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In this paper, we consider a new variant of covering in an orthogonal art gallery problem 
where each guard is a sliding k-transmitter. Such a guard can travel back and forth along 
an orthogonal line segment, say s, inside the polygon. A point p is covered by this guard 
if there exists a point q ∈ s such that pq is a line segment normal to s, and has at most k
intersections with the boundary walls of the polygon. The objective is to minimize the sum 
of the lengths of the sliding k-transmitters to cover the entire polygon. In other words, the 
goal is to find the minimum total length of trajectories on which the guards can travel to 
cover the entire polygon. We prove that this problem is NP-hard when k = 2, and present 
a 2-approximation algorithm for any fixed k ≥ 2. The proposed algorithm also works well 
for an orthogonal polygon where the edges have thickness.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we study a new version of the art gallery problem to cover a simple orthogonal polygon by using new 
model of covering or visibility that employs sliding cameras. The conference version of this paper was accepted in 2014 [1].

Sliding camera guards were introduced by Katz and Morgenstern [2] to guard orthogonal polygons. A sliding camera can 
travel back and forth along an axis-aligned segment s inside an orthogonal polygon P . A point p can be seen by this camera 
if there exists a point q ∈ s such that pq is a line segment normal to s, and is completely inside P . In Fig. 1, two points a
and c can be seen by s. As the line segment normal to s passes from d has two intersections with the boundary of P , point 
d can not be seen by s. There is no line segment normal to s passes from b, so b can not be seen by s.

Another variant of coverage that we use for our guards in this paper is “modem illumination”, where each guard is 
modeled as an omnidirectional wireless modem with an infinite broadcast range that can penetrate through k (for a fixed 
integer k > 0) walls to reach a client. These modems are also called k-transmitters, and were introduced by Fabila–Monroy 
et al. [3] and Aichholzer et al. [4].

The sliding cameras we use here can “see” through at most k walls along directions perpendicular to the tracks of their 
line segments. We thus call them sliding k-transmitters. In this paper, the walls are mostly represented by line segments 
and have no thickness.

✩ Fully documented templates are available in the elsarticle package on CTAN.
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Fig. 1. Two points a and c can be seen by a sliding camera that travels along s.

The main objective is to find the minimum length of sliding k-transmitters that can cover the entire polygon. We will 
refer to this problem as MLSCk . We prove that MLSCk is NP-hard when k = 2. We also propose a 2-approximation algorithm 
for any k ≥ 2 and walls of any thickness between 0 and 1.

Past work

The art gallery problem is a classic research problem in computational geometry. Over the years, many variants of this 
problem have been studied [5,6], [7,8]. Most of them have been shown to be NP-hard [9], including cases where the target 
region is a simple orthogonal polygon and the goal is to find the minimum number of vertex guards to protect the entire 
polygon [5,8]. Some variations with a limited model of visibility have yielded polynomial-time algorithms [10,11].

In [2], the authors considered the problem of guarding a simple orthogonal polygon with minimum-cardinality sliding 
cameras (MCSCs). They showed that when the cameras are constrained to travel only vertically inside the polygon, the 
MCSC problem can be solved in polynomial time. They also presented a 2-approximation algorithm for this problem when 
the trajectories of the cameras can be vertical or horizontal and the target region is an x-monotone orthogonal polygon. 
They left the computation of the complexity of the MCSC as an open problem.

In 2013, Durocher and Mehrabi [12] studied the MCSC problem and the minimum-length sliding cameras (MLSCs) prob-
lem with the goal of minimizing the total length of the trajectories of the cameras. They proved that the MCSC is NP-hard if 
the orthogonal polygon can have holes. They also proved that the MLSC is solvable in polynomial time, even for orthogonal 
polygons with holes. Recently, Mehrabi and Mehrabi [13] gave a (7/2)-approximation algorithm for the MCSC.

Ballinger et al. [14] considered guards as k-transmitters, and extended bounds on the number of k-transmitters necessary 
and sufficient to cover a given group of line segments, polygons, and polygonal chains.

In 2016, Biedel et al. [15] solved one of the open problems proposed by [1]. They showed that the problem of covering 
an orthogonal polygon using the minimum cardinality of sliding k-transmitters is NP-hard for any fixed k > 0, even if the 
simple orthogonal polygon is monotonic. They also gave an O (1)-approximation algorithm for solving this problem. In this 
paper, we prove that the problem of finding the minimum total length of sliding k-transmitters that can cover the entire 
orthogonal polygon, is NP-hard when k = 2. We also propose a 2-approximation algorithm for any k ≥ 2 and walls of any 
thickness between 0 and 1.

Notations and definitions

Let P be an orthogonal polygon. The set of vertices and edges of P is called the boundary of the polygon. We refer to 
the area of P by A(P ) and its edges by E(P ). We extend the endpoints of each edge e ∈ E(P ) to obtain a line that contains 
e. Let L be the set of these lines. L partitions A(P ) into orthogonal rectangles denoted by P(P ). Moreover, let ĉp be the 
center of a part p ∈P(P ); Ĉ(P ) is the set containing ĉp s for all part p ∈ P(P ).

A k-transmitter is a guard travels back and forth along an orthogonal line segment, say s, inside P . A point p is covered 
by this guard if there exists a point q ∈ s such that pq is a line segment normal to s, and has at most k intersections with 
the boundary walls of the polygon.

For each sliding camera c, we denote by V(c) the set of points in A(P ) guarded by c. Similarly, Vk(c) represents the 
same set when we consider the problem using the k-transmitter model. We call a set of cameras (or transmitters) C a 
candidate set if all points in each part p ∈ P(P ) are covered with the same subset of C . We prove that in MLSCk , there 
always exists an optimal solution that uses a candidate set.

