]. This
work studies various related questions such as the behaviorof
buyers, the strategies of two sellers, price changes, and soon.

In our model, the two companies (sellers) announce their
prices first and then, agents within communities choose which
company to buy from. An agent’s utility depends basically on
the fraction of neighbors that are buying the same product as
that agent and prices. In our model, agents behave coopera-
tively in a sense that they tend to buy the same product as most
of their friends do. Our aim is to study the behavior of both
agents (as consumers) and two competing companies in this
game.
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To make the setting more realistic, we consider a repeated
game in which agents repeatedly revise their decisions. For
this, we consider the noisy best-response, logit-response, dy-
namics for the evolution of the market. In this setting, agents re-
vise their strategies asynchronously. Each agent plays itsbest-
response strategy with some probability close to1; hence, al-
lowing a slight probability of making mistakes. This may hap-
pen in reality when agents’ information about the environment
are incomplete, when they may make mistakes in their compu-
tations, or when agents are not fully rational. The noisy best-
response dynamics have been suggested as a method for refin-
ing Nash equilibrium in games [6, 9, 4, 5, 10].

Our results. We consider two separate games in our
model. The first one is between agents (buyers) who choose
between the two products and the second one is between the
two companies that announce their prices and sell their prod-
ucts. For the first game, we show that with the logit-response
dynamics, the market always converges to an equilibrium point.
We show, in Section 3, that the game will be afull potential
gameand its equilibrium point is the global maximum of some
potential function. We also prove that agents within the same
community buy the same product in the equilibrium. Using this
observation, we propose a polynomial-time algorithm for com-
puting the unique equilibrium.

As for the game between the two companies, we study the
behavior of the two companies and obtain several results. We
show, in Section 4, that the game has either no pure Nash equi-
librium or has a unique one. Then, we consider the best-response
dynamics between companies and present a polynomial-time
algorithm for computing the best response strategy for the com-
panies. We prove if the equilibrium exists, the best-response
dynamics converges to it. We also prove the existence of such
equilibrium for some graph classes such as preferential attach-
ment graphs and regular graphs. All missing proofs are in Ap-
pendix B.

Related work. In traditional game theory, we make strong
assumptions about knowledge of individuals and consider them
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fully aware of others. Evolutionary dynamics, on the other
hand, are introduced for relaxing these assumptions. Several
works (e.g., [6, 9, 4, 5, 10]) have extensively studied thesedy-
namics and pointed out that introducing perturbations to deter-
ministic processes would create distinctive differences in be-
havior of dynamics. In a seminal work, Kandori et al. [9] in-
vestigate evolutionary noisy best-response dynamics and prove
that the dynamics converges to an equilibrium in which all agents
adopt the same strategy.

Ellison [5] studied the effect of the underlying graph struc-
ture on the game; he specifically discussed convergence time
for certain graph classes. Following this work, Montanari et
al. [10] studied the logit-response dynamics and made a gen-
eral and precise connection between the convergence time and
the structure of the graph. Our model is inspired by these works
with one major difference. Unlike the previous models in which
each vertex in these models represents a single agent, vertices
in our model correspond to communities. This means that we
are not dealing with individuals, rather considering the behavior
of a large groups each containing several individuals.

The problem of designing a pricing strategy for a company
on a social network is extensively studied in literature (See,
e.g., [8, 1, 2, 3]). All these works consider a monopolistic sit-
uation in which one single company sells its product and tries
to maximize its profit by employing a clever strategy. Hartline
et al. [8] and Akhlaghpour et al. [2] assume naive behavior for
consumers. In fact, they study the market with consumers who
act myopically and buy the product as soon as they can afford to
buy it. They don’t make any reasoning about future reaction of
their neighbors and their long-term utility. In order to consider
more intelligent agents, Ahamdipour et al. [1] and Bimpikiset
al. [3] model the market as a game. In these studies, agents
are assumed to be fully rational and do not make mistakes. It
seems that the correct model of agents’ behavior probably lies
somewhere between these two extremes of myopic agents and
fully rational agents.

2. Model

In our model, we study a society that consists of several
large mutually influencingcommunities. Let n be the number
of communities andmi be the mass of people in theith com-
munity. For a subsetT of communities, letmT =

∑

i∈T mi

be the mass of people inT . Let m =
∑

i mi be the total
mass of the society. We normalize the total mass and assume
m = 1 through the paper. This assumption does not hurt our
result. We model the interaction between different communi-
ties by an undirected graphG = (V, E) whose nodes corre-
spond to communities and an edge{i, j} represents an inter-
action between communitiesi and j. We call this graph the
market graph. We also allow loops, i.e. edge{i, i}, in G to em-
phasize that agents in a same community influence each others
as well. LetN(i) be the set of neighbors of communityi in-
cluding itself. For two subsetsX andY of communities we de-
fine δ(X, Y ) =

∑

i∈X

∑

j∈Y,(i,j)∈E mimj which represents
the amount of interaction between the communities inX and

A B
A a c
B d b

Table 1: The payoff matrixU

Y . Note thatX andY may have non-empty intersection. We
will also useδ(X) for δ(X, X) for simplicity.

Assume there are two productsA and B offered by two
competing companies with pricespA andpB, respectively. Each
agent chooses eitherA or B; so, its strategy space is the set
S = {A, B}. Let xi

s, wheres ∈ S, be the fraction of peo-
ple in the communityi that buy products. Thus,xi

A + xi
B =

mi andx = (xi
s) is a vector of2 × n elements representing

the strategy profile of the game. We definems(x) =
∑

i xi
s

to be the mass of population who use products ∈ S. Let
Di

s(x) =
∑

j∈N(i) xj
s be the mass of neighbors of community

i that use products, for s ∈ S. Also, for everys ∈ S, define
Ds(x) =

∑

i∈V xi
sD

i
s(x). The utility of every person is ob-

tained by aggregating its utility against every single agent that
he interacts with. LetU (illustrated in Table 1) be the payoff
matrix for two players. Then, the utility of a person in commu-
nity i that playss in a game with strategy profilex would be:

F i
s(x) = U(s, A)Di

A(x) + U(s, B)Di
B(x)− ps (1)

We assume in our model thatU is symmetric, i.e.c = d
and the game defined by matrixU is a coordination game, i.e.
the players obtain a higher payoff by adopting same strategy.
In other words, we havea > d andb > c. Without loss of
generality and throughout the paper, leta > b. Also, for the
rest of this paper, we assume thatc = d = 0; we will prove, in
Theorem 1, that this assumption does not hurt the generalityof
our results.

Our game is in category ofpopulation gameswhich pro-
vide a general framework for studying the strategic interactions
in which society consists of several populations. The behaviors
of agents in each population are the same. In these games, the
number of agents is large, impact of each individual agent is
small, and agents interact anonymously, i.e., each agent’spay-
off depends solely on the distribution of opponents’ choices.
Consider a classic finite game withN players with mass of1

N

for each agent, we model a game with continuum of potential
small agents by a finite game whenN → ∞. For more details
on population games see [12].

2.1. Market Dynamics
As mentioned before, two competing companies are offer-

ing productsA andB with pricespA andpB respectively. In
a normal situation, agents update their strategies by looking at
their neighbors and buy a product that maximizes their bene-
fit. In our model, we considernoisy best-response dynamicsin
which agents adopt their best response with probability close to
one. Therefore, there is a slight possibility of making mistakes
by agents. More specifically, we studylogit-response dynam-
ics. For specific treatment of these dynamics in the context of
evolutionary game theory, one can refer to [12].
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In our model, the logit-response dynamics is specified by a
parameterβ ∈ R+ representing how noisy the system is. In
fact,β = ∞ represents the noise-free or best-response dynam-
ics, andβ = 0 represents the full noisy dynamics in which
agents play with no preference. We assume that each agent in
a community revises its strategy by arrival of Poisson clockof
rate 1. We consider logit-response as revision protocol. So, the
probability that an agent in communityi takes actions is:

Pi,β(s|x) =
eβF i

s(x)

∑

s′∈S eβF i
s′

(x)
(2)

As we see later, this game is afull potential game, with some
potential functionf . We have shown that when agents use the
logit-response protocol, and whenβ → ∞ the market con-
verges to the global maximum off . In other words, the dynam-
ics spends most of its time on the global maximum off . We
name this point thestationary stateof the market.

We now prove that when agents use logit-response as revi-
sion protocol, then assumingc = d = 0 does not make any
difference in our results.

Theorem 1. Supposew ≤ min(a, b, c, d). Agents’ decisions
in game defined on matrixU is equivalent to agents’ decisions
in game with matrixU − w, in whichU − w is computed by
subtractingw from all the entries ofU.

GivenpA andpB, we represent the stationary state of the
market byx(pA, pB) meaning that the game will eventually
converge to the strategy profilex(pA, pB). We will later see
thatx(pA, pB) depends solely on the difference ofpA andpB;
i. e., if pA − pB = p′A − p′B thenx(pA, pB) = x(p′A, p′B).
We say that profile(pA, pB) falls in the regionRy

A = Rm−y
B ,

if mA(x(pA, pB)) = y andmB((pA, pB)) = m − y; i.e., the
massy of the society is using technologyA at the stationary
statex(pA, pB). It is easy to see that increasingpA decreasesy
(as depicted in Fig. 1) and sincea > b, x(0, 0) ∈ Rm

A .

2.2. Market Pricing Game

Our model introduces a game/competition between the two
companiesA andB. If x(pA, pB) ∈ Ry

A = Rm−y
B then the

utility (profit) of companiesA andB areUA(pA, pB) = ypA

andUB(pA, pB) = (m−y)pB, respectively. The best response
for the companyA is the pricep which maximizesUA(p, pB);

i. e., brA(pB) = argmaxpUA(p, pB). Similarly, brB(pA) =
argmaxpUB(pA, p). In the Market Pricing Game, we study
the game between the two companies and its properties such as
its best response behavior and existence of equilibria. We also
consider the convergence of the best response dynamics of the
game.

3. Market Behavior

In this section, we analyze the behavior of communities
when the two companies set prices topA andpB. This will
later help us study the market pricing game. First, we show that
our game is afull potential game, as defined in [11], and has
various nice properties. So, the maximizer of potential function
will characterize the market stationary state whenβ →∞. We
then use this property to find the market stationary state. We
show that the stationary state is very simple whenpA ≤ pB.
In this case, in the stationary state all agents playing strategy
A. But the problem is not trivial whenpA > pB. In this case,
we design a polynomial time algorithm that characterizes the
stationary state of the market.

3.1. Full Potential Games

Our main result of this section is that our game is a full
potential game. We use the following definition from [11]. For
more details and useful intuitions, refer to the main article.

Definition 1. LetF : R
n
+ → R

n represent a population game.
We callF a full potential game if there exist a continuously
differentiable functionf : R

n
+ → R satisfying

∇f(x) = F (x), ∀x ∈ R
n
+ (3)

In potential games we can capture all information about
agents incentives in a scalar valued function, calledpotential
function. Existence of such function provides us with many
nice properties and enables us to derive various results about
our model. In our model, the functionF takes a vectorx of 2n
values (xi

s’s) and output the utilities, i.e., the vector ofF i
s ’s. We

prove that our game is full potential by simply finding anf that
satisfies equation (3).

Theorem 2. The functionf defined below is the potential func-
tion for the gameF defined on graphG = (V, E) with payoff
matrixU:

f(x) =
1

2
(aDA(x) + bDB(x))− pAmA(x)− pBmB(x) (4)

3.2. Market Stationary State

In this section, we study the stationary state of the market.
First, we provide a lemma that relates the global maximum of
potential function to the stationary state of the market. Then we
characterize the global maximum of potential functionf for the
case thatpA ≤ pB. Finally, we will study the casepA > pB

which is more complicated.
As stated before, we consider logit-response dynamics. In

this case, our game has a nice property described in the follow-
ing lemma. In fact, for the case of a continuum of agents in each
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population this lemma needs an elaborate explanation whichis
done in Appendix A.

Lemma 3. In our model, whenβ →∞, the stationary state of
the market is the global maximum of potential function.

So, in order to estimate the outcome of the game we only need
to characterize the global maximum off . First, we show in
Proposition 4 that the stationary state is the state of all agents
playing strategyA, whenpA ≤ pB.

Proposition 4. The logit-response dynamics will converge to
the state of all agents playing strategyA, if pA ≤ pB andβ →
∞.

Computing the stationary state is more complicated when
pA > pB. In order to solve the problem in this case, we first
show in Lemma 5 that in the long run each community will
be homogeneous, i.e. all people within same community buy
same product. This fact helps us to predict the stationary state
of the market in polynomial time in Theorem 6. The idea is
to build a weighted graph whose minimum cut characterizes
the stationary state. The proof is omitted here and appears in
Section 5.1.

Lemma 5. In the logit-response dynamics each community will
be homogeneous in the long run, whenβ →∞.

Theorem 6. We can predict the stationary state of the market
in polynomial time in the logit-response dynamics, whenβ →
∞.

4. Market Pricing Game

In this section we consider the game between two compet-
ing companies. First, We show that the game has either no pure
Nash equilibrium or has a unique one in whichpB = 0 in Sec-
tion 4.1. Then, we consider the best-response dynamics in Sec-
tion 4.2. We show that each player’s best response could be
computed in reasonable amount of time. In fact, we introducea
polynomial time algorithm in number of communities in which
each company, knowing its opponent’s price, can compute the
most profitable response. We also prove that if the game has
a pure Nash equilibrium then the best-response dynamics will
converge to it. At last in Section 4.3, we try to show that in the
real world, the market pricing game have a unique Nash equi-
librium and the best-response dynamics will converge to it.

It is worth mentioning that, in this setting, we can model
monopolistic markets by just settingb and the price of product
B to zero. So it is just one company in the market who should
decide the best price for its product.

4.1. Pure Nash Equilibrium

In this section, we study equilibrium aspects of our pricing
game. Given the results of previous sections, the game between
the companies could be simplified as follows. Two companies
announce two pricespA andpB. The maximum off is com-
puted. As stated in Lemma 5, every community would be ho-
mogeneous in the long run. LetSA be the set of communities

pA

pB

αn1
αnj

αnj+1
αnk

Figure 2: The action of companyA (B) has been shown by green(red) line.

who buyA andSB = V −SA be those who buyB. The utilities
of the two communities arepAmSA andpBmSB , respectively.

In homogeneous state of the market, we can writef as fol-
lows.

f(x) =
1

2
(aδ(SA) + bδ(SB))− pAmSA − pBmSB

= fδ − fv − C

wherefδ = 1
2 (aδ(SA) + bδ(SB)), fv = (pA − pB)mSA and

C = pBm. SinceC is a constant independent ofSA, maxi-
mizing f is equivalent to maximizingfδ − fv. Note thatfδ is
independent ofpA andpB, and solely depends on the structure
of the graph. Letfy

δ = maxmSA=y fδ. Assumefy
δ = 0, if

there is no setSA with mSA = y. Therefore, whenpA andpB

is fixed, maximizingf is equivalent to findingy that maximizes
fy

δ − yα, in whichα = pA − pB.
Let (pA, pB) be a strategy profile of the pricing game. When

α = 0 then by Proposition 4 all communities adoptA and,
hence,SA = m. As α increases, less communities buyA. Let
αni

be the first point that whenα = αni
then the mass of com-

munities buyA changes to some new valueni. Let the set of
threshold pointsbeαn1

< αn2
< · · · < αnk

. For convenience
we addαn0

= 0. It is clear thatm = n0 > n1 > · · · > nk = 0.
So, whenpA−pB ∈ [αnj

, αnj+1
) thenmSA = nj and the util-

ity of companyA is njpA. See Fig. 2 for illustration. Now, we
are ready to prove Theorem 7.

Theorem 7. The market pricing game has a unique Nash equi-
librium if brA(0) < αn1

. Otherwise, it has no Nash equilib-
rium.

Proof. Let (pA, pB) be a Nash equilibrium andα = pA − pB.
First, we prove if(pA, pB) be a Nash equilibrium then,α is less
thanαn1

.
If αnj

< α < αnj+1
for somej ≥ 1 thenB increases his

price untilα = αnj
(See Fig. 2). This increasesB’s payoff as

it will not affect the communities that buyB. If α = αnj
for

some1 ≤ j < nk thenA increases his price until it is slightly
less thanαnj+1

. This increasesA’s payoff as it will not affect
the communities that buyA. If α = αnk

, i.e. no one buysA,
thenA can decrease his price until at least one community buys
A and brings more utility toA. So, we must haveα < αn1

.
Considerα < αn1

. In this situation, companyA is in-
terested to increase his price until it is slightly less thanαn1

.
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Let this value beα−
n1

. This increasesA’s payoff as it will not
change the amount of population that buyA. We argue that
pB = 0 as if notB can decrease its price to0 and the newα
would be at leastαn1

which means some communities buyB
andB gets more utility. So, the only possible Nash equilibrium
is (α−

n1
, 0). At this point,B is obviously playing best response

as he does not get any utility no matter how he plays. However,
A necessarily is not playing best response as he may gain more
profit by increasing his price. So, we conclude the theorem.

Note that if the strategy domain of companies is continuous
then there is not any Nash equilibrium as companyA wants
to makeα as close toαn1

as possible which gives no Nash
equilibrium. But, if we discrete the strategy domain then the
only possibleα is the largest value (in the discrete domain) less
thanαn1

.

4.2. Best-response Dynamics

In this section, we explore the best-response dynamics of
market pricing game. An interesting and important question
that we can resolve is computing the best response strategy of
companies in the market pricing game. Given the price of com-
panyB, pB, what pricepA should the companyA set so as to
benefit most? We propose an polynomial time algorithm to an-
swer this question in Theorem 8. The proof of Theorem 8 will
appear in Section 5.2.

Then, we study the convergence of best-response dynamics.
We show in Theorem 9 that under some conditions the best-
response dynamics converges to an equilibrium. Note that the
condition of Theorem 7 and 9 are the same which results an
interesting property of the game. In fact, we show that if the
game has an equilibrium, then it is unique and the best response
dynamics will converge to it.

Theorem 8. In the market pricing game each company, know-
ing its opponent product price, can determine the best pricein
polynomial time in number of communities.

Theorem 9. The best-response dynamics converge to the unique
Nash equilibrium if and only ifbrA(0) < αn1

.

Proof. First, we have shown in Theorem 7 that ifbrA(0) ≥
αn1

the game has no Nash equilibrium. So, we consider the
casebrA(0) < αn1

.
Let brA(0) = α−

n1
< αn1

. First, we provebrA(pB) =
α−

n1
+ pB. AssumebrA(pB) = p 6= α−

n1
+ pB. Let the

profile (p, pB) ∈ Ry
A. i.e. the population of agents who buy

from companyA is exactlyy at the profile(p, pB). Note that
points (α−

n1
, 0) and (α−

n1
+ pB, pB) are in the same region.

And (α−
n1

, 0) ∈ Rm
A . So the(α−

n1
+ pB, pB) ∈ Rm

A . Note
brA(pA) = p. Thereforem(α−

n1
+ pB) < yp. On the other

hand, points(p, pB) and(p− pB, 0) are in the same region. So
(p − pB, 0) ∈ Ry

A. We knowbrA(0) = α−
n1

. It means that the
priceα−

n1
is better that the pricep−pB in this case. Somα−

n1
>

y(p− pB), which contracts the factm(T −
m + pB) < yp.

We have shown thatbrA(pB) = α−
n1

+ pB. In other words,
the best response of companyA is to get all the market. So

at each state he moves to the right most boundary of the re-
gionRm

A which the profit of companyB is 0. So companyB
decreases his price and moves out of regionRm

A . They will de-
crease prices iteratively, until the price of companyB becomes
0. Note thatbrA(0) = α−

n1
, and companyA changes the pro-

file to (α−
n1

, 0). We have proved in Theorem 7 that this point
is a pure Nash equilibrium point and no one like to change his
strategy at the equilibrium point.

4.3. Market equilibrium on special graphs

In this section we show that pure Nash equilibrium exists
for some special graphs such as regular and preferential attach-
ment graphs. We first obtain the following sufficient condition
for having a Nash equilibrium and then prove it for the above
class of graphs. Recall thatfy

δ = maxmSA=y fδ.

Lemma 10. If mfy
δ < yfm

δ + (m − y)f0
δ for everyy < m,

thenbrA(0) = α−
1 and the market has a unique equilibrium

We conclude this section by showing that several real world
market graphs satisfy the condition of Lemma 10 and have pure
Nash equilibrium. For the theorem below we consideruniform
markets, in which we assume the that all populations masses
are similar i.e. we have a uniform distribution of agents among
populations. In fact, we assume there aren communities in the
market withmi = 1. So the total mass of society ism = n.
This game is important when we want to focus on the structure
of the market graph.

Theorem 11. For the uniform markets, if market graph is a
regular or preferential attachment then it has a Nash equilib-
rium.

5. Algorithmic Aspects

In this section we propose polynomial time algorithms for
two problems. First, we consider the problem of computing
the stationary state. The main result is the proof of Theorem6.
Second, we propose a polynomial time algorithm for computing
best response for companies in the market pricing game. The
main result is the proof of Theorem 8.

5.1. Computing the Stationary State

Let pA andpB be fixed. As we know from Lemma 3, the
market converges to the maximum of the potential functionf .
Note that, we have shown in Proposition 4 that in the stationary
state, all agents will play strategyA, whenpA ≤ pB. So, we
focus on the casepA > pB and propose a polynomial-time
algorithm to compute such a maximum. Our solution is based
on an algorithm for theMaximum Weighted Set Problem. This
problem has been defined below.

Definition 2. Maximum Weighted Set Problem (MWSP):we
are given a directed graphG = (V, E) with (possibly nega-
tive) weightsIi on vertices, and non-negative weightswij on
edges. The aim is to find a subsetS ⊆ V to maximizeWS =
∑

i∈S Ii +
∑

(i,j)∈E
i,j∈S

wij .
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Lemma 12. The MWSP can be solved in polynomial time.

Proof. The idea is to build a weighted graph whose minimum
cut is the solution to the MWSP. For every nodei, let hi =
Ii+

∑

j∈N(i) wij . We build a graphG′ out ofG as follows. Add
two new nodess andt. For everyi with hi < 0 add an edge
with weight−hi from i to t. For every vertexi with hi ≥ 0
add an edge froms to i of weight hi. The value of the out-
cut from any setS which containss is: ∂+(S) =

∑

hi>0
i∈T

hi +
∑

hi<0
i∈S

−hi+
∑

(i,j)∈E
i∈S,j∈T

wij , whereT = V (G′)−S. LetW =
∑

hi>0 hi =
∑

hi>0
i∈S

hi +
∑

hi>0
i∈T

hi. We rewriteW − ∂+(S)

as:

W − ∂+(S) =
∑

hi>0
i∈S

hi +
∑

hi<0
i∈S

hi −
∑

(i,j)∈E
i∈S,j∈T

wij

=
∑

i∈S

hi −
∑

(i,j)∈E
i∈S,j∈T

wij

=
∑

i∈S

(Ii +
∑

j∈N(i)

wij)−
∑

(i,j)∈E
i∈S,j∈T

wij

=
∑

i∈S

Ii +
∑

(i,j)∈E
i,j∈S

wij

SinceW is a constant independent ofS, we conclude that max-
imizing

∑

i∈S Ii +
∑

(i,j)∈E
i∈S,j∈T

wij is equivalent to minimizing

∂+(S) which could be done in polynomial time.

Lemma 5 helps us to find a connection between MWSP and
computing the stationary state. Using this lemma and the al-
gorithm for MWSP we can compute the stationary state of the
market and prove Theorem 6.

Proof of Theorem 6: We know from Lemma 5 that each
population is homogeneous, so it is suffices to find each popu-
lation’s strategy. We reduce this problem to the MWSP as fol-
lows. As proven before, the dynamics of the game converges to
the global maximum of the potential functionf . LetSA andSB

be the set of communities inG that playA andB, respectively.
We can write potential function (4) for this state of the gameas
below:

f =
1

2
(aδ(SA) + bδ(SB))− pAmSA − pBmSB (5)

By replacingmSB bym−mSA andδ(SB) byδ(V )−δ(SB, SA)−
δ(SA, SB)− δ(SA) we have:

f =
1

2
(aδ(SA) + bδ(V )− bδ(SB, SA)

−bδ(SA, SB)− bδ(SA))

−pAmSA + mSB − pBm

By omitting constant terms that do not affect the maximization,
the problem reduces to the problem of finding setSA to maxi-

mize the following statement:

1

2
((a− b)δ(SA)− bδ(SA, V − SA)

−bδ(V − SA, SA)) + (pB − pA)mSA (6)

We show that the above value is the solution to the MWSP
on some graphsGW that is constructed fromG as follows. The
vertex set ofGW is that ofG. The weightIi of every vertexi is
(pB − pA)mi− bmi

∑

j∈N(i) mj andwij , for every edge(i, j)

is 1
2 (a + b)mimj . For every setS ⊆ V we have:

WS =
∑

i∈S



(pB − pA)mi − bmi
∑

j∈N(i)

mj





+
∑

(i,j)∈E
i,j∈S

(

1

2
(a + b)mimj

)

= (pB − pA)mS − bδ(S, V ) +
1

2
(a + b)δ(S)

=
1

2
((a− b)δ(S)− bδ(S, V − S)

− bδ(V − S, S)) + (pB − pA)mS

It is clear that finding a maximum weighted set inGW is
equivalent to finding a setSA that maximizes (6) and, hence,
maximizes the potential functionf .

5.2. Best-response Pricing

In this section, we propose an algorithm for finding the best-
response pricing of companies in the market pricing game. Let
us fix pB. We first obtain lower and upper bounds for the best
response ofA and then compute it by using binary search. We
know from Proposition 4 that ifpA ≤ pB then all populations
will play A. So the minimum ofpA is obviouslypB. Also
the maximum ofpA is the point where no one playA. The
following lemma characterizes this point.

Lemma 13. Global maximum of potential functionf is the state
of all agents playing strategyB, if for all i ∈ V we have
pA > pB + 1

2 (a − b)
∑

j∈N(i) mj . So the maximum ofpA

is at mostpmax
A = pB + maxi(

1
2 (a− b)

∑

j∈N(i) mj).

In order to find the best price forA, all we should do, is
to search between maximum and minimum values mentioned
above. Algorithm 1 finds the best response of companyA.
Note that we should search in a continous search space for find-
ing best price. Therefore, we discrete the search space by pa-
rameterǫ and acceptǫ devition. We describe this algorithm in
the proof of Theorem 8.

Proof of Theorem 8: we know from Lemma 5 that each
community is homogeneous. So there are certain points at which
if we decreasepA a little more, at least one population will
change its strategy. We call these points asthreshold points.
For more precise definition of threshold points look at Section
4.1. So, one can fixy, as the total mass of populations who buy
A and compute the maximum possible value ofpA for which
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Algorithm 1 Algorithm for finding best response of company
A to pricepB of companyB.

1: i← 1, n0 ← m.
2: while ni 6= 0 do
3: Letpi

A be the maximum possible price of companyA for
which at least massni of people buyA. Find this value
by binary search and using Theorem 6.

4: Let αni
← pi

A − pB + ǫ.
5: i← i + 1.
6: Letni be the mass of people at profile(pi

A+ǫ, pB). Find
this value by using Theorem 6.

7: end while
8: return Pricepj

A which maximizepj
A × nj , for 0 ≤ j < i.

at least mass ofy people buyA. The latter could be done by a
simple binary search algorithm. This gives a profit of at least
ypA. Finally, we find this maximum over all values ofy and
take the maximum.

Note that for each pricing profile Theorem 6 finds each pop-
ulation’s strategy in polynomial time. So, if we acceptǫ devi-
ation, we can find each threshold point inO(n3 log

(pmax
A −pB)

ǫ
)

time. In whichO(n3) is for finding minimum-cut, in order to
find strategy of each population, as described in proof of Theo-
rem 6. So, line 3 of algorithm takes at mostO(n3 log

(pmax
A −pB)

ǫ
)

time in each iteration. Note that in line 6 of algorithm, we find
the mass of people who buyA at the next threshold point.

But, the number of threshold points (the number of while
iterations) could be exponential. In fact each community could
buy productA or B and the mass of communities are not the
same. So, it is possible to have2n threshold points. We over-
come this problem by using Lemma 14. This lemma states that
by increasingpA no population will change its strategy fromB
to A. So, by increasingpA one or more communities changes
their strategy fromA to B and remain onB till end. There-
fore, the number of threshold points at most would be equal to
number of communities.

Lemma 14. LetSA andS′
A be the set of communities that play

A in the stationary state of the market when the price of com-
panyB is pB and the price of companyA is pA andp′A > pA,
respectively. ThenS′

A ⊆ SA.

6. Conclusion

We considered a network of communities through which
two sellers compete on selling a similar product. We analyzed
both games (between communities and between sellers) and ob-
tained several results regarding the equilibria of the game, the
convergence problem in the dynamic market and their efficient
computation.

One important research direction is to study convergence
rates in the above settings: how long does it take to get to or
close to the convergence point? Are there some general graph
classes for which there exists rapid convergence?

