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Abstract

In Spatial Voting Theory, distortion is a measure of how good
the winner is. It is proved that no deterministic voting mecha-
nism can guarantee a distortion better than 3, even for simple
metrics such as a line. In this study, we wish to answer the
following question: how does the distortion value change if
we allow less motivated agents to abstain from the election?
We consider an election with two candidates and suggest an
abstention model, which is a more general form of the absten-
tion model proposed by Kirchgässner (2003). We define the
concepts of the expected winner and the expected distortion
to evaluate the distortion of an election in our model. Our
results fully characterize the distortion value and provide a
rather complete picture of the model.

1 Introduction
The goal in Social Choice Theory is to design mechanisms
that aggregate agents’ preferences into a collective decision.
Voting is a well-studied method for aggregating preferences
which has numerous applications in multi-agent systems.
Roughly, a voting mechanism takes the preferences of the
agents over a set of alternatives as input and selects one of
the alternatives as the winner.

One approach to estimate the quality of a voting mecha-
nism is to use the utilitarian view which assumes that each
agent has cost over the alternatives. For example, spatial
models, locate the voters and the alternatives in a finite met-
ric space M, and the cost of alternative X for voter vi is
equal to their distance. Considering these costs, the opti-
mal candidate is defined to be the candidate that minimizes
the social cost. Ideally, we would like the optimal candidate
to be the winner; however, since voting mechanisms only
take the ordinal preferences of voters, it is reasonable to ex-
pect that the winner is not always optimal. The question then
arises: how good is the winner, i.e., what is the worst-case
ratio of the social cost of the winner to the social cost of the
optimal candidate? This ratio is called the distortion value of
a voting mechanism. It is known that no deterministic voting
mechanism can guarantee a distortion better than 3, even for
simple metrics such as a line. To see this, consider the ex-
ample shown in Figure 1. In this example, candidate L is the
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optimal candidate, and under the plurality voting rule candi-
date R is the winner. Thus, the distortion value is

0.51(0.5− ε) + 0.49 · 1
0.51(0.5 + ε)

' 3.

L R

}

51%49%

ε

Figure 1: An example with distortion value 3.

The example of Figure 1 shows the lower-bound of 3 on
the distortion value. However, it seems unrealistic in some
ways. Although the voters located near the point 0.5 are
closer to R, they have a very low incentive to vote for R,
since their costs for both candidates are almost equal. On
the other hand, agents located at 0 have a strong motivation
to vote for L. In fact, if voters are allowed to abstain (which
is a natural assumption in many real-world elections, espe-
cially in large elections), we expect L to be the winner rather
than R.

In this study, our goal is to tackle this problem: how does
the distortion value change if we allow less motivated agents
to abstain from voting?

1.1 Abstention
Scientists have long studied the factors affecting participa-
tion in an election. In particular, Wolfinger and Rosenstone
(1999) argue that better educated and more informed vot-
ers participate with a higher probability, or Lijphart (1997)
discusses that the voters on the left side of the political spec-
trum participate less frequently than the ones on the right.
Similarly, the decision to vote may rely on variables such
as income level or the sense of civic duty (Wolfinger and
Rosenstone 1980).

Traditionally, both game theoretic and decision theoretic
models of turnout have been proposed. In the heart of most
of these models lies the assumption that there are costs for
voting 1. These costs include the costs of collecting and pro-

1There are other decision theoretic explanations of abstention
that do not rely on costs, e.g., see (1997).



cessing information, waiting in the queue and voting itself.
Presumably, if a voter decides to abstain, she does not have
to pay these costs. Thus, a rational voter must receive utility
from voting. There is evidence suggesting that voters behave
strategically when deciding to vote and take the costs and
benefits into account. For example, Blais (2000) finds that
the closeness of elections influences the turnout; or Riker
and Ordeshook (1968) show that the turnout is inversely re-
lated to voting costs.

Apart from social-psychological traits, spatial models
of voting suggest that voters’ abstention may stem from
their ideological distances from the candidates. The work
of Downs (1957) initiated this line of research. He argues
that in a two-candidate election under the majority rule,
the choice between voting and abstaining is related to the
voter’s comparative evaluation of the candidates. Riker and
Ordeshook (1968) improve this model by reformulating the
original equation to incorporate other social and psycholog-
ical factors.

Many empirical studies in the spatial theory of abstention
frequently suggest that citizens are more likely to abstain
when they feel indifferent toward the candidates or alien-
ated from them. However, the models introduced by Downs
(1957) and Riker and Ordeshook (1968) are only capable
of representing the indifference-based abstention which oc-
curs when the difference between the costs of candidates
for a voter is too small to justify voting costs. On the other
hand, these models cannot justify alienation-based absten-
tion, which occurs when a voter is too distant from the
alternatives to justify voting costs. To alleviate this, some
studies argue that the relative distance plays a more crit-
ical role than the absolute distance (Kirchgässner 2003;
Geys 2006).

1.2 Our Work
In this paper, we wish to study the effect of abstention on
the distortion value. To represent abstention, we consider
a simple spatial model, which is a more general form of
the model suggested by Kirchgässner (2003). In this model,
there are two candidates, and the voters decide whether to
vote or abstain based on a comparison between the cost (i.e.,
distance) of their preferred alternative and the cost of the
other alternative. We define the concepts of expected win-
ner and expected distortion to evaluate the distortion of an
election in our model. Our results fully characterize the dis-
tortion value and provide a complete picture of the model.
For the special case that our model conforms exactly to that
of (Kirchgässner 2003), we show that the distortion of the
expected winner is upper bounded by 1.522. We also give
an almost tight upper bound on the expected distortion value
of big elections.

Finally, we generalize our results to include arbitrary met-
ric spaces. We show that the same upper bounds we obtained
on the distortion value for the line metric also work for arbi-
trary metric space.

1.3 Related Work
The utilitarian view, which assumes all of the voters have
costs for each alternative, is a well-studied approach in wel-

fare economics (Roemer 1998; Ng 1997). This viewpoint
has received attention from the AI community during the
past decade (Procaccia and Rosenschein 2006; Boutilier et
al. 2015). Procaccia and Rosenschein (2006) first introduced
distortion as a benchmark for measuring the efficiency of
a social choice rule in utilitarian settings. The worst-case
distortion of many social choice functions is shown to be
high. However, imposing some mild constraints on the cost
functions yields strong positive results. One of these as-
sumptions, which is reasonable in many political and social
settings, is the spatial assumption, which assumes that the
agent costs form a metric space. (Enelow and Hinich 1984;
Merrill and Grofman 1999).

Anshelevich, Bhardwaj and Postl (2015) were first to an-
alyze the distortion of ordinal social choice functions when
evaluated for metric preferences. For plurality, Borda, and
k-approval rules, they prove that the worst case distortion
is unbounded. On the positive side, they show that for the
Copeland rule, the distortion value is at most 5. They also
prove the lower bound of 3 for any deterministic mechanism.
They conjecture that the worst-case distortion of Ranked
Pairs social choice rule meets this lower-bound, which is
later refuted by Goel, Krishnaswamy, Anilesh, and Muna-
gala (2017).

Anshelevich and Postl (2017) consider randomized social
choice rules. The output of such rules is a probability distri-
bution over the set of alternatives rather than a single win-
ning alternative. They show that for α-decisive metric spaces
2 any randomized rule has a lower-bound of 1 + α on the
distortion value. For the case of two alternatives, they pro-
pose an optimal algorithm with the expected distortion of at
most 1+α. Cheng et al. (2017b) characterized the positional
voting rules with constant expected distortion value (inde-
pendent of the number of candidates and the metric space).
Cheng et al. (2017a) consider the setting that the candidates
are drawn independently from the population of voters and
prove the tight bound of 1.1716 for the distortion value in a
line metric and an upper-bound of 2 for an arbitrary metric
space.

In addition to the studies mentioned in Section 1.1, many
other studies consider the effects of abstention in various
types of elections. For example, many voting mechanisms
observe a common flaw, which states that a voter may ob-
tain a better outcome by not voting (Fishburn and Brams
1983). This phenomenon is known as the no-show paradox.
In a seminal paper, Moulin (1988) shows that every Con-
dorcet consistent method is susceptible to the no-show para-
dox. Desmedt and Elkind in (2010) propose a game theoretic
analysis of the plurality voting with the possibility of ab-
stention and characterize the preference profiles that admit
a pure Nash equilibrium. Rabinovich et al. (2015) consider
the computational aspects of iterative plurality voting with
abstention.

2A metric space is α-decisive, if for every voter, the cost of
her preferred choice is at most α times the cost of her second best
choice.



2 Preliminaries
Every election E consists of two ingredients: a set V of n
voters and a set C of two candidates. We denote the i’th
voter by vi, and the candidates by L and R. Furthermore,
we suppose that the candidates and the voters are embedded
in a finite metric space M. Unless explicitly stated other-
wise, we suppose thatM is a line, and L and R are located
at points 0 and 1, respectively. For each voter vi, we refer to
her location by xi. Moreover, we denote by di,X, the distance
between voter vi and candidate X ∈ {L,R}.
Definition 2.1. For every candidate X ∈ {L,R}, we define
the average social cost of X as

cost(X) =

∑
i di,X
n

.

The optimal candidate is the candidate that minimizes the
average social cost, i.e.,

arg min
X∈C

cost(X).

We consider a simple scenario where the winner is elected
via the majority rule (in case of a tie, the winner is deter-
mined by tossing a fair coin). Furthermore, we suppose that
each voter either abstains or votes for one of the candidates.
In Section 2.1 we give a formal description of the voting
behavior of the agents.

2.1 Voting Behavior of individuals
As mentioned, we employ a simple probabilistic model,
where each voter independently decides whether to abstain
or participate by evaluating her distances from the candi-
dates. Fix a voter vi and let X be the candidate who is closer
to vi inM and X̄ be the other candidate. We suppose that vi
votes sincerely for her preferred candidate X with a proba-
bility pi, where pi is a function of di,X and di,X̄, and abstains
with probability 1− pi.

Denote by f the probability function that pi is derived
from, i.e., pi = f(di,X, di,X̄). Since f represents the prob-
ability of voting, we expect f to satisfy certain axiomatic
assumptions. Recall that in the spatial voting models, there
are two crucial sources of abstention:

i Indifference-based Abstention (IA): the smaller the dif-
ference between the distances of a voter from the candi-
dates is, the less likely it is that she casts a vote.

ii Alienation-based Abstention (AA): the further a voter
is located from the candidates, the less likely it is that she
casts a vote.

To illustrate, for the voters in Figure 2, we have:

• Voters v1, v2, and v3 prefer L and voters v5 and v6 prefer
R.

• Voter v1 has a strong incentive to cast a vote since her cost
for L is zero.

• Voter v4 always abstains, since her costs for both the can-
didates are equal (IA).

• For voters v2 and v3, we have p2 ≥ p3, since d2,L ≤ d3,L,
and d2,R−d2,L≥d3,R−d3,L (IA,AA).

L R

v1 v2 v3 v4 v5 v6

Figure 2: A simple election instance.

• For voters v5 and v6, we have p5 ≥ p6, since v6 is more
alienated (AA).
As mentioned, the models of Downs (1957) and Riker

and Ordeshook (1968) are only capable of explaining the
Indifference-based abstention, since they only consider the
absolute difference between the distances of the candidates
to a voter. To resolve this, some recent studies argue that the
relative distance, rather than absolute distance, is relevant.

In this study, we follow the model of Kirchgässner (2003)
which is based on the relative distances. The idea behind
their model is that, the probability that a voter casts a vote
depends on her ability to distinguish between the candidates.
By Weber–Fechner’s law (see (Fechner 2012)), the ability to
distinguish between the candidates depends on their relative
distance to the voter. Formally, the probability pi that voter
vi votes for X is calculated by the following formula:

pi = f(di,X, di,X̄) =
|di,X − di,X̄|
di,X̄ + di,X

. (1)

In this paper, we consider a more general form of Equa-
tion (1) as follows:

pi = ζβ(di,X, di,X̄) =

( |di,X − di,X̄|
di,X̄ + di,X

)β
, (2)

where β is a constant in [0, 1]. Figure 3 shows the behavior
of ζβ for different values of β. As is clear from the figure, for
the smaller values of β, voters are more eager to participate.
In fact, the exponent β can be seen as a quantitative measure
of how much this ideological distance matters. For the spe-
cial case of β = 0, voters always participate in the election,
regardless of their location.

It can be easily observed that for any 0 ≤ β ≤ 1, function
ζβ satisfies all the desired criteria.

Figure 3: ζβ for different values of β.

2.2 The Expected Winner and the Expected
Distortion

As discussed, our assumption is that the majority rule deter-
mines the winner. However, considering the stochastic be-
havior of the voters, the winner is not deterministic, i.e.,



each candidate has a probability of winning. Denote by #X,
the expected number of voters who vote for X. Furthermore,
denote by PX, the probability that candidate X wins the elec-
tion. We define the expected winner of the election as the
candidate with the maximum expected number of votes.

Definition 2.2. For a candidate X ∈ {L,R}, we de-
fine the distortion of X, denoted by D(X) as the ratio
cost(X)/cost(O), where O ∈ {L,R} is the optimal can-
didate.

Note that the distortion value of the optimal candidate is
1. We consider two approaches to evaluate the distortion of
an election E. In the first approach, we define the distortion
of E as the distortion of the expected winner, i.e., D(W),
where W ∈ {L,R} is the expected winner. Another ap-
proach, which is more promising, is to define the distortion
of E as the expected distortion of the winner, over all possi-
ble outcomes, i.e.,

PL ·D(L) + PR ·D(R). (3)

For convenience, we use Ḋ(E) to refer to the distortion value
of E regarding the former approach and D̈(E) to refer to the
distortion value regarding the latter.

We dedicate two separate sections to analyze the distor-
tion value of elections according to both approaches. Even
though the maximum distortion depends on the value of β,
we provide essential tools to analyze the election for any
β ∈ [0, 1].

3 Distortion of the Expected Winner
In this section, we analyze the distortion value of the ex-
pected winner. Recall that the expected winner is the can-
didate with a higher expected number of votes. There are
two reasons why we consider the distortion value of the ex-
pected winner. First, since the number of votes each candi-
date receives is concentrated around its expectation, in elec-
tions with a large number of voters (relative to the number
of candidates), the expected winner has a very high chance
of winning, especially, when there is a non-negligible differ-
ence between the expected number of votes each candidate
receives. Secondly, we use the tight upper-bound on the dis-
tortion value of the expected winner to prove an upper bound
on the expected distortion of the election for the second ap-
proach.

Throughout this section, we assume that the probability
that a voter casts a vote is

ζβ =

( |di,X − di,X̄ |
di,X̄ + di,X

)β
.

Furthermore, we suppose w.l.o.g. that L is the expected win-
ner. Moreover, we assume that the optimal candidate is R,
otherwise the distortion equals 1. We also consider four re-
gions A,B,C and D as illustrated in Figure 4.

In Theorem 3.1 we state the main result of this section.

Theorem 3.1. There exists an election E, such that Ḋ(E) is
maximum, and the voters in E are located in at most three
different locations.

A B C D

L R

0 11
2

Figure 4: Regions A,B,C, and D

In the interest of the space, here, we only present a sketch
of the proof of Theorem 3.1 and leave the details to the full
version of the paper 3 . The basic idea to prove Theorem
3.1 is as follows: we prove that for every election E, there
exists an election instance E′ with the same expected winner,
and Ḋ(E′) ≥ Ḋ(E). Also, the voters in E′ are located in at
most 3 different locations. To show this, we collect the voters
in E by carefully moving them forward and backward via
a sequence of valid displacements, as defined in Definition
3.2.

Definition 3.2. For an election E, define a displacement as
the operation of moving a subset of the voters forward or
backward on the line to a new location. A displacement is
valid if it does not alter the expected winner, and further-
more, does not decrease the distortion value of the expected
winner.

In Lemmas 3.3,3.4, and 3.5 we introduce three sorts of
valid displacement which help us collect the voters. Figure
5, illustrates a summary of these displacements.

Lemma 3.3. Moving a voter vi from xi ∈ A to 0 is a valid
displacement.

L R
A

L R
CB

vjviv′i v′j

L R
B D

Figure 5: Valid displacements introduced in Lemmas 3.3,
3.4, 3.5.

Lemma 3.4. Consider voters vi and vj located respectively
at xi ∈ B and xj ∈ C. Then,

3The full version of the paper is available at
http://ce.sharif.edu/~latifian/files/AAAI19-Full.pdf



• If di,L ≤ dj,R, moving vi to xi + xj − 1/2 and vj to 1/2
is a valid displacement.

• If di,L > dj,R, moving vi to xi − 1 + xj and vj to 1 is a
valid displacement.

Lemma 3.5. Consider voters vi, vj , where xi, xj ∈ B ∪ D
and both vi and vj belong to the same region. Then, moving
both the voters to xi+xj

2 is a valid displacement.

Using these three types of valid displacements, we can
establish an election with the maximum distortion, and the
following structure (see Figure 6): the interior of regions A
and C contain no voter. All the voters are located at three
points, namely xb, xd and xm, where xb ∈ B, xm = 1/2,
and xd ∈ D. Note that, the maximum distortion value and
the location of xb and xd in the worst-case scenario essen-
tially relies on the value of β in ζβ .

L R

xb xdxm

Figure 6: For any β ∈ [0, 1], there is an election with the
maximum distortion, and the above structure.

3.1 A Tight Upper Bound on Ḋ(·)
In this section, we discuss the value of Ḋ(E), when the prob-
ability function is ζβ and 0 ≤ β ≤ 1.

Let us first consider one of the boundary cases: ζ0. For ζ0,
the probability that a voter casts a vote is( |di,X − di,X̄ |

di,X̄ + di,X

)0

= 1,

independent of her location. Therefore, the same example
demonstrated in Section 1 implies that no upper-bound bet-
ter than 3 can be obtained for Ḋ(E), when the participation
function is ζ0.

Now, consider ζβ , and let E be the election that maxi-
mizes Ḋ(E). As discussed in the previous section, we can
assume w.l.o.g that the voters in E are located at three points,
namely, xb ∈ B, xd ∈ D, and xm = 0.5. Suppose that
the ratio qb of the voters are at xb, the ratio qd of the vot-
ers are at xd, and the ratio qm of the voters are at 1/2
(qb + qd + qm = 1). We have

#L = (1− 2xb)
β
qbn and #R =

(
1

(2xd − 1)β

)
qdn.

Since L is the expected winner, we have

(1− 2xb)
βqbn ≥

(
1

(2xd − 1)β

)
qdn.

On the other hand, we have

cost(L) = qbxb + qdxd + qm/2,

and

cost(R) = qb(1− xb) + qd(xd − 1) + qm/2.

Thus,

Ḋ(E) =
cost(L)

cost(R)

=
qbxb + qdxd + qm/2

qb(1− xb) + qd(xd − 1) + qm/2

=
qbxb + (1− qb − qm)xd + qm/2

qb(1− xb) + (1− qb − qm)(xd − 1) + qm/2

Therefore, in order to find the maximum distortion, we need
to solve the following convex optimization problem:

max
qbxb + (1− qb − qm)xd + qm

2

qb(1− xb) + (1− qb − qm)(xd − 1) + qm
2

s.t. (1− 2xb)
βqb ≥

1− qb − qm
(2xd − 1)β

,

0 ≤ qb, qm ≤ 1,

qm + qb ≤ 1,

0 ≤ xb ≤ 1/2,

1 ≤ xd.

(4)

Now consider another boundary case: ζ1. For ζ1 the answer
to the above convex program is (1+

√
2)2

1+2
√

2
' 1.522, which can

be obtained by choosing qb = 1
2+
√

2
, qm = 0, xb = 0, and

xd = 2+
√

2
2 . A graphical representation of this construction

is shown in Figure 7.

L R

10 2+
√
2

2

1
2+

√
2

1+
√
2

2+
√
2

Figure 7: A tight example for β = 1.

In general for 0 < β < 1, the maximum distortion value
equals the answer of Convex Program (4).

In Figure 8, we show the answer of this program for dif-
ferent values of β. As illustrated in Figure 8, It can be seen
that the minimum possible distortion value is '

√
2. (for

β ' 0.705.)

4 Expected Distortion
Recall that in our second approach, we define the distortion
of an election as the expected distortion of the winner, where
the expectation is taken over random behaviors of the voters.
Throughout this section, we assume that the probability that
a voter casts a vote is

ζβ =

( |di,X − di,X̄ |
di,X̄ + di,X

)β
.



Figure 8: Maximum distortion value for ζβ(0≤β≤1).

Furthermore, we suppose w.l.o.g that candidate R is the op-
timal candidate. Thus, Equation (3) can be rewritten as

D̈(E) = PL
cost(L)

cost(R)
+ PR. (5)

In Theorem 4.1, we prove that there is an election with the
maximum distortion value and a simple structure.

Theorem 4.1. There exists an election E, such that D̈(E)
is maximum, and the voters in E are located in at most four
different locations.

The basic idea to prove Theorem 4.1 is similar to that of
Theorem 3.1; we collect the voters using a sequence of valid
displacements, albeit with a new definition of valid displace-
ment.
Definition 4.2. A displacement is valid, if it does not de-
crease D̈(E).

The procedure of proving that a displacement is valid
for this case is relatively tougher than the previous model.
The reason is that we do not have a closed-form expression
which represents the winning probability of each candidate.
In Lemmas 4.3, 4.4, and 4.5 we explain our tools to discover
valid displacements.
Lemma 4.3. For each voter vi ∈ A, there is a point xi ∈ B
such that moving vi to xi is a valid displacement. Further-
more, for each voter vj ∈ C, there is a point yj ∈ D such
that moving vj to yj is a valid displacement.
Lemma 4.4. Let vi and vj be two voters located respectively
at xi and xj ∈ B. Furthermore, suppose that

ε ≤ xi ≤ xj ≤ 1/2− ε,
where ε is a positive constant. Then, at least one of the fol-
lowing displacements is valid:

• Moving both the voters to xi+xj

2 .
• Moving vi to xi − ε and vj to xj + ε.

Lemma 4.5. Let vi and vj be two voters located respectively
at xi, xj ∈ D. Then, there exists a point x between xi and xj ,
such that moving both the voters to x is a valid displacement.

Figure 9, shows a summary of the displacements de-
scribed in Lemmas 4.3, 4.4 and 4.5 is illustrated. Using these

L R

L R

ε ε

L R

Figure 9: Valid displacements introduced in Lemmas 4.3,
4.4, 4.5.

displacements, one can establish an election with the maxi-
mum distortion, and the following structure (see Figure 10):
the interior of regions A and C contain no voter. All the vot-
ers are located at four different points, namely xl, xb, xm,
and xd, where xl = 0, xb ∈ B, xm = 1/2, and xd ∈ D. The
maximum distortion value and the exact location of xb and
xd in the worst-case scenario essentially relies on the value
of β in ζβ .

R

xb xdxm

L

xl

Figure 10: For any β ∈ [0, 1], there is an election with the
maximum distortion and this structure.

4.1 An Almost Tight Bound on D̈(·)
In this section, we discuss the value of D̈(·), when the prob-
ability function is ζβ with β ∈ [0, 1]. As mentioned, to prove
our upper and lower bounds in this section, we subsequently
use the bounds obtained in Section 3.1. For brevity, we use
Ḋ∗β to refer to the maximum distortion value of the expected
winner for probability function ζβ .

