
Computational Power of the
Quantum Turing Automata

Sina Jafarpour, Mohammad Ghodsi, Keyvan Sadri, Zuheir Montazeri

Abstract
 Lots of efforts in the last decades have been done to prove or disprove whether the set of polynomially

bounded problems is equal to the set of polynomially verifiable problems. This paper will present an overview of
the current beliefs of quantum complexity theorists and discussion detail the impacts these beliefs may have on
the future of the field. We introduce a new form of Turing machine based on the concepts of quantum mechanics
and investigate the domain of this novel definition for computation. The main object is to show the domain of
these Computation machines and the new definition of Algorithms using these automata.

In section one we give a brief fundamental overview of classical complexity theory, Turing machine and all
the fundamental concepts required for the next chapters. In section two we describe various classes of classical
complexity automata. In next chapter we introduce quantum complexity featuring Quantum Turing Machines
and discuss its relationship to classical complexity. Section four presents a relationship between Quantum
complexity classes based on the quantum Turing machines and Quantum oracles, and their relationship with
corresponding classical complexity classes. And section five presents a discussion on the practical phenomena in
problem solving using quantum computers. Finally in section five we speculate briefly on the direction we believe
the field to be headed, and what might reasonably be expected in the future.

Keywords
Quantum, Computation, Complexity, Turing machine, Oracle, Computability, Grover algorithm

1. Introduction
Early in the 20th century Gödel, Church and Turing
proposed 3 different models of computation:

• general recursive functions of Gödel
• lambda expressions
• the Turing machine

Somewhat later it turned out that they were very much
the same. But later still, towards the end of the 20th
century, it turned out that certain physical assumptions,
which may not necessarily correspond to how certain
computations can be done, were smuggled into all three
models. In particular quantum computation, the subject of
this lecture, is not modeled correctly by any of the above.
But there are even some aspects of classical computation,
which are not adequately accounted for by the Turing
machine and equivalent models, e.g., the thermodynamics
of computation.

The Turing machine was invented by Alan Turing in
order to address Hilbert's Entscheidungsproblem. It is
sufficiently simple so that various mathematical theorems
can be proven about it. In particular by using this model
Turing was able to show that the Entscheidungsproblem
must be answered in negative, i.e., there is no mechanical
procedure, in general, which can be used to decide a
theoremhood of an arbitrary statement in mathematics.

This, in combination with Gödel theorem, came as a bit
of a surprise to mathematicians. On the other hand, it
merely demonstrated what the greatest mathematicians
always knew and practiced, namely that mathematics is
an art. Also, that some of the best mathematics is
constructed by broadening a particular theory that is an
object of some assertion and attacking the problem from a
higher level. For example, algebraic problems can often
be tackled with a surprising efficacy by rolling out the
apparatus of complex analysis.

The original Turing machine was deterministic (DTM):
the head would be always in a single state, which would
uniquely determine which direction it would go into and
how far. There is a variant of the Turing machine, which
is not deterministic. The head may be in a state, which
gives the machine certain choices as to the direction and
length of the next traverse. The choices are then made by
throwing dice and possibly applying some weights to the
outcome. A machine like that is called a probabilistic
Turing machine (PTM), and it turns out that it is more
powerful than the deterministic Turing machine in the
sense that anything computable with DTM is also
computable with PTM and usually faster.

But both PTM and DTM are based on classical physics:
the states of the tape and of the head are always readable
and writable, data can be always copied, and everything

is uniquely defined. As a result, the definition of human
computation is deeply affected by the environment we are
living in. The main question is that on the grounds that
the human brain is not environmental dependent and also
new sorts of abstract environments have been innovated,
is there a way to define the computation in a more
abstract form?

2. Classical Complexity Classes

2.1. The Class P
The set of all languages that can be computed in
polynomial time on a deterministic Turing machine is
called the class P. Familiar examples of problems in P
include sorting a list of elements, computing the
maximum flow between two points in a network of pipes,
and finding the shortest path between two points in a
graph.�

2.2. The Class NP
Definition of NP is that it contains all languages that are
verifiable in polynomial time on a deterministic machine.
This means that given an input and a certificate of the
input’s membership in a language, a machine can check if
the certificate is valid in polynomial time. For example,
in determining whether a number k is composite, one of
the factors of k could be used as the certificate. A
machine could then determine the validity of the
certificate by dividing k by it and checking that the
remainder is 0.

Since a deterministic Turing machine is just a specific
type of nondeterministic machine, P ⊆ NP. Perhaps the
most famous open question in computer science is
whether or not the classes P and NP are equivalent. Does
nondeterminism increase the power of a Turing machine,
to the point where we can quickly solve problems that we
otherwise could not? Although it may appear “obvious”
that these two classes are not equivalent, given that a
nondeterministic machine can perform parallel
computation, no one has been able to prove this
distinction.

2.3. The Class BPP
 A language L is in the complexity class BPP (Bounded-
Error Probabilistic Polynomial-Time), if there exists a�
probabilistic Turing machine, M, that runs in polynomial
time such that:
�

1. if xψis in L, then Mψaccepts xψwith probability �←

2/3
2..if x is not in L, then M accepts x with probability < 1/3

 �
In other words, BPP is the class of decidable problems
solvable by a probabilistic Turing machine in polynomial
time with an error probability of at most 1/3. Note,

however, that the constant 1/3 is arbitrary. Any constant
value in the range (0, 0.5) gives an equivalent definition
of the class BPP, since repeated executions of the
probabilistic machine M on x can bring the probability of
correct behavior arbitrarily close to 1.

It is clear that P ