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Abstract

We introduce a new algorithm for compressing the link structure
of the web graph by means of re-indexing the nodes in some web
communities in order to decrease the differences between the nu-
merical values of indices of these nodes. This is especially done
for the nodes that participate in the adjacency lists of many nodes.
Our algorithm will then partition these nodes into groups, each
represented by a group-indicator node. We then remove the edges
directed to nodes in one group and replace them with an edge to
the group indicator. This algorithm preserves the overall charac-
teristics of the graph and also increases similarity between link
adjacency lists of nodes. So it can be used as a preprocessing al-
gorithm to compress the web graph prior to compression by Huff-
man or other algorithms, as a result the final compression ratio is
considerably improved. We will show in the paper that the time
complexity of our compression algorithm is O(n2 log n) for each
community.
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1 INTRODUCTION

The World Wide Web can be thought of as a web graph with pages
being the nodes and hyperlinks being the edges. This representa-
tion of the web graph has been very useful in developing recent
internet related algorithms. But, with ever increasing rate in the
growth of WWW, it is no longer possible to have the whole web
graph in the main memory of a computer. With billions of pages
and billions of links, it is essential to ask if we can make a better
(meaning faster) use of the web graph. This is where compression
algorithms come to light. Compressing the web graph with the
aim of moving as much of the web graph into the main memory of
the computer will decrease the running time of internet algorithms.
This is done by removing the unnecessary and time consuming I/O
interactions which are needed to have the required part of the web
graph in the main memory.

In this paper we focus on problem of compressing the web graph.

• We will introduce a new algorithm for compressing the struc-
ture of the web graph by removing edges in a reversible man-
ner.

• We demonstrate the effectiveness of our approach on a test
bed of random graphs derived from the random graph model
with embedded communities introduced in [8].

• We will also show that the compression ratio of Huffman
algorithm on the web graph processed by our algorithm is
significantly increased.

The structure of this paper is as follows: Section 2 provides a
history of works on web graph compression. In Section 3 we will
introduce our algorithm, followed by experimental results. We
will conclude our work with some suggestions for future works.

2 PREVIOUS RESULTS

The pervious efforts on web graph compression can be divided
into two general categories: Huffman based methods referred to
as traditional methods, and new methods based on the nature of
web graph. Huffman based methods will compress the web graph
by giving smaller codes to nodes with higher in-degrees. The new
methods, however, benefit from the features of web graph and re-
sult in a better compression ratio.

Web graph has two important characteristics. First, it is a sparse
graph with dense sub-graphs in some parts. The dense sub-graphs,
or communities, have been the subject of research in recent years.
Although much effort has been focused on detecting the web com-
munities, the running time of these algorithms is still quite high.
The other characteristic of the web graph is the similarity of the
link adjacency list of many nodes which is the result of mirror
pages on the internet.

In [1] an algorithm is introduced for compressing the web graph
which has three basic steps: finding nodes with partial similarities
in their adjacency lists, selecting on of them as a reference node
and replacing the other nodes by their differences from the refer-
ence node. This approach results in a greater compression ratio
compared to Huffman based schemes. Our algorithm will bene-
fit from this idea in a somewhat different aspect. Unlike [1] our
algorithm will compress the web graph by removing some of the
edges from the adjacency list of the nodes.

A more recent contribution to this subject makes use of clustering
algorithms for re-indexing the nodes with the aim of represent-
ing the link adjacency list of each node by differences between
the consecutive indices of out-degree nodes [2]. Our work has the
same goal but with a different approach. Unlike [2] we will work
on parts of the web graph which are dense. In particular, our al-
gorithm will make use of communities as dense sub-graphs of the
web and tries to re-index the participating nodes in the commu-
nity with the intention of decreasing the differences between the
indices of those nodes which participate in the adjacency list of so
many nodes.



3 OUR ALGORITHM

In this section we introduce our new algorithm that compresses the
web graph by re-indexing the web pages within each community
and then eliminating some of the edges in the link adjacency list of
the nodes. Working on communities has two distinct advantages:

1. It makes possible to run the algorithm for each community
on an independent processor. This means that the total run-
ning time of our algorithm can be highly reduced by running
the re-indexing part, which has a high running time complex-
ity, on parallel processors hence dividing this work among
processors.