2. Hardness of the MLSCk problem

In this section, we prove that the MLSCk is NP-hard when k = 2. We present a poly(n) reduction of the problem of tiling 
an orthogonal polygon by 1 × 3 rectangles to the MLSCk . In the problem of tiling an orthogonal polygon with rectangles, it 
is assumed that the orthogonal polygon R is drawn on a grid G . The goal is to place non-overlapping 1 × 3 rectangles to 
cover all of R . Beauquier et al. showed that this problem is NP-complete [16].

Our proof of NP-hardness consists of two phases. We construct a new orthogonal polygon P from R . Later, we prove 
that for each answer of the MLSCk on P , there is a corresponding answer to the tiling problem on R . Hence, the MLSCk is 
NP-hard.
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Fig. 2. P ′ and P are constructed in the first and the second steps, respectively.

Fig. 3. The vertices of V G , VB(R), and V R are shown as green points, red points, and purple circles, respectively. (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

2.1. Reduction

In this subsection we construct P from R in two phases. We construct P ′ , the polygon that can be covered by sliding 
2-transmitters. The length of these transmitters can be greater than 1 + ε , and they can cover two disconnected parts of R . 
See Fig. 2, the length of 2-transmitter s1 is 3.

Later, we add parts to P ′ , fix the problems mentioned above, and construct P . P can be covered by non-overlapping 
sliding 2-transmitters where the length of each is at most 1 + ε (we ignore ε overlap. In Fig. 8, s1 and s2 have two ε-area 
intersections). The ε-area intersection is the intersection of two sub-polygons which has the area of size ε . As the length 
of each sliding 2-transmitter is at most 1 + ε , if P can be covered by non-overlapping sliding 2-transmitters, P can be 
covered by their minimum total length. Thus, R can be tiled by 1 × 3 rectangles if and only if P can be covered by the 
minimum-length sliding 2-transmitters. The constructed polygons are shown in Fig. 2.

2.1.1. Preliminaries
The input for the reduction are an orthogonal polygon R and a grid G . We denote the vertices of R by V R and the grid 

vertices, which are inside and along the boundary of R , by V G (see Fig. 3). Let n be the cardinality of V G .
Let ei j be an edge between vi ∈ V G and v j ∈ V G , and ei j = e ji . We denote the set of all edges of G that are inside R (and 

not along the boundary) by E(G). For each ei j ∈ E(G), there two same length parallel edges in ε distance from that (see 
Fig. 4). When ei j is vertical (or horizontal), there are two parallel edges at length ε on the right side (the upper side) and 
the left side (the lower side) of ei j . During our processing of each ei j , we choose one of its ε-distance parallel edges and 
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Fig. 4. The parallel edges of ei j are shown.

call it e′
i j . We traverse the vertices of P along its boundary in clockwise order. For a horizontal ei j , if we are on the right 

endpoint and want to traverse e′
i j , we choose the upper edge (number (1) in Fig. 4.(a)). Otherwise we choose the lower 

edge (number (2) in Fig. 4.(a)). For a vertical ei j , if we are on the upper endpoint and want to traverse e′
i j , we choose the 

left edge (number (2) in Fig. 4.(b)). Otherwise, we choose the right (number (1) in Fig. 4.(b)).
We denote the vertices and edges of G along the boundary of R by VB(R) = {v1, ..., vn′ } and E(R), respectively, in 

clockwise order (see Fig. 3). We partition E(R) into two subsets, E(R)in and E(R)ext . Edge e ∈ E(R) is an external edge if 
there exists at least one half-line, l, (that is a straight line extending from a point indefinitely in one direction only) such 
that l is outward-perpendicular to e at any point on it except its endpoints, and l does not intersect the boundary of R . If l
intersects the boundary of R , e is an internal edge. Let E(R)ext and E(R)in be the sets of all external and internal edges of 
E(R), respectively. In Fig. 3, v14 v15 is an external edge (∈ E(R)ext ) and v13 v14 is an internal edge (∈ E(R)in).

At the end of Section. 2, we report set V P that contains the set of all vertices of P in clockwise order.

2.1.2. Partitioning E(R)

We use the sweep line algorithm to partition E(R) into two subsets E(R)in and E(R)ext . We run the sweep line algorithm 
two times on R: up to down, and left to right. The event points of the sweep lines are the x- and y-coordinates of vertices 
of VB(R).
Left-to-right sweep line: We start from the leftmost vertex of VB(R) and sweep R by a vertical line to the rightmost vertex. 
The event points are x-coordinates of VB(R). As R is orthogonal, at least two vertices of VB(R) are on the same vertical 
line. Thus, we consider all of them as one event point (in Fig. 5, the event points are shown as dotted purple lines). Between 
consecutive event points (two consecutive vertical lines) are at least two edges of E(R). For example, in Fig. 5, xi and xi+1
are two consecutive event points. Edges e1, e2, e3, and e4 of E(R) are between xi and xi+1 (e j for j = 1, .., 6 are the name 
of the edges in Fig. 5). Among them, the upper and lower edges are in E(R)ext (e1, e4 ∈ E(R)ext ), and the edges in between 
them (if there are any) are in E(R)in (e2, e3 ∈ E(R)in).

After finishing this sweep line, we run another sweep line top to bottom in a similar manner to that above. However, 
the event points are the y-coordinates of VB(R) (in Fig. 5, the event points are shown as orange dotted lines). Between 
consecutive event points (two consecutive horizontal lines) are at least two edges of E(R). Among them, the leftmost and 
rightmost edges are in E(R)ext , and the edges between them (if there are any) are in E(R)in . In Fig. 5, between yi and yi+1
are e5 and e6 such that both are in E(R)ext , and there is no edge of E(R)in between them.

The number of event points is O (n). For the left-to-right sweep line, we sort the vertices of VB(R) in order of increasing 
x-coordinate value, and sort the vertices with the same x-coordinates in order of decreasing y-coordinates. For the up-
to-down sweep line, we sort the vertices of VB(R) in decreasing order of y-coordinates, and vertices with the same y-
coordinates in increasing order of x-coordinates. The sorting takes O (n log n) time. The run time of the sweep line algorithm 
is O (n log n). Hence, we partition E(R) into E(R)in and E(R)ext in O (n log n).

2.1.3. First phase
As explained above, we construct P in two phases. In the first phase we construct P ′ from R . Let V ′

P be the set of all 
vertices of P ′ in clockwise order; it is initially ∅. We add all edges of E(G) to R and construct P ′ such that it is a simple 
orthogonal polygon.

We traverse the vertices of V G and their corresponding edges starting from v1. When we traverse a vertex, we add it to 
V ′

P , and when we traverse an edge, we add its endpoints to V ′
P . Assume that we are on vi . During the traversal, we do as 

below:
If there are three untraversed adjacent edges of vi , we traverse the rightmost one in clockwise (traverse edge number 

1 in blue circle in Fig. 6). If there is at most one untraversed adjacent edge of vi (black and turquoise circles in Fig. 6), 
we assume that we do not reach vi and are at 2ε distance from it. Thus, we do not traverse vi . We then traverse back 
e′ ∈ E(G) and reach a point at distance ε from v j but, to continue our process, assume that we are on v j .
ji
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Fig. 5. Partitioning E(R) into E(R)ext and E(R)in .

Fig. 6. Different kinds of first step shown using colored circles.

If we traverse edge e ji ∈ E(G) and reach vi , which is along the boundary of R (orange circle in Fig. 6), we do not traverse 
vi and stop in ε distance from vi on e ji . We then traverse back e′

ji ∈ E(G) and reach a point at distance ε from v j but, to 
continue our process, assume that we are on v j .
If vi is inside R and there is no untraversed adjacent edge of vi , there is only one edge eig where e′

ig has not been traversed. 
Thus, we traverse e′

ig and reach a point at distance ε from v g but, to continue our process, assume that we are on v g (pink 
circle in Fig. 6).
If vi is along the boundary of R and there is no untraversed adjacent edge of vi , which is inside R , we traverse the 
untraversed edge adjacent to it along the boundary of R and reach vt (purple circle in Fig. 6). We then continue traversing. 
When we reach v1 again, P ′ is constructed and the first step is concluded. P ′ is shown in Fig. 7. For more details, see 
Section A.1 in the Appendix.

Time complexity
The cardinality of V G and E(G) is O (n). The number of parallel ε-distance edges of E(G) is O (n). We traverse each 

vertex of V G , each edge of E(G), and their parallel ε-distance edge once. The time complexity of checking whether vi is 
along the boundary of R (vi ∈ VB(R)) or has been traversed before, is O (n) (by checking all vertices of VB(R) whose size 
is O (n)). Thus, the time complexity of constructing P ′ is O (n2), which can be reduced to O (n) by preprocessing O (n).

In the preprocessing step, we can set a flag for each vi , which is 1 when vi ∈ VB(R) and 0 when vi /∈ VB(R). This can 
be done by traversing VB(R) once and setting the flags of its vertices. As the complexity of VB(R) is O (n), all flags can 
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Fig. 7. Constructing P ′ from R .

Fig. 8. The length of s1 and s3 is greater than 1 + ε , and s3 and s1 can cover two disconnected parts of P ′ .

Fig. 9. The added parts avoid sliding 2-transmitters (a) of lengths greater than 1 + ε that (b) can cover two disconnected parts of R .

be set in O (n). We also set another flag for each vi , which is 1 or 0 when it has been traversed or has not, respectively. 
This can be done during the algorithm. Thus, to check whether vi is along the boundary of R or has been traversed, it is 
sufficient to check its flags in O (1) time.

2.1.4. Second step
In the second step, we construct P from P ′ . Let V P = ∅ be the sequence of vertices of P in clockwise order. The polygon 

constructed in the previous step (P ′) can be covered by the sliding 2-transmitters with length greater than 1 + ε and 
those that can cover two disconnected parts of R . For example, see Fig. 8. To avoid having these two kinds of sliding 2-
transmitters, we add some parts to P . These parts are shown in Fig. 9. Let part1 be the part in Fig. 9.(a) and part2 that in 
Fig. 9.(b).

We start traversing V ′
P from the first vertex v1 and add it to V P . We traverse vertices of V ′

P and their corresponding 
edges (we traverse P ′). When we say adjacent edge or vertex, we mean those adjacent one in P ′ . Assume that we traverse 
some part of P ′ and reach vi . At each vi , we do the following:

1. Add vi to V P .
2. If vi ∈ VB(R) and the angle between two adjacent edges of vi is 270◦ or 180◦ , add part1 after vi to P (i.e., add vertices 

of part1 to V P ).
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Fig. 10. Constructing P from P ′ .

3. If vi /∈ VB(R) and the angle between two adjacent edges of vi is 180◦ , add part1 after vi to P (i.e., add vertices of 
part1 to V P ).

4. If vi /∈ VB(R) and the angle between two adjacent edges of vi is 270◦ or 180◦ , and none of them have length ε , add 
part1 after and before vi to P (i.e., add vertices of part1 before and after vi to V P ).

5. If ei,i+1 ∈ E(R)in (vi+1 is the next vertex of vi in V ′
P ), add part2 before vi+1 to P (i.e., add vertices of part2 to V P ).

6. Go to the vertex adjacent to vi .

After traversing all edges of V ′
P and returning to vi , the process stops. The constructed polygon P is shown in Fig. 10. 

For more details on P construction, see Section A.2 in the Appendix.

Time complexity
We traverse V ′

P with cardinality O (n) once. To check whether ei,i+1 ∈ E(R)in , we have a flag that is 1 when ei,i+1 is an 
internal edge and 0 when it is an external edge. These flags can be set when E(R) is being partitioned. As explained in 2.1.2, 
partitioning E(R) takes O (n log n) time. So, setting the flags takes O (n log n) time. Adding the vertices of part1 or part2 can 
be accomplished in O (1) time. So the time complexity of constructing P from P ′ is O (n log n). As mentioned before, the 
time complexity of constructing P ′ from R is O (n). Therefore, the time complexity of constructing P from R is O (n log n).

Theorem 1. The orthogonal polygon P can be constructed from the orthogonal polygon R in O (n log n) time.

2.2. Correctness of the reduction

In this subsection, we prove that for each answer of the MLSCk in P , there is an answer to the problem of tiling an 
orthogonal polygon R with 1 × 3 rectangles, and vice versa. Hence, the MLSCk is NP-hard. Let g , the number of the grid 
cells inside R , be a factor of 3 (otherwise, R cannot be tiled by 1 × 3 rectangles). Let k = 2, which means that the sliding 
transmitters can see through at most two walls.

First, assume that we solve the MLSCk on P and the answer is denoted by {c1, c2, ..., cx}. From the construction of P , 
the length of each transmitter can be 1 ± ε , ε , or 2ε . Let m the total length of the transmitters. If m = g/3 + ε , due to the 
construction of P and the fact that each ci is a 2-transmitter, the answer to the tiling problem on R is yes. Otherwise, the 
answer is no.

Second, assume that we solve the tiling problem on R . Let T = {t1, t2, ..., tm} be the answer. We place the set of sliding k-
transmitters C1 = {c1, c2, ..., cm} and C2 = {c1′ , c2′ , ..., c y′}, which cover P . From the construction of P , each rectangle ti ∈ T
of R , is partitioned to three separated squares si1, si2, and si3 in P . We put a sliding k-transmitter ci ∈ C1 in the middle 
of si2 (see Fig. 11). As ci can see through at most two walls, it covers only si1, si2, and si3 (i.e., no two members of C1
overlap). Then, to cover the added part (shown in Fig. 9), we place transmitters ci′ of length ε or 2ε in C2 (see Fig. 12). As 
the length of each ci′ ∈ C2 is at most 2ε , the overlapping of ci′ with any other sliding k-transmitter is ε′′ and, as mentioned 
above, we ignore ε′′ overlapping. Since the rectangles are non-overlapping, they tilt R , and since the sliding k-transmitters 
are non-overlapping, the set C1 + C2 can cover the entire P , where the total length of the transmitters |C1 + C2| = m + ε′ is 
minimal (|C2| = ε′).

Thus, we have the following theorem:
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Fig. 11. Placing 2-transmitters ci in the middle of rectangle ti .

Fig. 12. Placing two 2-transmitters ci′ and c j′ for part1 and part2, respectively.

Theorem 2. The problem of covering a simple orthogonal polygon by the minimum-length sliding 2-transmitters is NP-hard.

3. Approximation algorithm

In this section, we present a 2-approximation algorithm for the MLSCk for any fixed k ≥ 2. The algorithm consists of two 
phases. In the first phase, we relax the problem to the case where each k-transmitter has a non-negative density. The goal 
is to place k-transmitters in the polygon such that the total density of transmitters covering each point is at least 1 and the 
total density of all transmitters is minimal. We then present a polynomial-time algorithm for the relaxed MLSCk problem. 
In the second phase, we add restrictions to the original problem with regard to the answer of the relaxed MLSCk problem 
on the given polygon. We prove that the objective function of the restricted problem is at most two times the objective 
function of the original problem. Moreover, we give a polynomial-time solution for the restricted problem. Finally, we report 
the solution of the restricted problem as a 2-approximation solution to the original problem.

3.1. Relaxed MLSCk problem

In this subsection, we consider the relaxed version of the MLSCk and find an exact solution to this problem. The relaxed 
MLSCk problem is defined as follows:

Definition 1. Given an orthogonal polygon P and an integer number k, the relaxed MLSCk problem involves placing a set of 
sliding k-transmitters C = {c1, c2, . . . , c|C |} in P , each with density 0 ≤ dci ≤ 1, in such a way that for every interior point 
p ∈A(P ), the following constraint is satisfied:

∑
ci∈C,p∈Vk(ci)

dci ≥ 1.

Of all solutions, the one that minimizes 
∑

ci∈C |ci |dci is desired.

Let R(P ) be 
∑

ci∈C |ci |dci in an optimal solution of the relaxed MLSCk problem on P . If we add the restriction whereby 
all dci s should be the in set {0, 1}, the problem is equivalent to the MLSCk problem. Hence, R(P ) is nothing other than 
M(P ) (the optimal solution of the original problem) for all orthogonal polygons P .

Proposition 3. Any not-necessarily-optimal solution of the relaxed MLSCk problem where the densities of all sliding k-transmitters are 
1 is an acceptable but not-necessarily-optimal solution to the MLSCk problem.

Proposition 4. For any given orthogonal polygon P ,

R(P ) ≤ M(P ).

We now show that the relaxed MLSCk can be solved in polynomial time.
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Lemma 5. There is a polynomial time algorithm that finds an exact solution to the relaxed MLSCk problem.

