
CCCG 2007, Ottawa, Ontario, August 20–22, 2007

Efficient Visibility Maintenance of a Moving Segment Observer inside a
Simple Polygon

Amir Ali Khosravi∗† Alireza Zarei∗† Mohammad Ghodsi∗†

Abstract

In this paper we consider maintaining the visibility of
a segment observer moving inside a simple polygon. A
practical instance of this problem is to identify the re-
gions of a planar scene illuminated by a fluorescent lamp
while the lamp moves around. We consider both strong
and weak visibility in this paper. Our method is based
on the shortest path tree which builds a linear-sized data
structure in O(n) time, where n is the number of the ver-
tices of the underlying simple polygon P. We first com-
pute VP(st), the initial view of the segment observer st.
Then, as st moves, each change of VP(st) can be com-
puted in O(log2(|V P (st)|)) time when the observer is
allowed to change its direction, and in O(log(|V P (st)|))
time when the observer moves along a given line.

1 Introduction

Two points p and q of a planar scene are visible to or
see each other if pq does not intersect edges of the scene.
The visible region or the visibility polygon of a point p
of a scene P is the set of points in P which are visible
from p and is denoted by VP(p). Two versions of the
visibility polygon are defined for a line segment st inside
a planar scene P. The set of points in P which are
visible from all points of st is called its strong visibility
polygon and is denoted by SVP(st). The set of points in
P which are visible from at least one point of st is called
its weak visibility polygon and is denoted by WVP(st).

There are optimal algorithms that find VP(p),
SVP(st), and WVP(st) of a point p or a line segment
st in a static planar scene P. When P is a simple poly-
gon of n vertices, VP(p), WVP(st), and SVP(st) can
be found in O(n) time [2, 3, 4, 5]. When P is a polyg-
onal domain of n total vertices, VP(p) can be found in
O(n log n) time [8] and WVP(st) can be found in O(n4)
time [6].

Also, there are several efficient algorithms for main-
taining the visibility of a moving point p in planar

∗Computer Engineering Department, Sharif Univer-
sity of Technology, IPM School of Computer Science,
a khosravi@ce.sharif.edu, zarei@mehr.sharif.edu,

ghodsi@sharif.edu
†This work was partially supported by IPM school of computer

science (contract: CS1385-2-01) and Iran Telecommunication Re-
search Center(ITRC)

scenes. Almost all of these methods have a preprocess-
ing phase to build data structures about the visibility
coherence of the scene. These data structures are then
used to apply the changes of VP efficiently as the point
observer moves. There is a trade-off between the pre-
processing time and space and the update time; the
higher preprocessing cost, the lower update time. In
a simple polygon P, changes of VP(p) can be handled
in O(log2 |V P (p)|) time using O(n log n) time to pre-
process P and build a data structure of size O(n) [1].
However, updates can be handled in O(log n) optimal
time if we spend O(n3 log n) and O(n3) preprocessing
time and space, respectively [7].

The above methods which have been presented for a
moving point can be extended and adjusted naively to
maintain WVP(st) or SVP(st) for a moving segment
st. But, to the best of our knowledge, there is no re-
sult on applying and analyzing these approaches or on
directly solving this problem for a moving line segment.
In this paper, we consider the problem of maintaining
WVP(st) and SVP(st) of a segment st inside a simple
polygon. To solve this problem, we use the shortest path
tree as used by Aronov et al. [1]. Our approach leads
to a method with optimal O(n log n) and O(n) prepro-
cessing time and space, respectively. Then, strong or
weak visibility change events are handled in O(log2 n)
time if the observer is allowed to change its movement
direction and in O(log n), if the observer moves along a
given line.

For simplicity purposes, we assume that points of
the scene are in general position (no three points are
collinear), and the observer position can be computed
by a fixed degree algebraic function of time.

2 Segment Visibility in Simple Polygons

In a simple polygon P, a point p may see the whole,
a portion, or nothing of a segment st. These situations
have been shown in Figure 1. The visible portion can be
obtained by drawing the shortest paths from p to s and
t. The region contained between the initial segments
of these two shortest paths is called the visible cone
of p with respect to st and is denoted by VC (p, st).
According to this figure, p is strongly visible to st if st
completely lies inside VC (p, st) (Part A of Figure 1),
p is weakly visible to st if st intersects boundary of

19th Canadian Conference on Computational Geometry, 2007

A B C

pp

s
t

t
s

p

s t

Figure 1: Point-segment visibility.

VC (p, st) (Part B of Figure 1), and otherwise, p is not
visible to st (Part C of Figure 1).

Therefore, having the shortest paths from both end-
points of a segment st to all vertices of a simple poly-
gon P, we can determine the set of strongly visible and
weakly visible vertices from st from which SVP(st) and
WVP(st) can be computed.

It is notable that in a simple polygon, none or a single
connected portion of each edge is weakly (strongly) vis-
ible from a segment. As described by Guibas et al. [3],
the vertices of WVP(st) are of three types:

• Type A: Vertices of P which are weakly visible from
s or t,

• Type B: Vertices produced by drawing a ray from
an endpoint x of st that passes through a visible
vertex v of P and intersects an edge e (denoted by
V (−→xv, e)), and

• Type C: Vertices produced by drawing a ray from
some interior point of st that passes through two
vertices u and v of P and intersects an edge e (de-
noted by V (−→uv, e)).

Part (I) of Figure 2, shows these three types of ver-
tices that may appear in WVP(st). Vertices of SVP(st)
are also of three types as shown in part (II) of Figure 2:

• Type A: Vertices of P which are strongly visible
from s and t,

• Type B: Vertices produced by drawing a ray from
an endpoint x of st that passes through a strongly
visible vertex v of P and intersects an edge e (de-
noted by V (−→xv, e))), and

• Type C: Vertices produced from the intersection of
two rays drawn from s and t that pass through
vertices v and u of P, respectively (denoted by
V (−→sv,

−→
tu)).

We can build the shortest path trees SPT (s) and
SPT (t), from endpoints of st in linear time and by a
linear trace over these trees, WVP(st) can be obtained
in O(n) time [3]. Also, we can obtain SVP(st) in linear
time in a similar method which we omit the details here.

Type B

Type C

Type A

(I) (II)

V (−→sr, e2)

V (−→uv, e1)

s

t

u

v

r
e1

e2

V (−→sr, e)

uv

r

e

s t

V (−→sv,
−→
tu)

Figure 2: Vertex types of SVP and WVP .

Now, assume that st moves inside P along a given
line. In order to maintain and update WVP(st)
and SVP(st), we can monitor changes of SPT (s) and
SPT (t) during this movement. When a point moves
along a line segment inside a simple polygon, the short-
est path tree from it to vertices of polygon does not
change very much. This idea is used in [9] to compute
the shortest path trees of all of the vertices in a simple
polygon, and visibility graph respectively. Whenever
one of the SPT (s) or SPT (t) is changed combinatori-
ally, WVP(st) and SVP(st) must be updated accord-
ingly. Aronov et al. [1] proposed a method for predict-
ing and handling changes of SPT (q) for a moving point
q in a simple polygon. In their method, each change
of SPT (q) is handled in O(log(|V P (q)|)) time when q
moves along a single line and in O(log2(|V (q)|)) when
q is permitted to change its motion direction. So, we
can use this method for handling changes of SPT (s)
and SPT (t). Instead of building WVP and SVP from
scratch, we like to apply only the necessary changes to
WVP(st) and SVP(st), preferably, in logarithmic time.

During the motion, WVP(st) and SVP(st) are
changed continuously while SPT (s) and SPT (t) are
changed in discrete time-stamps. We overcome this
problem by maintaining only the combinatorial struc-
ture of a visibility polygon. We define the combinatorial
structure of a visibility polygon as the sequence of the
vertices of this polygon. Some of these vertices are the
vertices of P which their exact positions are fixed. Oth-
ers lie on the edges of or inside P and belong to some
vertices of P. Examples of such vertices are Types B
and C vertices of strong and weak visibility polygon
of a segment as discussed before. We do not maintain
the exact position of these vertices during the motion.
However, having this sequence of visible vertices, we can
construct the exact visibility polygon by a linear trace
over it.

Lemma 1 Using the sequence of weakly visible vertices
of segment st, we can find WVP(st) in O(|WV P (st)|).

Proof. According to our definition of the sequence of
visible vertices, we only need to compute the exact po-
sition of type B and C vertices in this sequence. For a

CCCG 2007, Ottawa, Ontario, August 20–22, 2007

type B vertex V (−→xv, e) (a type C vertex V (−→uv, e)), we
have the two lines defining this vertex which are the
supporting lines of xv (uv) and edge e. So, this vertex
can be computed in constant time. Therefore, the exact
position of all vertices of WVP(st) can be computed by
a linear trace over the sequence of its vertices. ¤

Lemma 2 Using the sequence of strongly visible
vertices of segment st, we can find SVP(st) in
O(|SV P (st)|).
Proof. We only need to find the exact position of the
type B and C vertices. For a type B vertex V (−→xv, e) (a
type C vertex V (−→sv,

−→
tu)), we have the two lines defining

this vertex which are the supporting lines of xv and edge
e (the supporting lines of sv and tu). So, these vertices
can be computed in constant time. Therefore, exact
position of all vertices of SVP(st) can be computed by
a linear trace over the sequence of its vertices. ¤

Therefore, we use WVP(SVP) for the sequence of
weakly (strongly) visible vertices instead of the exact
portion of visible edges.

In order to update WVP(st) and SVP(st) as st
moves, we claim that it is enough to only track changes
of SPT (s) and SPT (t).

Lemma 3 For a moving line segment st in a simple
polygon, WVP(st) is changed only when SPT (s) or
SPT (t) is changed.

Proof. Trivially, the set of type A vertices of WVP(st)
is changed whenever the set of first level children of s or
t in SPT (s) or SPT (t) is changed. Whenever a type B
or a type C vertex appears in (disappears from) WVP ,
a vertex of P has been disappeared from (appeared in)
VP(s) or VP(t). So, changes of these types of ver-
tices happen only when SPT (s) or SPT (t) is changed.
Therefore, WVP(st) is changed only when SPT (s) or
SPT (t) is changed. ¤

Lemma 4 For a moving line segment st in a sim-
ple polygon, SVP(st) is changed only when SPT (s) or
SPT (t) is changed.

Proof. The changes of SVP(st) corresponds to changes
of SPT (s) and SPT (t) by the same argument as the
above lemma except for one situation: When two type
B vertices are merged and produce one type C vertex as
st moves, or when this scenario happens in reverse or-
der: a type C vertex is splitted into two type B vertices.
In such situations, SPT (s) and SPT (t) are not changed
and we can not predict such events on SVP(st) only by
tracking events of SPT (s) and SPT (t). We solve this
problem by doing a simple extra check when we want to
obtain the exact strong visibility polygon of st based on
the sequence of SVP(st). Assume that two type B ver-
tices V (−→sv, e) and V (

−→
tu, e) have been merged and built

a single type C vertex V (−→sv,
−→
tu) during the motion, but

we did not detect this change to update SVP(st), ac-
cordingly. Then, if we are asked to draw the exact view
of st in its current position, as we trace the sequence of
SVP(st), we detect that the exact position of the two
consecutive vertices V (−→sv, e) and V (

−→
tu, e) on edge e do

not obey their correct order in the sequence of SVP(st).
This is enough to alert us that we have already missed
an event and instead of these two vertices there must be
a single vertex V (−→sv,

