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Abstract. The spread of influence in social networks is studied in two
main categories: the progressive model and the non-progressive model
(see e.g. the seminal work of Kempe, Kleinberg, and Tardos in KDD
2003). While the progressive models are suitable for modeling the spread
of influence in monopolistic settings, non-progressive are more appropri-
ate for modeling non-monopolistic settings, e.g., modeling diffusion of
two competing technologies over a social network. Despite the extensive
work on the progressive model, non-progressive models have not been
studied well. In this paper, we study the spread of influence in the non-
progressive model under the strict majority threshold: given a graph G
with a set of initially infected nodes, each node gets infected at time τ
iff a majority of its neighbors are infected at time τ − 1. Our goal in the
MinPTS problem is to find a minimum-cardinality initial set of infected
nodes that would eventually converge to a steady state where all nodes
of G are infected.
We prove that while the MinPTS is NP-hard for a restricted family of
graphs, it admits an improved constant-factor approximation algorithm
for power-law graphs. We do so by proving lower and upper bounds
in terms of the minimum and maximum degree of nodes in the graph.
The upper bound is achieved in turn by applying a natural greedy algo-
rithm. Our experimental evaluation of the greedy algorithm also shows
its superior performance compared to other algorithms for a set of real-
world graphs as well as the random power-law graphs. Finally, we study
the convergence properties of these algorithms and show that the non-
progressive model converges in at most O(|E(G)|) steps.

1 Introduction

Studying the spread of social influence over in networks under various propa-
gation models is a central issue in social network analysis[18, 12, 27, 32]. This
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issue plays an important role in several real-world applications including viral
marketing [5, 13, 30, 23]. As categorized by Kempe et al. [23], there are two main
types of influence propagation models: the progressive and the non-progressive
models. In progressive models, infected (or influenced) vertices will remain in-
fected forever, but in the non-progressive model, under some conditions, infected
vertices may become uninfected again. In the context of viral marketing and
diffusion of technologies over social networks, the progressive model captures
the monopolistic settings where one new service is propagated among nodes of
the social network. On the other hand, in non-monopolistic settings, multiple
service providers might be competing to get people adopting their services, and
thus users may switch among two or more services back and forth. As a result, in
these non-monopolistic settings, the more relevant model to capture the spread
of influence is the non-progressive model [20, 4, 14, 22].

While the progressive model has been studied extensively in the literature
[23, 31, 19, 3, 8–10], the non-progressive model has not received much attention
in the literature. In this paper, we study the non-progressive influence models,
and report both theoretical and experimental results for our models. We focus on
the the strict majority propagation rule in which the state of each vertex at time
τ is determined by the state of the majority of its neighbors at time τ − 1. As
an application of this propagation model, consider two competing technologies
(e.g. IM service) that are competing in attracting nodes of a social network
to adopt their service, and nodes tend to adopt a service that the majority
of their neighbors already adopted. This type of influence propagation process
can be captured by applying the strict majority rule. Moreover, as an illustrative
example of the linear threshold model [23], the strict majority propagation model
is suitable for modeling transient faults in fault tolerant systems [16, 28, 17], and
also used in verifying convergence of consensus problems on social networks [26].
Here we study the non-progressive influence models under the strict majority
rule. In particular, we are mainly interested in the minimum perfect target set
problem where the goal is to identify a target set of nodes to infect at the
beginning of the process so that all nodes get infected at the end of the process.
We will present approximation algorithms and hardness results for the problem
as well experimental evaluation of our results. As our main contributions, we
provide improved upper and lower bounds on the size of the minimum perfect
target set, which in turn, result in improved constant-factor approximations for
power-law graphs. Finally, we also study the convergence rate of our algorithms
and report preliminary results. Before stating our results, we define the problems
and models formally.

Problem Formulations. Consider a graph G(V,E). Let N(v) denote the set
of neighbors of vertex v, and d(v) = |N(v)|. Also, let ∆(G) and δ(G) denote
the maximum and minimum degree of vertices in G respectively. A 0/1 initial
assignment is a function f0 : V (G) → {0, 1}. For any 0/1 initial assignment f0,
let fτ : V (G) → {0, 1} (τ ≥ 1) be the state of vertices at time τ and t(v) be the
threshold associated with vertex v. For the strict majority model, the threshold

t(v) = ⌈d(v)+1
2 ⌉ for each vertex v.



On the Non-progressive Spread of Influence through Social Networks 3

In the non-progressive strict majority model:

fτ (v) =

{
0 if

∑
u∈N(v) fτ−1(u) < t(v)

1 if
∑

u∈N(v) fτ−1(u) ≥ t(v) .

In the progressive strict majority model:

fτ (v) =

{
0 if fτ−1(v) = 0 and

∑
u∈N(v) fτ−1(u) < t(v)

1 if fτ−1(v) = 1 or
∑

u∈N(v) fτ−1(u) ≥ t(v) .

Strict majority model is related to the linear threshold model in which t(v) is

chosen at random and not necessarily equal to ⌈d(v)+1
2 ⌉.

A 0/1 initial assignment f0 is called a perfect target set (PTS) if for a finite τ ,
fτ (v) = 1 for all v ∈ V (G), i.e., the dynamics will converge to a steady state of
all 1’s. The cost of a target set f0, denoted by cost(f0), is the number of vertices
v with f0(v) = 1. The minimum perfect target set (MinPTS) problem is to find a
perfect target set with minimum cost. The cost of this minimum PTS is denoted
by PPTS(G) and NPPTS(G) respectively for progressive and non-progressive
models. This problem is also called target set selection [1]. Another variant of
this problem is the maximum active set problem [1] where the goal is to find at
most k nodes to activate (or infect) at time zero such that the number of finally
infected vertices is maximized.

A graph is power-law if and only if its degree distribution follows a power-law
distribution asymptotically. That is, the fraction P (x) of nodes in the network
having degree x goes for large number of nodes as P (x) = αx−γ where α is a
constant and γ > 1 is called power-law coefficient. It is widely observed that
most social networks are power-law [11].
Our Results and Techniques. In this paper, we study the spread of influence
in the non-progressive model under the strict majority threshold. We present
approximation algorithms and hardness results for the problem as well exper-
imental evaluation of our results. As our main contributions, we provide im-
proved upper and lower bounds on the size of the minimum perfect target set,
which in turn, result in improved constant-factor approximations for power-
law graphs. In addition, we prove that the MinPTS problem (or computing
NPPTS(G)) is NP-hard for a restricted family of graphs. In particular, we
prove lower and upper bounds on NPPTS(G) in terms of the minimum degree
(δ(G)) and maximum degree (∆(G)) of nodes in the graph, i.e., we show that

2n
∆(G)+1 ≤ NPPTS(G) ≤ n∆(G)(δ(G)+2)

4∆(G)+(∆(G)+1)(δ(G)−2) . The proofs of these bounds

are combinatorial and start by observing that in order to bound NPPTS(G)
for general graphs, one can bound it for bipartite graphs. The upper bound is
achieved in turn by applying a natural greedy algorithm which can be easily
implemented. Our experimental evaluation of the greedy algorithm also shows
its superior performance compared to other algorithms for a set of real-world
graphs as well as the random power-law graphs4. Finally, we study the con-
vergence properties of these algorithms. We first observe that the process will

4 The report of our experimental works is given in the journal version due to space
shortage
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always converges to a fixed point or a cycle of size two. Then we focus on the
convergence time and prove that for a given graph G, it takes at most O(|E(G)|)
rounds for the process to converge. We also evaluate the convergence rate of the
non-progressive influence models on some real-world social networks, and re-
port the average convergence time for a randomly chosen set of initially infected
nodes.

More Related Work. The non-progressive spread of influence under the strict
majority rule is related to the diffusion of two or more competing technologies
over a social network [20, 4, 14, 22]. As an example, an active line of research in
economics and mathematical sociology is concerned with modeling these types
of diffusion processes as a coordination game played on a social network [20,
4, 14, 22]. Note that none of these previous prior work provide a bound for the
perfect target set problem.

It has been brought to our attention that in a relevant unpublished work by
Chang [6], the MinPTS problem on pawer-law graphs is studied and the bound

of NPPTS(G) = O(⌈ |V |
2γ−1 ⌉) is proved under non-progressive majority models

in a power-law graph. But his results do not practically provide any bound
for the strict majority model. We will show that our upper bound is better
and practically applicable for different amounts of γ under the strict majority
threshold.

Tight or nearly tight bounds on the PPTS(G) are known for special types of
graphs such as torus, hypercube, butterfly and chordal rings [15, 16, 24, 28, 29].
The best bounds for progressive strict majority model in general graphs are due
to Chang and Lyuu. In [8], they showed that for a directed graph G, PPTS(G) ≤
23
27 |V (G)|. In [7], they improved their upper bound to 2

3 |V (G)| for directed graphs

and |V (G)|
2 for undirected graphs. However, to the best of our knowledge, there

is no known bound for NPPTS(G) for any type of graphs. In this paper, we will

combinatorially prove that 2n
∆(G)+1 ≤ NPPTS(G) ≤ n∆(G)(δ(G)+2)

4∆(G)+(∆(G)+1)(δ(G)−2) .

It is known that the Target Set Selection problem and Maximum Active Set
problem are both NP-hard in the linear threshold model [23], and approximation
algorithms have been developed for these problems. Kempe et al. [23] and Mossel
and Roch [25] present a (1 − 1

e )-approximation algorithm for the maximum
active set problem by showing that the set of finally influenced vertices as a
function of the originally influenced nodes is submodular. On the other hand,
it has been shown that the target set selection problem is not approximable for
different propagation models [19, 3, 7, 9]. The inapproximability result of Chang
and Lyuu in [7] on the progressive strict majority threshold model is the most
relevant result to our results. They show that unlessNP ⊆ TIME(nO(ln lnn)), no
polynomial time ((1/2− ϵ) ln |V |)-approximation algorithm exists for computing
PPTS(G). To the best of our knowledge, no complexity theoretic results have
been obtained for the non-progressive models.

The problem of maximizing social influence for specific family of graphs has
been studied under the name of dynamic monopolies in the combinatorics lit-
erature [15, 16, 24, 28, 29, 7, 1, 6]. All these results are for the progressive model.
The optimization problems related to the non-progressive influence models are
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not well-studied in the literature. The one result in the area is due to Kempe
et al. [23] who presented a general reduction from non-progressive models to
progressive models. Their reduction, however, is not applicable to the perfect
target set selection problem.

2 Non-Progressive Spread of Influence in General Graphs

In this section, we prove lower bound and upper bound for minimum PTS in
graphs, and finally show that finding the minimum PTS in general graphs is
NP-Hard.
Lower bound. The following theorem shows that if we have some lower bound
and upper bound for minimum Perfect Target Set in bipartite graphs then these
bounds could be generalized to all graphs (Theorem 1).

Lemma 1. If α|V (H)| ≤ NPPTS(H) ≤ β|V (H)| for every bipartite graph H
under strict majority threshold, then α|V (G)| ≤ NPPTS(G) ≤ β|V (G)| under
strict majority threshold for every graph G.

The following lemma shows characteristics of PTSs in some special cases.
These will be used in proof of our theorems.

Lemma 2. Consider the non-progressive model and let G = (X,Y ) be a bipar-
tite graph and f0 be a perfect target set under strict majority threshold. For every
S ⊆ V (G) if

∑
v∈S∩X f0(v) = 0 or

∑
v∈S∩Y f0(v) = 0, then there exists at least

one vertex u in S such that dS(u) ≤ d(u)− t(u).

If the conditions of previous lemma hold, we can obtain an upper bound for
number of edges in the graph. Following lemma provides this upper bound.
This will help us finding a lower bound for NPPTS of graphs. The function
t : V (G) → N may be any arbitrary function but here it is interpreted as the
threshold function.

Lemma 3. Consider a graph G with n vertices. If for every S ⊆ V (G) there
exists at least one vertex v for which dS(v) ≤ d(v) − t(v), then |E(G)| ≤∑

u∈V (G)(d(u)− t(u)).

The following theorem shows that for every bipartite graph G, NPPTS(G) ≥
2|V (G)|
∆(G)+1 . Lemma 1 generalizes this theorem to all graphs. Also, Lemma 4 shows

that this bound is tight. In the following, the induced subgraph of G with a
vertex set S ⊆ V (G) is denoted by G[S].

Theorem 1. For every bipartite graph G = (X,Y ) of order n, NPPTS(G) ≥
2n

∆(G)+1 .

Proof. Let f0 be an arbitrary PTS for G. Partition the vertices of graph G into
three subsets BX , BY and W as follows.

BX = {v ∈ X | f0(v) = 1}
BY = {v ∈ Y | f0(v) = 1}
W = {v ∈ V (G) | f0(v) = 0}
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Consider the induced subgraph of G with vertex set BX ∪W and assume that
S ⊆ BX∪W . For every vertex v ∈ Y ∩S, we have f0(v) = 0. So By Lemma 2, for
every S ⊆ BX ∪W there is at least one vertex u such that dS(u) ≤ d(u)− t(u).
By Lemma 3, this implies that G[BX ∪W ] has at most

∑
u∈BX∪W (d(u)− t(u))

edges. Similarly we can prove that G[BY ∪W ] has at most
∑

u∈BY ∪W (d(u)−t(u))
edges. Let eW be the number of edges in G[W ], eWX be the number of edges
with one end point in BX and the other end point in W and eWY be the number
of edges with one end point in BY and the other end point in W . we have:

eWX + eW ≤
∑

v∈BX∪W

(d(v)− t(v))

eWY + eW ≤
∑

v∈BY ∪W

(d(v)− t(v))

and so,

eWX + eWY + 2eW ≤
∑

v∈V (G)

(d(v)− t(v)) +
∑
v∈W

(d(v)− t(v))

The total degree of vertices in W is
∑

v∈W d(v) = eWX + eWY + 2eW . Thus∑
v∈W

d(v) ≤
∑

v∈V (G)

(d(v)− t(v)) +
∑
v∈W

(d(v)− t(v))

If we denote the set of vertices for which f0 is equal to 1 by B, we have∑
v∈W

(2t(v)− d(v)) ≤
∑
v∈B

(d(v)− t(v)) (1)

For every vertex v, t(v) ≥ d(v)+1
2 , so

|W | ≤
∑
v∈B

d(v)− 1

2
⇒ |W | ≤ ∆− 1

2
(|B|)

⇒ |B| ≥ 2n

∆+ 1

And the proof is complete. �

We now show that the bound in Theorem 1 is tight.

Lemma 4. For infinitely many n’s, there exists a 2d + 1-regular graph with n
vertices such that NPPTS(G) = n

d+1 under strict majority rule.

Upper bound. In this section, we present a greedy algorithm which gives an
upper bound for NPPTS(G).

Theorem 2. For every graph G of order n, NPPTS(G) ≤ n∆(δ+2)
4∆+(∆+1)(δ−2) un-

der strict majority threshold.
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Algorithm 1 Greedy NPPTS

sort the vertices in G in ascending order of their degrees as the sequence v1, . . . , vn.
for i = 1 to n do

whiteadj[vi] = 0
blocked[vi] = 0

end for
for i = 1 to n do

for each u ∈ N(vi) do
if whiteadj[u] = d(u)− t(u) then

blocked[vi] = 1
end if

end for
if (blocked[vi] = 1) then

f0(v) = 1
else

f0(v) = 0
for each u ∈ N(vi) do

whiteadj[u]+ = 1
end for

end if
end for

Algorithm 1 guarantees this upper bound. This algorithm gets a graph G of
order n and the threshold function t as input and determines the values of f0
for each vertex.

Lemma 5. The algorithm Greedy NPPTS finds a Perfect Target Set for non-
progressive spread of influence.

Lemma 6. For every graph G of order n, Greedy NPPTS guarantees the upper

bound of n∆(δ+2)
4∆+(∆+1)(δ−2) for NPPTS(G) under strict majority threshold where

∆ and δ are maximum and minimum degree of vertices respectively.

The approximation factor of the algorithm follows from previous lemma and the
lower bound provided by Theorem 1:

Corollary 1. The Greedy NPPTS algorithm is a ∆(∆+1)(δ+2)
8∆+2(∆+1)(δ−2) approximation

algorithm for NPPTS problem.

NP-Hardness. In this section, we use a reduction from the Minimum Dominat-
ing Set problem (MDS) [2] to prove the NP-hardness of computing NPPTS(G).

Theorem 3. If there exists a polynomial-time algorithm for computing NPPTS(G)
for a given graph G under the strict majority threshold, then P = NP .

3 Non-Progressive Spread of Influence in Power-law
graphs

In this section, we investigate the non-progressive spread of influence in power-
law graphs, and show that the greedy algorithm presented in the previous section
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is indeed a constant-factor approximation algorithm for power-law graphs. For
each natural number x, we assume that the number of vertices with degree x is
proportional to x−γ and use α as the normalization coefficient. The value of γ,
known as power-law coefficient, is known to be between 2 and 3 in real-world
social networks . We denote the number of vertices of degree x by P (x) = αx−γ .
Let n be the number of vertices of graph, so we have:

n =
∞∑
x=1

αx−γ = αζ(γ) ⇒ α =
n

ζ(γ)
,

where ζ is the Riemann Zeta function [21].
Lower bound. Consider a power-law graph G with a threshold function t and
a perfect target set f0. Denoting the set of initially influenced vertices by B and
the rest of the vertices by W , from the Equation 1, we have:∑

v∈W

(2t(v)− d(v)) ≤
∑
v∈B

(d(v)− t(v)).

The maximum cardinality of W is achieved when the degree of all vertices in B
is greater than or equal to the degree of all vertices in W . In this case, assume
that the minimum degree of vertices in B is k and 0 ≤ p ≤ 1 is the proportion
of the vertices of degree k in B, so under strict majority threshold we have:

k−1∑
x=1

αx−γ + (1− p)αk−γ ≤ |W | ≤
∑
v∈W

(2t(v)− d(v))

≤
∑
v∈B

(d(v)− t(v)) ≤
∞∑

x=k+1

αx−γ(
x− 1

2
) + pαk−γ k − 1

2

⇒
k−1∑
x=1

x−γ + (1− p)k−γ ≤
∑∞

x=k+1(x
1−γ − x−γ) + pk−γ(k − 1)

2

⇒ζ(γ)− ζ(γ, k − 1) + (1− p)k−γ

≤ ζ(γ − 1, k)− ζ(γ, k) + pk−γ(k − 1)

2
.

By estimating the value of Riemann Zeta function, we can estimate the upper
bound of k and lower bound of p for that k to provide a lower bound for |B|.
Assuming that we have the maximum possible value of k and minimum value of
p for that k, then:

|B| ≥
∞∑

x=k+1

αx−γ + αpk−γ =
ζ(γ, k) + pk−γ

ζ(γ)
n.

The estimated values of lower bound for 2 ≤ γ ≤ 2.8 are shown in Figure 1.
Upper bound. Suppose that one has run Greedy NPPTS algorithm under strict
majority threshold on a graph with power-law degree distribution. The follow-
ing theorem shows that unlike general graphs, the Greedy NPPTS algorithm
guarantees a constant factor upper bound on power-law graphs.
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Theorem 4. Algorithm Greedy NPPTS initially influences at most (1+ 1
2γ+1 −

1
2ζ(γ) )n vertices under the strict majority threshold on a power-law graphs of

order n.

Proof. We may assume that the input graph is connected. We prove that the
number of uninfected vertices of degree 1 are sufficient for this upper bound.
Let v be a vertex of degree more than 1 with k adjacent vertices of degree 1 say
u1, u2 . . . uk. If d(v) is odd, it is clear that at least

k
2 of the vertices u1, u2 . . . uk

will be uninfected since k ≤ d(v). Note that according to the greedy algorithm,
the value of f0 for degree 1 vertices are determined before any other vertex. If
d(v) is even, at least k

2 − 1 of vertices u1, u2 . . . uk will be uninfected. Therefore
we have:

NPPTS(G) ≤ n− 1

2
(P (1)−

∞∑
x=1

P (2x))

≤ n− 1

2
(α

1

1γ
− α

∞∑
x=1

1

(2x)γ
)

= n− α

2
(1− 1

2γ
ζ(γ)) = n(1 +

1

2γ+1
− 1

2ζ(γ)
).

�

By previous theorem, we conclude that the Greedy NPPTS algorithm is
a constant-factor approximation algorithm on power-law graphs under strict
majority threshold. The lower bound and upper bound for different values of γ
are shown in Figure 1. As you can see our algorithm acts optimally on social
networks with large value of power-law coefficient since upper and lower bound
diagram meet each other for these values of the power-law coefficient.
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Fig. 1. Values of upper bound and lower bound in power-law graphs
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4 Convergence Issues

Let the state graph H of a non-progressive spread of influence process for graph
G be as follows: Each node of this graph represents one of possible states of
the graph. An edge between two states A and B in H models the fact that
applying one step of the influence process on state A changes the state to state
B. First of all, one can easily see that the non-progressive model may not result
to a singleton steady state for any dynamics. To see this, consider the following
example: a cycle with 2k vertices C = v1v2...v2k and at time 0 infect vertices
with odd indices. In this case, the process will oscillate between exactly two
states. In fact, one can show a general theorem that any dynamics will converge
to either one or two states:

Theorem 5. The non-progressive spread of influence process on a graph reaches
a cycle of length of at most two.

Using this intuition, one can define the convergence time of a non-progressive
influence process under the strict majority rule as the time it takes to converge to
a cycle of size of two states, i.e., the convergence time is the minimum time T at
which fT (v) = fT+2(v) for all vertices v ∈ V (G). For a set S of initially infected
vertices, let ctG(S) to be the convergence time of the non-progressive process
under the strict majority model(T ). In the following theorem, we formally prove
an upper bound of O(|E(G)|) for this convergence time:

Theorem 6. For a given graph G and any set S ⊆ V (G), we have ctG(S) =
O(|E(G)|).

The above theorem is tight i.e. there exists a set of graphs and initial states
with convergence time of Ω(|E(G)|). In power-law graphs since average degree is
constant, the number of edges is O(|V |) and thus the convergence time of these
graphs is O(|V |).

Finally, we study convergence time of non-progressive dynamics on several
real-world graphs, and observe the fast convergence of such dynamics on those
graphs.

5 Conclusions

In this paper, we study the minimum target set selection problem in the non-
progressive influence model under the strict majority rule and provide theoretical
and practical results for this model. Our main results include upper bound and
lower bounds for these graphs, hardness and an approximation algorithm for this
problem. We also apply our techniques on power-law graphs and derive improved
constant-factor approximation algorithms for this kind of graphs.

An important follow-up work is to study the minimum perfect set problem for
non-progressive models under other influence propagation rules, e.g. the general
linear threshold model. It is also interesting to design approximation algorithms
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for other special kinds of complex graphs such as small-world graphs. Another
interesting research direction is to study maximum active set problem for non-
progressive models.
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