Proof. Let C(P ) be a candidate set of the relaxed MLSCk problem on the given orthogonal polygon P . There always exists 
an optimal solution to the problem using a subset of the sliding k-transmitters in C(P ). The following linear program has 
|C(P )| variables dci for all ci ∈ C(P ).

min.
∑

ci∈C(P )

|ci |dci (1)

s.t.
∑

ci∈C(P ),p∈Vk(ci)

dci ≥ 1 ∀p ∈ A(P ) (2)

dci ≥ 0 ∀ci ∈ C(P ) (3)

dci ≤ 1 ∀ci ∈ C(P ) (4)

Constraints of type (2) state that each point in A(p) should be in the area of visibility of the sliding k-transmitters such 
that the total sum of their densities is at least 1. Constraints of types (3) and (4) state that the density of each sliding k-
transmitter is between 0 and 1. The objective function involves minimizing the total cost of all sliding k-transmitters, where 
the cost of each sliding k-transmitter ci is defined as |ci |dci . Hence, the above LP finds an optimal solution to the relaxed 
MLSCk problem. Note that since C(P ) is a candidate set of sliding k-transmitters for P , every point in each partition of P is 
in the area of visibility of the same set of sliding k-transmitters of C(P ). Hence, we can rewrite the constraints of type (2)
in the following way:

∑
ci∈C(P ),p∈Vk(ci)

dci ≥ 1 ∀p ∈ Ĉ(P ) (5)

The number of variables and constraints of the LP is poly(n); therefore, we can solve it in time poly(n). �
3.2. Restricted MLSCk problem

In the previous subsection, we discussed the relaxed MLSCk problem and showed how can we solve it in polynomial 
time. We now define the restricted MLSCk problem and show that this too can be solved in polynomial time.

Definition 2. Given an orthogonal polygon P , and an integer number k and function f :P(P ) → {H, V}, let V∗k be a function 
such that for every horizontal sliding k-transmitter c, V∗k(c) is the set of all partitions p ∈ Vk(c) such that f (p) = H. 
Similarly, V∗k(c) for a vertical sliding k-transmitter c is the set of all partitions p ∈ Vk(c) such that f (p) = V. The restricted 
MLSCk problem involves placing a set of sliding k-transmitters C = {c1, c2, . . . , c|C |} in P , each with density 0 ≤ dci ≤ 1, s.t., 
for every interior point p ∈A(P ), the following constraint is satisfied:

∑
ci∈C,p∈V∗k(ci)

dci ≥ 1.

Of all solutions, the one that minimizes 
∑

ci∈C |ci |dci is desired.

Let R′(P , f ) be 
∑

ci∈C |ci |dci in an optimal solution of the restricted MLSCk problem on polygon P and function f . We 
call a solution of the restricted MLSCk problem integral iff each of its covering sliding k-transmitters have density 1. We 
now show that for every orthogonal polygon P , there exists a function f : P(P ) → {H, V} such that R′(P , f ) ≤ 2M(P ). 
Moreover, we show that such a function f can be found in polynomial time.

Lemma 6. There exists a polynomial-time algorithm s.t., for every orthogonal polygon P , it finds a function f : P(P ) → {H, V} which 
satisfies R′(P , f ) ≤ 2M(P ).

Proof. Note that we can solve the relaxed MLSCk problem for polygon P in polynomial time. Let C = {c1, c2, . . . , c|C |} be 
the set of the sliding k-transmitters in an optimal solution of the relaxed MLSCk problem, where the density of the sliding 
k-transmitter ci is dci . Moreover, our algorithm for the relaxed MLSCk problem always selects a candidate set of sliding 
k-transmitters. We construct function f :P(P ) → {H, V} in the following way:

• For every partition p ∈ P(P ), where the total densities of horizontal sliding k-transmitters covering it is not less than 
1/2, we set f (p) = H.

• We set f (p) = V for all other partitions p ∈ P(P ).
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Since the total sum of the densities of all sliding k-transmitters covering each point is at least 1, for each partition p ∈
P(P ) for which f (p) = V, the sum of densities of all vertical sliding k-transmitters covering it is at least 1/2. Now, we 
use all sliding k-transmitters ci ∈ C with densities d′

ci
= 2dci as a solution to the restricted MLSCk problem. Therefore, ∑

ci∈C |ci |d′
ci

= 2R(P ), and all constraints of the restricted MLSCk problem are satisfied. Hence, R′(P , f ) ≤ 2R(P ). Therefore, 
by Proposition (4),

R′(P , f ) ≤ 2M(P ). �
To obtain a 2-approximation algorithm for the MLSCk problem that runs in polynomial time, we show that every instance 

of the restricted MLSCk problem has an integral solution that is optimal. Furthermore, we show that such an optimal integral 
solution can be found in polynomial time.

Lemma 7. There exists a polynomial-time algorithm that finds an optimal integral solution for the restricted MLSCk problem.

Proof. Since in the restricted MLSCk problem, each part of the polygon can be covered with either vertical or horizontal slid-
ing k-transmitters, we divide the problem into two separate subproblems. In the first subproblem, our aim is to place vertical 
sliding k-transmitters with minimum total length to cover all parts of the polygon that can be covered such k-transmitters. 
In the second subproblem, we want to cover the remaining parts with horizontal sliding k-transmitters such that their total 
length is minimized. Since in both sub-problems, we have only horizontal or only vertical sliding k-transmitters, we can 
find the integral solutions in polynomial time (for more detail on the polynomial complexity, see Appendix B). Combining 
the solutions of both subproblems gives us an optimal integral solution to the restricted MLSCk problem. �

Note that from every integral solution to the restricted MLSCk problem for orthogonal polygon P and arbitrary function 
f , we can find a solution of the MLSCk problem for polygon P with the same set of sliding k-transmitters. Therefore, 
Lemmas (6) and (7) show that there exists a polynomial-time algorithm that finds a 2-approximation solution for the 
MLSCk problem.

Theorem 8. There exists a polynomial time algorithm that finds a 2-approximation solution for the MLSCk.