2. Since a very small fraction of the total nodes participate in a
community we can bring the whole link structure of a com-
munity to the main memory and so the running time will be
much faster due to the elimination of many I/O tasks.

Our algorithm has three basic steps:

1. Finding the communities with desirable density: in this step,
we use [4] which is a recent algorithm for detecting the web
communities and runs in O(mmc) where m is the number
of edges in the web graph and mc is the number of edges in a
community c. Since community detection can be thought of
as a multi-level task, we will continue the process of break-
ing each detected community into sub-communities until a
decent level of density1 is reached. The threshold for the
value of density is based on experimental results and is a
value around 1 percent.

2. Re-indexing each node in every community: This step is the
main step of our algorithm. In this step we try to re-index
every node of the community so that at the end of this step
every node in the community points to (has out edges to)
nodes with much less difference in their indices than it ini-
tially pointed to. We call this procedure The Re-indexing
Algorithm and will further explain this procedure in the fol-
lowing section.

3. Eliminating some of the edges: in this step we will assign
nodes based on their numerical index value into dynamic
length groups (with 8, 16, 24, 32 members) and with the
occurrence of several edges that point to nodes from the
same group in the link adjacency list of a particular node,
we will replace all of those edges with one edge that points
to a particular node of that group (group indicator). In order
to keep track of those eliminated edges we use an auxiliary
data structure so that we can de-compress the web graph at
later time. We will explain this, in more detail in section 3.2.

3.1 Re-indexing Algorithm

The re-indexing algorithm is our main contribution in this paper.
This algorithm is designed on the idea of finding common edges
between any two link adjacency lists of participating nodes in a
community and trying to give new index values to those nodes
(pointed to by the common edges) so that there is a high proba-
bility that the difference between the new indices of nodes in the

1Density of a community has several definitions, but we use the ratio
of average out-degree of nodes to the total number of nodes in a detected
community as a measure of density for that community.
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Figure 1: Effect of adding the link adjacency list of a new node to
the general list

list of common edges for any randomly selected nodes is less than
what it was before.

Our algorithm is a greedy algorithm which means we choose the
best strategy at every step, so we do not necessarily come to the
optimal result, but it can be proven that our result is necessarily
better than the initial state.

We use an initially empty list for keeping the final order of the
nodes. At the end of our algorithm the nodes in a community
will be indexed based on their order in this list. We call this list
the general list. It is obvious that this list should not have any
repeated members. At each step we add the adjacency list of one
node to the general list and this will be done for every node that
participates in the community.

Considering the process of adding link adjacency list of Node(i)
to the general list, one of the two situations will occur.

• There is no common nodes between the general list and the
link adjacency list of Node(i): we simply add the link adja-
cency list of Node(i) at the start or end of the general list.

• There is a common list of nodes between the general list and
the link adjacency list of Node(i): we move the common list
with respect to ordering of its nodes in the general list to the
start or end of general list and we add the remaining nodes
(pointed to by out-edges) right after the common nodes at
the start or end of the list. With this procedure, those nodes
which are ordered based on the link adjacency list of previ-
ously added nodes will not be affected.

Since the nature of our algorithm is greedy and we choose the best
option at each step, and since we deal with one node at each step,
it is clear that the last nodes have more effect on the final result. So
we sort the nodes in the increasing order of their out-degrees and
add the nodes in this sorted list one at a time to the general list in
order to come up with the best result. Figure 1 shows the effect of
adding Node(i) to the general list and Table 1 presents the pseudo
code for this algorithm.

3.2 Edge Eliminator Algorithm

We first define group indicator of a group of nodes as the first node
member of that group. The basic idea in edge eliminator algorithm
is to eliminate all of the edges in the link adjacency list of a node
that point to nodes from the same group and instead adding an
edge to the link adjacency list that points to the group indicator.
It is obvious that with this procedure the overall similarity of the
link adjacency list of nodes will increase.



Table 1: Pseudo code for Re-indexing algorithm

REINDEXING ALGORITHM()
1 REINDEX-NODES(community(j))
2 for each node(i) in community(j)
3 do common← FIND-COMMON(node(i).adjacency,list)
4 list← common + (node(i).adjacency - common)

+ (list - common)
5
6 replace-map← NUMBERING(list, community(j))
7 Return replace-map

As was previously mentioned, we need to keep track of those
edges that have been eliminated, in order to make the process of
compression reversible. Since we want to make the best use of
space for keeping these eliminated edges, we will assign nodes to
a dynamic group (groups of 8, 16, 24, 32 members). The group
number for each node consists of two parts. The first part is the
main group number calculated by a simple formula: dn

k
e where

n is the index of the node and k is the length of the largest group
which should be a power of two (in our work we used 32). The
second part is a number that assigns a node to a part of the main
group. This number is calculated by the following formula:„‰

nc mod k

k′

ı
− 1

«
where k′ is the minimum length of a group (in our work we used
8). Now if a node has index value of 129 then it belongs to sub-
group 0 within group 5.

The index value of the group indicator is calculated by ni,1 = (i−
1)×k+1 where i is the main group number. As the above formula
implies, the group indicator of a particular group is actually the
first member of that group.

We should keep in mind that the edges in the link adjacency
list of each node are sorted in increasing order based on the in-
dex value of the nodes that they are pointing to. This will re-
duce the running time of the process of finding edges that point
to node members belonging to the same main group in the ad-
jacency list of a node. In the eliminating process of edges, on
finding the first edge that points to a node from group i (mean-
ing finding the lowest found index from group i) we look for all
the edges that point to nodes from group i. Since the edges are
in sorted order this process is really a straightforward procedure.
We call the first node, Node(f ) and the last node, Node(l). If both
Node(f ) and Node(l) belong to the same sub-group then we will
use k′ bits (in our work k′ equals to 8) for representing the oc-
currence of each eliminated node within a bit pattern. If Node(f )
and Node(l) belong to two different subgroups then we will use
((SGN(Node(l))−SGN(Node(f))+1)k′ bits for the bit pat-
tern (where SGN(Node(l)) and SGN(Node(f)) are sub-group
numbers for Node(l) and Node(f ) respectively). Besides the bit
patterns, we also need to keep the subgroup number as well as a
group type so that we can exactly pinpoint those edges that have
been eliminated. Group type indicates the length of the group.
In our work we used two bits for the sub-group number (00 =
subgroup 1, 01 = subgroup 2, . . . ) and also two bits for group
type (00 = 8 members, 01 = 16 members, 10 = 24 members,
11 = 32 members). At each step of the elimination process we
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Figure 2: Demonstration of how elimination of edges is per-
formed.

find and eliminate all the edges that belong to the main group i and
we place an edge pointing to group indicator ni,1 instead. We also
keep track of the eliminated nodes in an auxiliary structure which
holds the group type, subgroup number and also the bit patterns
for eliminated edges. We will further compress the auxiliary data
structure by running a Huffman-based algorithm on it.

At the decompression process, for each edge in the link adjacency
list, which would definitely point to a group indicator since each
node belongs to a unique group, we find the corresponding group.
Also we extract the corresponding group number, group type and
bit array from the auxiliary data structure. Next we replace the
node indicator with edges that point to nodes corresponding to
the extracted bit array. Figure 2 visualizes the process of edge
elimination.

4 COMPUTATIONAL COMPLEXITY
AND SPACE REQUIREMENTS

Our algorithm has three different stages and each stage has its own
computational complexity. Since each step is performed in series,
the total computational complexity of our algorithm is equal to
sum of the computational complexities at each stage.

At the first stage (which we refer to as the community detection
stage) we use one of the most efficient algorithms until today. This
algorithm which is introduced in [4] has a computational complex-
ity of O(mmc) where m is the number of edges in the web graph
and mc is the number of edges in the detected community.