−→
tu). So, whereas we may missed

some changes of SVP(st) by only tracking changes of
SPT (s) and SPT (t), but, these missed events are de-
tected whenever we compute the exact view without in-
creasing the complexity of the drawing process. There-
fore, we ignore such events and only handle the events
happened to SPT (s) and SPT (t). ¤

So, as st moves, we only track the events related to
changes of SPT (s) and SPT (t) and apply necessary
changes to WVP(st) and SVP(st) whenever such an
event happens. As discussed by Aronov et al.[1], two
types of events may happen to SPT (q) as a point q
moves inside a simple polygon. The first event type,
named first-level event, occurs when two consecutive
children of the root of SPT (q) become collinear. In
this case, depending on the moving direction of q, one
of these children will be a child of another one. The
second kind of events happens whenever one of the chil-
dren of the root of SPT (q) and one of its children be-
come collinear. The latter child is called the principal
child of the former one. We refer to this type of events
as principal-child event type. In this case, depending on
the movement direction, the principal child becomes a
child of the root of SPT (q) next to its current parent.

We apply required changes to SVP(st) for these two
types of events as follows: Assume that a first-level
event has occurred on SPT (t). This means that two
previously visible vertices u and v from t and t itself
are collinear and as t continues its motion, v will not
remain visible to t anymore. If v is not currently in
SVP(st) this event do not affect this sequence. Oth-
erwise, v must be removed from SVP(st). Also, the
vertex V (

−→
tu, vv′) (v′ is the vertex next to v in P) or

V (
−→
tu,−→sv) which lies between v and u in SVP(st) must

be removed from this sequence. Moreover, based on the
type of the vertex before v in SVP(st) it must be up-
dated as follows: 1) It is a type A vertex, named v′′.
In this case, v′′ must lie before v on P and here a new
vertex V (

−→
tu, v′′v) is added to SVP(st) before v in this

sequence. 2) It is a type B vertex, named V (
−→
tv, e). In

this case, this vertex is removed from SVP(st) and a
new vertex V (

−→
tu, e) is inserted in place of it. 3) It is a

type C vertex, named V (
−→
tv,
−→
su′). In this case, it will be

removed from SVP(st) and a new vertex V (
−→
tu,

−→
su′) is

inserted in place of it.

19th Canadian Conference on Computational Geometry, 2007

Now, assume that a principal-child event has occurred
on SPT (t), meaning that a previously non-visible vertex
v and a visible vertex u from t and t itself are collinear.
If v is not visible to s (it does not exist in WVP(st)),
SVP(st) is not changed. Otherwise, v must be inserted
into SVP(st) in its correct place and this sequence must
be changed accordingly. In this case, it is simple to
verify that u exists in SVP(st) at the event time and
there is either a type B vertex V (

−→
tu, e) or a type C

vertex V (
−→
tu,

−→
su′) in SVP(st). In both cases this vertex

must be removed from SVP(st) and, instead, for the
former, a new vertex V (

−→
tv, e) and for the latter a new

vertex V (
−→
tv,
−→
su′) must be inserted into SVP(st) before v

in this sequence. Also, based on the direction of the edge
vv′ of P (v′ is the vertex next to v in P) a new vertex
V (
−→
tu, vv′) or V (

−→
tu,−→sv) must be added to SVP(st) next

to v in this sequence.
It is simple to show that the above

updates on SVP(st) can be done in
O(max(log(|V P (s)|, log(|V P (t)|, log(|SV P (st)|))
which is O(log n):

Lemma 5 Any visibility change event
on SVP(st) can be computed in
O(max(log(|V P (s)|, log(|V P (t)|, log(|SV P (st)|))
which is O(log n).