3.3. Generalized problem

In this subsection, we show that the proposed approximation algorithm of the MLSCk can be used to solve the harder 
problem explained in Problem 1 (generalized problem).

Problem 1. Let P be an orthogonal polygon that can have holes and k ≥ 0 be a fixed integer. Each edge ei of P has thickness 
ti (0 < ti ≤ 1). Moreover, P is partitioned into orthogonal regions where each region ri should be covered by at least N(ri)

transmitters. The goal is to place some sliding k-transmitters inside P such that they cover the regions sufficiently, and the 
total length of their trajectories is minimized. The visibility region of each sliding k-transmitter ci (Vk(ci)) is the set of all 
points of P such that their normal line segments to ci intersect the edges of P , such that the sum of their thicknesses is at 
most 1.

The special case of Problem 1 arises when the thickness of each edges is 1
k and all regions are covered by at least one 

transmitter. This case is the same as the MLSCk problem we have studied. Hence, Problem 1 is NP-hard.
We show that the approximation algorithm of the MLSCk can be used here, with a few changes, to solve Problem 1. 

The definitions of A(P ) and C(P ) are the same as in Section 3.1. For each p ∈ A(P ), let N(p) be the minimum number of 
sufficient sliding k-transmitters to cover p. We use the following linear programming solution to Problem 1:

min.
∑

ci∈C(P )

|ci |dci (6)

s.t.
∑

ci∈C(P ),p∈Vk(ci)

dci ≥ N(p) ∀p ∈ A(P ) (7)

dci ≥ 0 ∀ci ∈ C(P ) (8)

dci ≤ 1 ∀ci ∈ C(P ) (9)

As in Definition 2, we can obtain a restricted generalized problem. Lemma 6 is correct when, for each partition p ∈ P(P ), 
one of the following conditions is satisfied:

• For every partition p ∈P(P ), where the total density of the horizontal sliding k-transmitters covering it is not less than 
N(p) , we set f (p) = H.
2
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• We set f (p) = V for all other partitions p ∈ P(P ).

Similarly, the lemmas of Sections 3.1 and 3.2 are correct. Thus, the following theorem has been proven:

Theorem 9. There exists a polynomial-time algorithm that finds a 2-approximation solution to the generalized MLSCk.

4. Conclusion

In this paper, we proved that the problem of covering a simple orthogonal art gallery with minimum-length sliding k-
transmitters is NP-hard, even for k = 2. We also proposed a 2-approximation algorithm for this problem and showed that it 
can be used to solve harder problems. The calculation of the hardness of guarding an orthogonal polygon with the minimum 
cardinality of sliding cameras remains open.
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Appendix A

In this section, we explain the hardness of the MLSCk problem in detail. In Section 2, we prove that the MLSCk is NP-
hard. We present a poly(n) reduction of the problem of tiling an orthogonal polygon by using 1 ×3 rectangles to the MLSCk . 
As mentioned before, the proof of NP-hardness is made in two phases. In this section, we explain the first phase, which 
involves constructing an orthogonal polygon P from a given orthogonal polygon R .

As explained in Section 2.1, we construct P from R in two phases. First, we construct P ′ , the polygon that can be covered 
by the sliding 2-transmitters if the length of their trajectories is greater than 1 + ε . These sliding 2-transmitters can also 
cover two disconnected parts of R . In the second step, we add thin parts to P ′ , fix the mentioned problems, and construct 
P . If P can be covered by the sliding 2-transmitters such that the total length of their trajectories is minimal, R can be tiled 
by 1 × 3 tiles (rectangles).

As defined in Section 2, V G is the set of vertices of G inside and along the boundary of R . E(G) and E(R) are the sets 
of all edges of G inside and along the boundary of R , respectively. Our approach is to traverse each edge and vertex of 
G inside and along the boundary of R once. Hence, for each ei j ∈ E(G), E(R) and each vi ∈ V G , we consider flags f i j and 
f i , respectively. These flags are 1 or 0 when their corresponding edge or vertex has been traversed (visited) or has not, 
respectively. Initially, we set the flags of all vertices of V G and all edges of E(G) and E(R) to 0 (no edge or vertex has been 
traversed).

A.1. First step

In first step we construct P ′ from R . We start from v1 ∈ V G , add it to V ′
P (V ′

P = {v1}), and set f1 = 1. We traverse the 
vertices of V G and their corresponding edges. Assuming that we traverse edge eeti , (eeti can be eti or e′

ti ), and reach vertex 
vi ∈ V G . According to the following conditions, we add some vertices to V ′

P and decide to traverse the boundary of R or 
the part of the grid inside R . Note that for v1 we decide according to condition I. (i.e., decide based on angel of v1). Note 
that we consider the angel of vi in R .

I. eeti ∈ E(R) (vt , vi ∈ VB(R))
(a) If f i = 0, add vi to V ′

P and set f i = 1.
(b) If vi is a convex vertex of V R , then go to v g , the adjacent vertex of vi on VB(R). Set f i,g = 1 and f g = 1. Add v g

to V ′
P . For example, note the blue circle in Fig. 13.

(c) If vi is 180◦ , it has an adjacent edge ei j ∈ E(G).
i. If f i j = 0, go to v j and set f i j = 1. For example, note the purple circle in Fig. 13.

ii. If f i j = 1, go to v g , the adjacent vertex of vi on VB(R), and add v g to V ′
P . Set f g = 1 and f i,g = 1. For example, 

note the red circle in Fig. 13.
(d) If vi is a reflex vertex of V R , vi has two adjacent edges ei j, eil ∈ E(G). v j and vl are in V G , and can be along the 

boundary or inside R .
i. If f i j = 1 and f il = 1, go to, v g , the adjacent vertex of vi on VB(R). Add v g to V ′

P . Set f i,g = 1 and f g = 1. For 
example, note the orange circle in Fig. 13.
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Fig. 13. Assume that you are on vi by passing through eti (∈ E(R)) shown in colored arrows. The traversed vertices and edges at this step are shown in 
light green. Note that the boundary of constructed P ′ until this step and R are shown in dark green and black lines, respectively.

ii. If f i j = 0 or f il = 0, traverse the right-most untraversed edge (suppose ei j). Set f i, j = 1. Then, go to v j . For 
example, note the pink and the black circles in Fig. 13.

II. eeti ∈ E(G)

(a) If vi ∈ VB(R), then
i. If eeti = e′

ti (when eeti = e′
ti , eti has been traversed before and f i = 1), go to v g , the adjacent vertex of vi on 

VB(R). For example, note the purple circle in Fig. 14. Add vεi′ , the point at distance ε from vi on e′
ti , and v g to 

V ′
P . Set f g = 1 and f i,g = 1.

ii. If eeti = eti (when eeti = eti , vi has not been traversed before and f i = 0), traverse e′
ti and set f ′

t,i = 1. For 
example, note the orange circle in Fig. 14. Add vεi , the point at distance ε from vi on eti , to V ′

P . Then add vεi′ , 
the point at distance ε from vi on e′

ti , to V ′
P . By traversing e′

ti , you are on vεt′ but, to continue our process, 
assume that you are on vt .
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Fig. 14. Assume that you are on vi by passing through eti or e′
ti shown in colored arrows. The traversed vertices and edges at this step are shown in light 

green. Note that the boundary of constructed P ′ until this step and R are shown in dark green and black lines, respectively.

(b) If vi /∈ VB(R), then
i. If eeti = e′

ti , then
A. If there is at least one untraversed edge adjacent to vi , traverse the right-most one, suppose ei j , and go to 

v j . Add vεi′ , the point at distance ε from vi on ei j , to V ′
P . Set f i j = 1. For example, note the red circle in 

Fig. 14.
B. If there is no untraversed edge adjacent to vi , there is only one edge eig where e′

ig has not been traversed. 
Thus, add vεi′ , the point at distance ε from vi on eig , to V ′

P , traverse e′
ig , and set f ′

ig = 1. To continue our 
process, assume that you are on v g . For example, note the pink circle in Fig. 14.



176 S.S. Mahdavi et al. / Theoretical Computer Science 815 (2020) 163–181
Fig. 15. Constructing P ′ from R .

ii. If eeti = eti , then
A. If there is at most one untraversed edge adjacent to vi (i.e., there is only one or no untraversed edge adjacent 

to vi ), traverse e′
ti . For example, note the black (there is no) and turquoise (there is only one) circles in Fig. 14. 

Add v2εi , the point at distance 2ε from vi on eti , to V ′
P . Then add v2εi′ , the point at distance 2ε from vi on 

e′
ti , to V ′

P . By traversing e′
ti , you are on vεt′ but, to continue our process, assume that you are on vt .

B. If there are three untraversed adjacent edges of vi , add vi to V ′
P and set f i = 1. Traverse the right-most 

untraversed edge adjacent to vi , suppose ei j , and go to v j . Set f i j = 1. For example, note the blue circle in 
Fig. 14.

After traversing all VB(R) and the grid parts inside R , we return v1 again and the process concludes. The constructed 
polygon during this process is shown in Fig. 15.

A.2. Second step

In the second step, we consider V P = ∅. The polygon constructed in the previous step (P ′) can be covered by the sliding 
2-transmitters with lengths greater than 1 + ε and those that can cover two disconnected parts of R . Thus, to avoid having 
these two kind of sliding 2-transmitters, we add thin parts to P . These parts are shown in Fig. 9 and in more detail in 
Fig. 16.

As explained above, E(R) is the set of all edges of G that are along the boundary of R . We start traversing V ′
P from v1

(first vertex) and add it to V P (V P = {v1}). We add some part to P according to the situation of the edges. Assume that we 
traverse some part of P ′ , reach vi , and focus on ei j (the next vertex of vi in V ′

P is v j ). When vi ∈ VB(R), we assume that 
the previous and next vertices of vi in VB(R) are vi−1 and vi+1, respectively (we consider the angle of these vertices in 
R).

1. Add vi to V P .
2. If vi ∈ VB(R) and its angle in R is 180◦ or 270◦ , add vertices of part1 at ε distance after vi to V P (navy and turquoise 

circles in Fig. 17).
3. If vi is inside R and its angle in V ′

P is 180◦ , add vertices of part1 at ε distance after vi to P (navy circle in Fig. 19).
4. If vi is inside R and its angle in V ′

P is 270◦ , add vertices of part1 at 2ε distance before and after vi to P (turquoise 
circle in Fig. 19).

5. If ei,i+1 ∈ E(R)in , then
(a) If ei−1,i /∈ E(R)in and ei+1,i+2 /∈ E(R)in

• If v̂ i+1 = 270◦ and v̂ i = 90◦ or 180◦ , then add vertices of part2a to V P (green circles 1 and 12 in Fig. 17 and 
Fig. 19, respectively).

• If v̂ i = 270◦ and v̂ i+1 = 90◦ or 180◦ , then add vertices of part2e to V P (pink circle 1 and 2 in Fig. 18 and Fig. 19, 
respectively).

(b) If ei−1,i /∈ E(R)in and ei+1,i+2 ∈ E(R)in , then
• If v̂ i+1 = 90◦ and v̂ i = 90◦ or 180◦ , then add vertices of part2c to V P (orange circles 6 and 1 in Fig. 18 and 

Fig. 17, respectively).
• If v̂ i+1 = 90◦ and v̂ i = 270◦ , then add vertices of part2e to V P (pink circle 3 in Fig. 19).
• If v̂ i+1 = 180◦ and v̂ i = 90◦ or 180◦ , then add vertices of part2a to V P (green circles 8 and 9 in Fig. 18).
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Fig. 16. The added parts shown in detail.

Fig. 17. Different kinds of part2 shown using colored circles in polygon P .
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Fig. 18. Different kinds of part2 shown in colored circles in polygon P1.

• If v̂ i+1 = 180◦ and v̂ i = 270◦ , then add vertices of part2 f to V P (black circle 1 in Fig. 18).

• If v̂ i+1 = 270◦ and v̂ i = 90◦ , then add vertices of part2a to V P (green circle 6 in Fig. 18).
(c) If ei−1,i ∈ E(R)in and ei+1,i+2 /∈ E(R)in , then

• If v̂ i+1 = 90◦ and v̂ i = 90◦ or 180◦ , then add vertices of part2c to V P (orange circles 2 and 7 in Fig. 17 and 
Fig. 18, respectively).

• If v̂ i+1 = 90◦ and v̂ i = 270◦ , then add vertices of part2d to V P (red circle 1 in Fig. 18).
• If v̂ i+1 = 180◦ and v̂ i = 90◦ or 180◦ , then add vertices of part2c to V P (orange circles 5 and 8 in Fig. 18 and 

Fig. 19, respectively).
• If v̂ i+1 = 180◦ and v̂ i = 270◦ , then add vertices of part2d to V P (red circle 3 in Fig. 18).
• If v̂ i+1 = 270◦ and v̂ i = 90◦ or 180◦ , then add vertices of part2a to V P (green circles 7 and 10 in Fig. 18).

(d) If ei−1,i ∈ E(R)in and ei+1,i+2 ∈ E(R)in , then
• If v̂ i+1 = 90◦ and v̂ i = 90◦ or 180◦ , then add vertices of part2c to V P (orange circles 3 and 4 in Fig. 18)
• If v̂ i+1 = 90◦ and v̂ i = 270◦ , then add vertices of part2d to V P (red circle 2 in Fig. 18).
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Fig. 19. Different kinds of part2 shown in colored circles in polygon P2.

• If v̂ i+1 = 180◦ and v̂ i = 90◦ or 180◦ , then add vertices of part2a to V P (green circle 2 and 4 in Fig. 17).
• If v̂ i+1 = 180◦ and v̂ i = 270◦ , then add vertices of part2b to V P (purple circles 2 and 3 in Fig. 17).
• If v̂ i+1 = 270◦ and v̂ i = 90◦ or 180◦ , then add vertices of part2a to V P (green circles 3 and 11 in Fig. 17 and 

Fig. 18, respectively)
• If v̂ i+1 = 270◦ and v̂ i = 270◦ , then add vertices of part2b to V P (purple circle 1 in Fig. 17).

6. Go to next vertex vi in V ′
P .

After traversing all edges of V ′
P and returning to v1, the process is concluded. The constructed polygon is shown in Fig. 20.

Appendix B

In this section, we explain the polynomial complexity of Lemma 7 in detail. When in an orthogonal polygon there is only 
horizontal or only vertical cameras, we show that the linear programming of restricted MLSCk problem is equivalent to a 
linear programming whose equation are difference of two variables. We refer to this programming by LD P . LD P is a special 
case of linear feasibility problem whose equations are difference of two variables (xi − yi ≤ wi ). LD P can be modeled to 
finding the shortest path in a graph. When all wi ’s are integer, there is an integral solution for LD P which can be found in 
polynomial time using Bellman-Ford algorithm.

We explain how to change the linear programming of restricted MLSCk problem to LD P . Let C be the set of the sliding 
k-transmitters in an optimal solution of the relaxed MLSCk problem, where the density of the sliding k-transmitter ci is di . 
We sort C in the following way, reindex its members as c1, c2, ..., c|C | and call it C ′:
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Fig. 20. Constructing P from P ′ .

1. First, the horizontal sliding k-transmitters from left to right, and for the ones with the same y-coordinates from up to 
down.

2. Then, the vertical sliding k-transmitters from up to down, and for the ones with the same x-coordinates from left to 
right.

For each p ∈P(P ), let V ′(p) be the set of all sliding k-transmitter ci ∈ C ′ such that p ∈ V∗k(ci). We define a new variable d∗
i

for each ci ∈ C ′ . d∗
i is 

∑i
j=1 d j and has no effect on the optimal solution (assume that d∗

0 = 0). So, the linear programming 
of restricted MLSCk problem is rewritten as below such that r(p) and l(p) are indexes of the first and the last members of 
V ′(p), respectively.

min.

|C ′|∑
i=1

(d∗
i − d∗

i−1)|ci | (10)

d∗
r(p) − d∗

l(p)−1 ≥ 1 ∀p ∈ P(P ) (11)

d∗
i − d∗

i−1 ≥ 0 ∀1 ≤ i ≤ |C ′| (12)

d∗
i − d∗

i−1 ≤ 1 ∀1 ≤ i ≤ |C ′| (13)

This programming can be divided to smaller programming such that in each of them we consider the sliding k-
transmitters between two vertical or two horizontal lines. Let C(t) ⊆ C ′ be the set of all sliding k-transmitters between 
each two vertical or two horizontal lines. So, we have the following LD P which has integral solution.

min. d∗
|C(t)| − d∗

0 (14)

s.t. d∗
r(p) − d∗

l(p)−1 ≥ 1 ∀p ∈ P(P ) (15)

d∗
i − d∗

i−1 ≥ 0 ∀1 ≤ i ≤ |C(t)| (16)

d∗
i − d∗

i−1 ≤ 1 ∀1 ≤ i ≤ |C(t)| (17)
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