Similar to Section 3.1, we begin with the boundary case
of ζ0. By a similar argument as in Section 3.1, for ζ0 we have
the tight bound of 3 on the value of maximum distortion. For
β > 0, we prove Theorem 4.6 which is the most technical
result of the paper. This theorem provides an asymptotic up-
per bound on the maximum expected distortion for any ζβ
with β ∈ (0, 1].

Theorem 4.6. For any α > 0 and β ∈ (0, 1], the expected
distortion value of every election whose candidates receive



at least
9(1 +

√
1 + α)(1 + α)

8(2 + α− 2
√

1 + α)α

expected number of votes, is at most (1 + 2α)Ḋ∗β .

For instance, for α = 1/6, Theorem 4.6 states that for ev-
ery election whose candidates receive at least 2552 expected
number of votes, the distortion value is upper bounded by
4/3Ḋ∗β which for β = 1 is 4/3Ḋ∗1 ' 2. We complement
Theorem 4.6 by describing how to construct bad examples
with distortion value near Ḋ∗.

Example 1. Consider Convex Program 4, with an addi-
tional constraint that #L ≥ #R(1 + ε), and let Ḋ∗∗ be the
answer of this convex program and E∗∗ be its correspond-
ing election instance. By Chernoff bound, for large enough
value of #L, candidate L almost surely wins the election, i.e.,

lim
#L→∞

Ḋ(E∗∗) = D(L) = Ḋ∗∗.

Note that, the bound provided by Theorem 4.6 is almost
tight; as the election size grows, the upper bounds of Theo-
rem 4.6 tends to the distortion value of the Example 1. How-
ever, for elections with a small number of voters, the distor-
tion value might be larger. For example, consider a simple
scenario where there is one voter located at point 1 + ε ∈ D
and β = 1 (see Figure 11). For this case, the distortion value
is

PL ·
cost(L)

cost(R)
+ PR = PL ·

1 + ε

ε
+ PR

=
ε

1 + 2ε
· 1 + ε

ε
+

1 + ε

1 + 2ε

=
2 + 2ε

1 + 2ε
,

which tends to 2 as ε → 0. We conjecture that this example
is the worst possible scenario and the value of D̈(·) is upper
bounded by 2 for any election with any size while β = 1.

RL

0 1 1 + ε

Figure 11: An example with maximum expected distortion.
D̈(E) tends to 2 as ε tends to 0.

5 General Metric
In this section, we generalize our results for the general met-
ric space. Suppose that the voters and candidates are located
in an arbitrary metricM. By definition, for every voter i and
candidates L,R we have:

• di,L, di,R ≥ 0.

• di,L + di,R ≥ dL,R (triangle inequality).

We suppose without loss of generality that dL,R = 1. For
this case, we prove Theorem 5.1, which extends our results
to general metric spaces. Note that Theorem 5.1 considers
both Ḋ(·) and D̈(·). By this theorem for every 0 ≤ β ≤ 1,
the same upper bounds we obtained on the distortion value
for the line metric also works for any arbitrary metric space.
Theorem 5.1. Let DLβ be the maximum distortion value for
probability function ζβ and line metric, and let DMβ be the
maximum distortion value for probability function ζβ and
arbitrary metric spaceM. Then, we have DLβ ≥ DMβ .

6 Future Directions
In this study, we analyzed the distortion value in a spatial
voting model with two candidates, where the voters were al-
lowed to abstain. The set of results in this paper provides a
rather complete picture of the model. However, the model
we developed in this paper is for two candidate elections.
Therefore, it does not consider the possible challenges that
frequently arise in multi-candidate elections. One future di-
rection is to extend this model to include multi-candidate
elections.

Another interesting open question is to analyze the ex-
pected distortion value of the elections with a small number
of voters. The counter-example in Section 4.1 refutes the ex-
istence of an upper bound better than 2. We believe that this
example is the worst possible scenario. However, no formal
proof is provided.
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