Proof. As discussed above, to handle an event we need
to search a vertex in VP(s) or VP(t) and find the posi-
tion of the required changes in SVP(st). Then, the re-
quired changes can be done in constant time. Therefore,
any event can be applied to SVP(st) in O(log(|V P (s)|+
log(|V P (t)|) + log(|SV P (st)|)). Events of SPT (s) and
SPT (t) can also be handled in O(log(|V P (s)|) and
O(log(|V P (t)|)), respectively. Hence, every event is
handled in O(log n) time. ¤

The required changes to WVP(st) are applied in a
similar fashion. Assume that a first-level event has oc-
curred on SPT (t); two previously visible vertices u and
v from t and t itself are collinear and as t continues its
motion v would not be visible to t anymore. If v will re-
main visible from st it is sufficient to add vertex V (−→uv, e)
to WVP(st). Otherwise, v, V (−→uv, e) and V (

−→
tv, e) (if

any) must be removed from WVP(st). Moreover, if
WVP(st) currently contains vertex V (

−→
tu, e), it must be

recomputed based on the new intersection point of the
ray from t to u. Otherwise, V (−→uv, e) must be inserted
in WVP(st) sequence in place v.

To handle a principal-child event on SPT (t), assume
that a previously non-visible vertex v and a visible ver-
tex u from t and t itself are collinear. In this case, v (if it
does not currently exist in WVP(st)) and V (

−→
tu, e) and

V (−→uv, e) vertices must be added to WVP(st) in their
correct positions. Otherwise, we must remove vertex

V (−→uv, e) from WVP(st) and instead, vertex V (
−→
tv, e)(if

v is a reflex vertex) must be inserted into WVP(st).

Lemma 6 Any visibility change event on WVP(st) can
be computed in O(log(|WV P (st)|)) which is O(log n).

Proof. As discussed above, to handle an event we need
to search a vertex in VP(s) or VP(t) and find the po-
sition of the required changes in WVP(st). Also, we
need to check whether a vertex is visible from the seg-
ment st. All of these searches can be done in logarithmic
time. Having the result of these searches, the required
changes can be done in constant time. Events of SPT (s)
and SPT (t) can also be handled in O(log(|V P (s)|) and
O(log(|V P (t)|)), respectively. Hence, every event is
handled in O(log n) time. ¤

Summarizing the above discussions and results, we
have the following theorem:

Theorem 7 A simple polygon P of n vertices and
a given segment st inside it can be preprocessed in
O(n log n) time such that the strong and weak visibility
polygons of st can be updated in O(log n) time for each
change when st moves in a given direction inside P.
Moreover, updates can be computed in O(log2 n) time
whenever st is allowed to change its motion direction.

References

[1] B. Aronov, L. Guibas, M. Teichmann, L. Zhang Visi-
bility Queries in Simple Polygons and Applications. J.
Descrete and Comp. geometry, 27(4):461–483, 2002.

[2] H. A. ElGindy, D. Avis A Linear Algorithm for Com-
puting the Visibility Polygon from a Point. J. Algo-
rithms, 2:186–197, 1981.

[3] L. Guibas, J. Hershberger, D. Leven, M. Sharir, R. Tar-
jan Visibility and Intersection Problems in Plane Ge-
ometry. Proceedings of sym. on Comp. geometry, p1–13,
1986.

[4] D. Lee Visibility of a simple polygon. Vision, Graphics
and Image Processing, 22:207–221, 1983.

[5] B. Chazelle, L. Guibas Visibility of a simple poly-
gon. Discrete & Computational Geometry, 4(6):551–
581, 1989.

[6] S. Suri, J. O’Rourke Worst-Case Optimal Algorithms
for Constructing Visibility Polygons with Holes. Pro-
ceedings of sym. on Comp. geometry, p14–23, 1986.

[7] P. Bose, A. Lubiw, J. Munro Efficient visibility queries
in simple polygons. Comp. Geometry: Theory and Ap-
plications, 23(3):313–335, 2002.

[8] T. Asano An Efficient Algorithm for Finding the Visi-
bility polygon for a Polygonal Region with Hole. Trans.
of IECE of Japan, 9(68):557–559, 1985.

[9] John Hershberger An Optimal Visibility Graph Algo-
rithm for Triangulated Simple Polygons. Algorithmica,
4(1): 141-155, 1989.