Another interesting problem is to consider more than two
sellers in which prediction of the stationary state of market

would become much harder. This seems like a challenging
but very interesting question. Also in this work we assumed
all the communities to be similar in all aspects, except their
masses, but other cases like allowing different behavior ofdif-
ferent communities could be considered. Also, a similar prob-
lem is to different treatments of sellers. For example, a seller
be able to offer different prices to different communities.

We have proved a necessary and sufficient condition of hav-
ing unique Nash equilibrium in market pricing game and try to
show that some markets has this condition. It seems interesting
to study real world markets and see whenever they have this
condition.
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Appendix A. Stationary State of Infinite Population Game

In this section, we justify the difference between definition of finite and infinite population games. Also, we fill the gap between
these two definition by stating an important theorem from [12]. Using this theorem, we prove Lemma 3.

We call finite population gameFN , with total population sizeN , a finite full potentialgame if there exist a full potential
functionfN such that

FN (x) = fN(x) − fN(x−
1

N
ei) (A.1)

The vectorei is theith standard vector, and the differencex − 1
N

ei means one agent decides not to play strategyi. We have the
following important theorem, which relates asymptotic behavior of potential games with agent using exponential update rule, when
both total population size and noise level go to infinity.

Theorem 15. Let {FN}∞N=N0
be a sequence of finite population potential games with scaled potential functions{ 1

N
fN}∞N=N0

which converge to the the functionf . If agents use the exponential update rule, then the sequence of stationary distributionsµN,β

satisfy

lim
N→∞

lim
β→∞

max
x
|

1

Nβ
log µN,β(x)−∆f(x)| = 0

lim
β→∞

lim
N→∞

max
x
|

1

Nβ
log µN,β(x)−∆f(x)| = 0

In which∆f(x) = f(x)−maxy f(y) ≤ 0 [12].

Theorem above means that asβ andN go to infinity, regardless of their order, the stationary distributionµN,β(x) decreases to
zero with the exponential rate of∆f(x), which is the difference of every pointx with the global maximum off . As a result we can
deduce that the dynamics spends most of its time around the global maximum off .

Now, we are ready to prove Lemma 3. For this we need to re-establish definition of our model for finite population case. Assume
we haveN individual of size 1

N
in our game. There is no difference in definition of payoff function for finite and infinite case, so

we haveFN (x) = F (x) as defined in (1). Also, one can verify that the potential function defined below satisfies the definition in
(A.1):

fN (x) = N

(

1

2
(aDA(x) + bDB(x)) − pAmA(x) − pBmB(x)

)

+
1

2
(amA(x) + bmB(x))

= Nf(x) +
1

2
(amA(x) + bmB(x))

Now, one can easily see that the sequence{ 1
N

fN} converges tof(x). Putting this together with Theorem 15, we can conclude
Lemma 3.

Appendix B. Missing Proofs

Proof of Theorem 1: By equation (1), an agent’s payoff in communityi for strategys using the payoff matrixU− w is

F̂ i
s(x) = (U(s, A) − w)Di

A(x) + (U(s, B)− w)Di
B(x)− ps

= F i
s(x)− w(Di

A(x) +Di
B(x))

It is obvious that bothF andF̂ result in identical behavior i.e. give the same probabilityPi,β(s|x) in (2).

Proof of Theorem 2: We have

f(x) =
1

2





∑

i∈V

∑

j∈N(i)

axi
Axj

A +
∑

i∈V

∑

j∈N(i)

bxi
Bxj

B





− pA

∑

i∈V

xi
A − pB

∑

i∈V

xi
B

Note that, as mentioned before,N(i) includesi itself. The partial derivative off with respect to arbitraryxi
A is

∂f(x)

∂xi
A

=
1

2



2
∑

j∈N(i)

axj
A



− pA = aDi
A(x)− pA = F i

A(x)
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Comparing with (1) the proof is complete.

Proof of Proposition 4: Let y be the state of all agents playing strategyA andx be any other state. By equation (4), we can

rewritef(y) as:

f(y) =
1

2
aDA(y)− pAmA(y) =

1

2
a

∑

i∈V

∑

j∈N(i)

mimj − pAm

We boundf(x) as follows:

f(x) =
1

2
(aDA(x) + bDB(x)) − pAmA(x)− pBmB(x)

≤
1

2
(aDA(x) + aDB(x)) − pAmA(x)− pAmB(x)

=
1

2
a

∑

i∈V

∑

j∈N(i)

(xi
Axj

A + xi
Bxj

B)− pAm

Now by knowing thatxi
Axj

A + xi
Bxj

B ≤ (xi
A + xi

B)(xj
A + xj

B) = mimj , we can concludef(x) ≤ f(y). So, the maximum off
happens aty and, therefore, the dynamics converges to the state of all agents playingA by Lemma 3.

Proof of Lemma 5: Fix communityi. As we saw in the proof of Lemma 3, whenβ →∞, the dynamics converges to the global

maximum off . The part off that depends on populationi (i.e. involvesxi
A andxi

B) is:

g(xi
A) =

1

2

(

axi
Axi

A + bxi
Bxi

B

)

+ xi
A

∑

j∈N(i)
i6=j

axj
A + xi

B

∑

j∈N(i)
i6=j

bxj
B

−pAxi
A − pBxi

B

Sincexi
B = mi − xi

A, g(xi
A) will be quadratic inxi

A and the coefficient ofxi
A

2
is C = 1

2 (a + b) > 0. Therefore,g(xi
A) takes its

maximum on extreme points, i.e.xi
A = 0 or xi

A = mi. Sincexi’s are independent, the maximum off happens when for everyi,
xi

A = 0 or xi
A = mi.

Proof of Lemma 10: We prove that under the above conditions there is only one single threshold point, i.e., asα increases the

situation changes fromall playing Ato all playing B. Letα be a point at which|SA| = y in the maximum off . At this point we have

fy
δ −yα ≥ f0

δ −0×α = f0
δ andfy

δ −yα ≥ fm
δ −mα. So, we havef

m
δ −f

y

δ

m−y
≤ α ≤

f
y

δ
−f0

δ

y
which meansmfy

δ ≥ yfm
δ +(m−y)f0

δ ;
this contradicts the lemma condition. Therefore, either all or no communities buyA. Obviously,A’s best response at this situation
is to playα−

1 . So we have a unique Nash equilibrium by Theorem 7.

Proof of Theorem 11: It suffices to prove the condition of Lemma 10.

Regular graphs: Assume we have a regular graph of degreed with e = nd/2 = md/2 edges. Note thatfm
δ = ae, f0

δ = be and
fy

δ < (ady + bd(m− y)/2. Somfy
δ < md/2(ay + b(m− y)) = e(ay + b(m− y)) = yfm

δ + (m− y)f0
δ

Preferential Attachment Graphs: Assume we have a preferential attachment graph with parameterd with e = nd = md edges.
In this model each new node creates exactlyd edges to the previous nodes. Note thatfm

δ = amd andf0
δ = bmd. On the other

hands, consider an induced sub-graphG′ with y vertices. NoteG′ is connected to theG − G′ with at least one edge. So,G′ has
less thanyd edges. Thereforefy

δ < ayd + b(m− y)d, which impliesmfy
δ < yfm

δ + (m− y)f0
δ .

Proof of Lemma 13: Let y be the state of all agents playing strategyB, andx be an arbitrary state. We have:

f(x) =
1

2
(aDA(x) + bDB(x)) − pAmA(x)− pBmB(x)

≤
1

2
(aDA(x) + bDB(x)) − pBm−

1

2
a

∑

i∈V

∑

i∈N(i)

xi
Amj +

1

2
b
∑

i∈V

∑

i∈N(i)

xi
Amj

=
1

2
a

∑

i∈V

∑

j∈N(i)

(xi
Axj

A − xi
Amj) +

1

2
b
∑

i∈V

∑

j∈N(i)

(xi
Bxj

B + xi
Amj)− pBm

≤
1

2
b
∑

i∈V

∑

j∈N(i)

mimj − pBm = f(y)
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Proof of Lemma 14: AssumeS′
A 6⊆ SA. Note that the set of communitiesSA play A in the the stationary state of the market

with pricespA andpB. Using proof arguments of Theorem 6, we can conclude thatSA is the maximum weighted set of graphGW

with Ii = (pB − pA)mi − bmi
∑

j∈N(i) mj andwij = 1
2 (a + b)mimj . So the weight of setSA is greater than or equal to the

weight of setSA ∪ S′
A, which means:

∑

i∈SA

Ii +
∑

(i,j)∈E
i,j∈SA

wij ≥
∑

i∈SA∪S′

A

Ii +
∑

(i,j)∈E

i,j∈SA∪S′

A

wij

⇒ 0 ≥
∑

i∈S′

A
−SA

Ii +
∑

(i,j)∈E

i∈S′

A−SA,j∈SA∪S′

A

wij (B.1)

Similarly, we can show thatS′
A is the maximum weighted set of graphGW ′ with I ′i = Ii − (p′A − pA)mi andw′

ij = wij . So
the weight of setS′

A is greater than or equal to the weight of setSA ∩ S′
A, which means:

∑

i∈SA∩S′

A

I ′i +
∑

(i,j)∈E

i,j∈SA∩S′

A

w′
ij ≤

∑

i∈S′

A

I ′i +
∑

(i,j)∈E

i,j∈S′

A

w′
ij

⇒ 0 ≤
∑

i∈S′

A−SA

I ′i +
∑

(i,j)∈E

i∈S′

A−SA,j∈S′

A

w′
ij (B.2)

Becausep′A > pA, we haveI ′i < Ii, for everyq ≤ i ≤ n. On the other hands, we assumedS′
A 6⊆ SA, which means

|S′
A − SA| > 0. So

∑

i∈S′

A−SA
I ′i <

∑

i∈S′

A−SA
Ii. Now using inequalities (B.1, B.2) and the factw′

ij = wij , we conclude
∑

(i,j)∈E

i∈S′

A−SA,j∈SA−S′

A

wij is less than zero. This is a contradiction because we knowwij ≥ 0, for every0 ≤ i, j ≤ n.
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