At the re-indexing stage, three different tasks are performed.

• Sorting the participating nodes in a community based on the
order of their out-degree: using one of the fast sorting algo-
rithms like quick sort for this stage will result in a compu-
tational complexity of O(nc log nc) magnitude ( nc is the
number of nodes in the detected community).

• Sorting link adjacency list of each node based on the
index value of pointed node: using a fast algorithm,
the computational complexity of this task is equal to
O(

Pnc
i=1 mc,i log mc,i) (where mc,i is the out-degree for

node i from community c). The upper bound for the above
series is O(n2

c log nc) based on the following conclusions:

mc,max =
nc

max
i=1

{mc,i}
ncX
i=1

mc,i log mc,i ≤
ncX
i=1

mc,max log mc,max

=

nc ×mc,max log mc,max ≤ n2
c log nc



• Adding a new link adjacency list to the general list: since this
task is required to find the common set between the general
list and the current link adjacency list and because unlike
the adjacency list, general list is not sorted in any order; the
computational complexity of this task is O(n2

c log nc) which
is derived from the following inequalities:

ncX
i=1

lc,i log mc,i ≤ nc

ncX
i=1

log mc,i = n2
c log nc

(Where lc,i is the general list length before the addition of
link adjacency list of the ith node to the general list)

From what we mentioned, we can conclude that the running time
of the re-indexing stage is: O(mmc + n2

c log nc). The edge
elimination stage is basically a straightforward process of moving
through each link adjacency list and eliminating all the edges from
the same group and inserting an edge pointing to the group indica-
tor instead. This task has a time complexity of O(m) magnitude.
The time consuming task in this stage is the Huffman coding of
the auxiliary data structure which is of O(m log m) magnitude.

Addition of the time complexity of each stage, results in the to-
tal time complexity of our algorithm which is: O(

Pw
c1(mmc +

n2
c log nc) + m log m) Where w is the total number of detected

communities.

The maximum amount of main memory space required for our
algorithm is proportional to the largest number of nodes partici-
pating in a detected community.

Table 2: Characteristics of generated communities
Name Total number of pages Average degree

Companies

100000 486
50000 487
10000 380
1000 167

Newspapers

100000 285
50000 310
10000 306
1000 132

Universities

100000 1525
50000 1447
10000 1135
1000 349

Scientists

100000 14
50000 14
10000 15
1000 3

Web out links

100000 16
50000 16
10000 16
1000 4

5 EXPERIMENTAL RESULTS

We present the results from a preliminary prototype running on a
generated random graph model with embedded communities. We
emphasize that these experiments are meant as a preliminary proof
of concept. The random graph which we have used is introduced
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Figure 3: Effect of Huffman compression on community graph.
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Figure 4: Effect of Huffman compression on pre-compressed com-
munity graph.

in [8]. Since the community detection algorithms are not our con-
tributions and we only use them as a tool, we decided to directly
run our algorithm for several different communities based on [16]
instead of running the algorithm for a web graph with embedded
communities. This will eliminate the time consuming process of
community detection and will not have any effect on our demon-
stration. Table 2 shows the characteristics of each generated com-
munity.

Since we intended to demonstrate that our algorithm does not dete-
riorate compression ratio of Huffman-based schemes, we decided
to show that the Huffman coding will have at least the same ef-
fect on the result of our work and on the uncompressed graph. In
one experiment we compressed the community graphs with both
our algorithm and Huffman coding and in a second experiment we
compressed the community graph with only the Huffman coding.
As shown in figure 3 and 4, the curves of Huffman coding com-
pression ratios have the same shape for both experiments which
means that no matter if we compress the community graph with
our algorithm or not, the final compression ratio will be at least
the same. This confirms our claim that our algorithm does not de-
teriorate compression ratio of Huffman based schemes (see figure
3 and 4). An important variable that has a large impact on the
performance of our algorithm is the density of the detected com-
munity. Figure 5 shows this fact that the ratio of compression has
a direct relation with the density of the detected community. This
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Figure 5: Comparison of compression ratio for different commu-
nities.

means as the density of detected community decreases, i.e. the
community becomes sparser, the ratio of compression will also
decrease (see figure 5).

