
New Streaming Algorithms for Counting
Triangles in Graphs

Hossein Jowhari, Mohammad Ghodsi

Computer Engineering Department
Sharif University of Technology

Tehran, Iran
{jowhari@ce.,ghodsi@}sharif.edu

Abstract. We present three streaming algorithms that (ε, δ)− approx-
imate 1 the number of triangles in graphs. Similar to the previous al-
gorithms [3], the space usage of presented algorithms are inversely pro-
portional to the number of triangles while, for some families of graphs,
the space usage is improved. We also prove a lower bound, based on
the number of triangles, which indicates that our first algorithm behaves
almost optimally on graphs with constant degrees.

1 Introduction

In this paper, we present streaming algorithms for counting triangles in massive
graphs. In other words, let G = (V,E) be an undirected graph with n vertices
and m edges and let t be the number of triangles in G. we are interested in
algorithms with sublinear space usage for (ε, δ)−approximating t while G is
presented to the algorithm as a stream of edges. By sublinear space usage, we
mean algorithms that use o(m) bit space, and by stream of edges, we mean a
sequence of edges that is an arbitrary permutation of E. In addition to the space
usage, we restrict the algorithms to have only O(1) passes over the stream and
o(m) per-edge processing time.

Bar-Yossef et al in [3] showed that every algorithm that decides the existence
of a triangle, with probability at least 99/100, needs at least Ω(n2) bit space.
This fact results in a lower bound of Ω(n2) for (ε, δ)−approximating t in gen-
eral graphs, but Bar-Yossef et al showed that for graphs with considerably large
number of triangles, it is possible to gain sublinear space. In other words, let Ti

be the number of vertex triples that induce a subgraph with i edges in G. Based
on this definition, T3 = t. For T3 > 0, they obtained a streaming algorithm with
O(1/ε3. log 1/δ.((T1 + T2 + T3)/T3)3. log n) space. Since (T1+T2+T3) = Θ(mn),
having an appropriate lower bound for T3, one can use o(m) space on graphs
with m2/3n = o(T3).

Our Contribution. We present three streaming algorithms for (ε, δ)-approximating
T3. Let d be the maximum degree and let Ci be the number of cycles of length i in
1 Let ε, δ > 0 and let T3 be the number of triangles. With probability at least 1 − δ,

the algorithm outputs T ′3 such that (1− ε)T3 ≤ T ′3 ≤ (1 + ε)T3.

the input graph. The first algorithm uses O(1/ε2. log(1/δ).(md2)/T3. log n) space
and per-edge processing time and makes one pass over the stream (Theorem 1).
The second algorithm uses O(1/ε2. log(1/δ).(m3 + mC4 + C6 + T3

2)/T3
2. log n)

space and per-edge processing time with one pass (Theorem 2) and the third al-
gorithm uses O(n+1/ε2. log(1/δ).(T2 +T3)/T3. log n) while making three passes
over the stream (Theorem 3). The first and second algorithm use the method of
Alon et al in [2] and the third algorithm utilizes sampling to reduce the space
usage. We also prove a lower bound of Ω(n/T3) that indicates that our first
algorithm behaves almost optimally when d is a constant (Theorem 4).

Related Work. After the seminal paper by Alon et al [2], Henzinger et al [7] for-
malized the streaming model and proved lower bounds for some graph problems.
According to our knowledge, there are few attempts for solving graph problems
in the streaming model. Recently, authors in [5, 6] have presented streaming
algorithm for some graph problems such as maximum weighted matching and
shortest path. In fact, most of the results for graph problems are impossibility
results [4, 6, 5, 7].

2 Algorithms

First, we define some notations. For undirected graph G = (V, E), let n,m and
d be the number of vertices, edges and maximum degree respectively. Let Υ be
the set of all vertex triples of G. We partition Υ to four parts Υi, i = 0, . . . , 3,
where Υi is the set of triples that induces a subgraph in G with i total edges and
let Ti = |Υi|. For j = 4, . . . , n, let Cj be the number of cycles of length j in G .

2.1 One-pass algorithms

Here we present two algorithm that uses the method of Alon et al [2]. We define
random variable X such that E(X) = T3. By taking the average of an appro-
priate number of independent instances of X, we can reduce the variance so
that by using Chebyshev’s Inequality, we can obtain an approximation for T3

with relative error at most ε. Hence, the space usage of the algorithm depend on
V ar(X) and the space requirements for computing the random variable X.

First Estimator. The random variable X is computed as follows. Choose an
edge (u, v), randomly and uniformly from the edges in the stream. Count the
number of common neighbors of vertices u and v in the rest of the stream. Let
c be the value of this counter at the end of the stream. We define X = mc.

Now, we compute the expectation and variance of X. Suppose we have an
ordering on the triangles. For i-th triangle, we define indicator random variable
Zi as follows.

Zi =
{

1, if i-th triangle has been counted
0, otherwise

By above definition, X = m(
∑T3

i=1 Zi), and by the linearity of expectation,
E(X) = m(

∑T3
i=1 E(Zi)). Since the probability of counting a specified triangle

is 1/m, we have E(Zi) = 1/m, and consequently, E(X) = m× (T3× 1/m) = T3.
By definition of the variance,

V ar(X) = m2(V ar(
T3∑

i=1

Zi) +
∑

i 6=j

Cov(Zi, Zj)).

We bound Cov(Zi, Zj) by E(ZiZj). ZiZj equals to 1 only when Ti and Tj have
a common edge that has been picked by the algorithm. The probability of this
event is 1/m and since there are at most d − 1 triangles with a common edge,
we have

V ar(X) ≤ m2(
1
m

(T3 + (d− 2).T3)) ≤ m(d− 1)T3.

Now let Y be the average of s = 8 1
ε2

md
T3

parallel instances of X. By Cheby-
shev’s Inequality,

Pr(|Y − T3| ≥ εT3) <
V ar(Y)
ε2E2(Y)

=
V ar(X)/s

ε2T3
2 <

1
8
.

Now for obtaining a (ε, δ)-approximation, we run O(log 1
δ) independent es-

timators, each one succeeding to obtain an ε-relative approximation of T with
probability at least 7

8 . We need O(d. log n) space for computing the random
variable X and hence, the following result is obtained.

Theorem 1. For ε, δ > 0, there is a streaming algorithm that outputs an (ε, δ)-
approximation of T3, with T3 > 0, using O(1/ε2. log(1/δ).(md2

T3
). log n) bit space

and per-edge processing time.

The space usage gets sublinear when d2 = o(T3) and close to optimal when d
is a constant (see Theorem 3). However the algorithm uses O(d. log n) bit space
for computing the random variable that is poor for graphs with large degree.
For our second estimator, we use a random variable that can be computed in
O(log n) bit space.

Second Estimator. To compute the estimator, we need a family of uniform
±1-valued random vectors of length n, which are 12-wise independent. As in-
dicated in [2], this family can be constructed explicitly using the parity check
matrices of BCH codes. These matrices can be constructed with only O(log n)
bits (see [1] for the details). We pick a random vector v from this family (uni-
formly). Now, as the stream passes, we compute Z =

∑
(i,j)∈E v(i)v(j). At the

end of stream, we define X = 1
6Z3.

We now compute E(X). Based on the definition,

E(X) =
1
6
E((

∑

(i,j)∈E

v(i)v(j))3).

61

1

1

1

2

1
1

1 1

1
1

1 1

1
1

11

3

1
1

1

2

2

2

1

1

1

1

1

1

Fig. 1. Subgraphs that increase the variance of the second estimator

Consider that after expanding, each term in the summation corresponds to a
specific subgraph of the input graph. By linearity of expectation and regarding
the facts that E(v2k+1(i)) = 0 and v(i)’s are 12-wise independent, the terms
that have a variable with an odd power are evaluated to zero. Therefore, only
the terms in form of 6v2(i)v2(j)v2(k) are remained. These terms correspond to
the triangles and thus,

E(X) =
1
6
(6× T3) = T3.

For variance, we have

V ar(X) = E(X2)− E2(X) =
1
36

(E((
∑

(i,j)∈E

v(i)v(j))6)− T 2
3).

Similar to the computation of expectation, after expanding, we identify terms
which are product of variables with an even power. The different subgraphs that
correspond to the terms with an even power are depicted in Fig. 1. Note that
the weight of edge (ui, uj) in each subgraph equals to the power of (v(ui)v(uj))
in the corresponding term. For each subgraph, the sum of the weight of edges,
incident on each vertex, is even. Therefore according to the figure,

V ar(X) =
1
36

(m + 120C4 + 720T3
2 + 360mC4 + 720C6 + 90m3)− T3

2

≤ 20(T3
2 + mC4 + C6 + m3).

Similar to the previous algorithm, we run s = 160 1
ε2 ((mC4 + C6 + m3)/T3

2 + 1)
parallel and independent instances of X and then we take the average of them.
Let Y be the average. By Chebyshev’s Inequality,

Pr(|Y − T3| ≥ εT3) <
V ar(Y)
ε2E2(Y)

=
V ar(X)/s

ε2T3
2 <

1
8
.

As usual, by taking the median of O(log 1/δ) independent and parallel in-
stances of Y , an (ε, δ)−approximation is obtained.

Theorem 2. For ε, δ > 0, there is a streaming algorithm that outputs an (ε, δ)-
approximation of T3, with T3 > 0, using O(1/ε2. log(1/δ).(m3+mC4+C6

T 2
3

)+1). log n)
bit space and per-edge processing time.

2.2 Three-pass algorithm

A naive sampling algorithm, that picks samples of vertex triples, should pick at
least O(1/ε2. log(1/δ).(T0+T1+T2+T3

T3
)) random vertex triples. Here, we show how

to decrease the number of required samples. The idea is to avoid sampling from
triples in Υ0 and Υ1 by having the degrees of vertices.

Let di be degree of vertex ui and let D =
∑n

i=1(
di
2). For picking a random

triple, first we pick a vertex randomly while a vertex with degree di is picked with
probability (di

2)/D. Then, from neighbors of the picked vertex, we pick a pair of
vertices randomly and uniformly. let a be the picked triple. Since D = T2 + 3T3,
it is easy to see that

Pr(a ∈ Υ3) =
3T3

T2 + 3T3
.

If we pick the triples based on the above procedure, O(1/ε2. log(1/δ).(T2+3T3
T3

))
random triples suffices to (ε, δ)−approximate |Υ3|. Now we show how to imple-
ment the above sampling procedure with three passes over the stream. In the
first pass, we compute di for each ui. Then we pick the first vertex of the random
triples. Let si be the number of occurrences of ui in the sample set. In the second
pass, for i = 1, . . . , n, we pick si random pairs from neighbors of ui. The random
pairs and the starting vertex form the triples of the sample set. Finally, in the
third pass, we determine the number of triangles in the sample set.

Theorem 3. For ε, δ > 0, there is a streaming algorithm that uses three passes
over the stream and produces an (ε, δ)-approximation of T3, with T3 > 0, using
O(n + 1

ε2 . log 1
δ .(T2

T3
+ 1). log n) bit space and per-edge processing time.

3 Lower Bound

For lower bound, we use reduction to the Bit-Vector Disjointness problem in
the communication complexity. In this problem, two parties A and B, each
one has a binary vector with length of n. A and B want to devise an efficient
communication protocol to decide whether their binary vectors are disjoint or
not. Our lower bounds are based on a result obtained by Kalyanasundaram
and Schnitger [8]. They showed that the length of any communication protocol,
succeeding in distinguishing disjoint binary vectors with probability more than
1
2 , must be at least Ω(n) bits. Since the course of the communication is not
restricted, the lower bound also holds for streaming algorithms with constant
number of passes.

Theorem 4. For ε < 1/3, δ < 1/2, every streaming algorithms that output an
(ε, δ)-approximation of T3, with T3 > 0, requires at least Ω(n/T3) bit space.

Proof. We represent a pair of binary vectors by an undirected graph so that
disjoint binary vectors can be distinguishable via approximating the number of
triangles in the graph. Assume T3 is even and divides n. Let G1, G2 and G3

be n-vertex graphs, such that G1 and G2 has T3/2 number of triangles and G3

with no edges. In each graph, we partition the set of vertices into n/T3 equal-size
parts. For j = 1, · · · , n/T3, let Pij be the partitions in Gi. Suppose we have an
ordering on the set of vertices in each partition. For k = 1, · · · , T3, let vijk be
the k-th vertex in partition Pij . Consider the binary vectors B1 and B2, both
with length of n/T3 . For each j, we add the following edges.

1. For k = 1, · · · , T3, add an edge between v1jk and v2jk.
2. If B1(j) = 1, for k = 1, · · · , T3, add an edge between v1jk and v3jk.
3. If B2(j) = 1, For k = 1, · · · , T3, add an edge between v2jk and v3jk.

Let G be the resulted graph. It is easy to see that if B1 and B2 are disjoint,
number of triangles in G would be T3, otherwise number of triangles would be at
least 2T3. By using an approximation algorithm with relative error less than 1/3,
we can distinguish between graphs with T3 triangles and ones with at least 2T3

triangles. Consequently, we can distinguish disjoint bit-vectors by this algorithm.
This completes the proof.

4 Summary

In this paper, we presented three streaming algorithms for counting triangles in
graphs with T3 > 0. In the following table, for each algorithm, we have shown
when the space usage gets sublinear.

Algorithm Sublinear space
Naive Sampling n3. log n/m = o(T3)

[3] m2/3n. log n = o(T3)
1st Alg. d2. log n = o(T3)
2nd Alg. max{m,

√
C4, C6/m}. log n = o(T3)

3rd Alg. (3 passes) max{n, T2/T3}. log n = o(T3)

However, due to the high dependency of the parameters in the space usage,
a clear evaluation and comparison of the algorithms are still unknown to us.
We presented a lower bound of Ω(n/T3) that only helps in evaluating the first
algorithm. A clear lower bound based on the terms T3 and T2 will be more useful
to evaluate the algorithms. We guess a lower bound of Ω(T2/T3) could exist.

References

1. N. Alon, L. Babai, A. Atai. A fast and simple randomized algorithm for
maximum indepedent set problem. J. Algorithms 7(1986), 567-583.

2. N. Alon, Y. Matias, M. Szegedy. The space complexity of approximating
the frequency moments. STOC 96.

3. Z. Bar-Yossef, R. Kumar, S. Sivakumar. Reduction in streaming algorithms
with an application of counting triangles in graphs. SODA 2002.

4. A.L Buchsbaum, R. Gianvarlo, and J.R Westbrook. On finding common
neighborhoods in massive graphs. Thoretical Computer Science, 299 (1-
3):707-718, 2003.

5. J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang, Graph
distances in streaming model; the value of space. Yale University Technical
Report. 2004.

6. J. Feigenbaum, S.Kannan, A. McGregor, S. Suri, and J. Zhang, On graph
problems in a semi-streaming model. To appear in the 31st International
Colloquium on Automata, Languages and Programming, 2004.

7. M. R. Henzinger, P. Raghavan, and S. Rajagopalan, Computing on data
streams, Technical Report 1998-001, DEC Systems Research Center .1998.

8. B. Kalyanasundaram and G. Schnitger, The probabilistic communication
complexity of set intersection. SIAM Journal on Discrete Mathematics, 5
545-557, 1990.

This article was processed using the LATEX macro package with LLNCS style