6 CONCLUSIONS

Our algorithm has several distinct advantages:

• It can be run on parallel processors and this will reduce the
total running time considerably.

• The space requirement of our algorithm is so little that it can
be run on an ordinary desktop.

• Our algorithm will increase the similarity of link adjacency
lists enormously, so algorithms like the one introduced in [1]
which are based on finding similar nodes will benefit very
much from the result of our algorithm.

• As stated before, Huffman algorithms can further compress
the output of our algorithm, resulting in a higher total com-
pression ratio.

We are currently working on the problem of re-compressing the
result of our algorithm based on the algorithm introduced in [1].
Future efforts might lead to the elimination of the time consuming
stage of community detection and running the Re-indexing stage
directly on the Web Graph itself. We also appreciate any efforts
to execute our algorithm on real data samples from the web graph
which we hope will further confirm our results.

7 ACKNOWLEDGEMENT

The authors would like to thank Ehsan Nourbakhsh for his help in
preparation of this paper.

References

[1] M. Adler and M. Mitzenmacher. Towards compressing web
graphs. In Proc. of IEEE Data Compression Conference
(DCC), Mar. 2001.

[2] D. Blandford and G. Blelloch. Index compression through
document reordering. In Proc. of IEEE Data Compression
Conference (DCC), Jan. 2002.

[3] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction
to algorithms. MIT Press and McGraw-Hill Book Company.

[4] G. W. Flake, S. Lawrence, and C. L. Giles. Efficient iden-
tification of web communities. In Proc. 6th Int. Conf. on
Knowledge Discovery and Data Mining, pages 150-160,
2000.

[5] G. W. Flake, S. Lawrence, C. Lee Giles, and F. M. Coet-
zee. Self-organization and identification of Web communi-
ties. IEEE Computer, 35(3):66-71, 2002.

[6] L. R. Ford Jr. and D. R. Fulkerson. Maximum flow through
a network. Canadian J. Math., 8:399-404, 1958.

[7] D. Gibson, J. Kleinberg, and P. Raghavan. Inferring web
communities from link topology. In Proc. 9th ACM Confer-
ence on Hypertext and Hypermedia, 1998.

[8] E. J. Glover, T. Oates and V. B. Tawde. Generating web
graphs with embedded communities. ACM WWW Confer-
ence, May. 2004.

[9] M. Kitsuregawa, P. K. Reddy. An approach to relate the web
communities through bipartite graphs. IEEE Second Interna-
tional Conference on Web Information Systems Engineering
(WISE). Dec. 2001.

[10] Jon M. Kleinberg. Authoritative sources in a hyperlinked en-
vironment. In Proc. of the Ninth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, 1998.

[11] J. M. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan and
A. S. Tomkins. The web as a graph: measurements, mod-
els, and methods, In Proc. Intl. Conf. on Combinatorics and
Computing, 1999.

[12] J. M. Kleinberg, S. Lawrence. The structure of the web. Sci-
ence Mag (VOL 294), Nov. 2001.

[13] R. Kumar, P. Raghavan, S. Rajagopalan, D Sivakumar, A.
Tomkins and E. Upfal. Stochastic models for the web graph.
In Proc. of the 41st IEEE Symp. on Foundations of Computer
Science. Nov. 2000.

[14] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins.
Trawling the web for emerging cyber-communities. WWW8
/ Computer Networks, 31(11-16):1481-1493, 1999.

[15] L. Laura, S. Leonardi, G. Caldarelli, P. De Los Rios. A
Multi-layer model for the web graph. Apr. 2002.

[16] D. M. Pennock, G. W. Flake, S. Lawrence, C. L. Giles, and
E. J. Glover. Winners don’t take all: Characterizing the com-
petition for links on the Web. Proc. of the National Academy
of Sciences, 2002.

[17] S. Raghavan, H. Garcia Molina. Representing Web Graphs.
2003.


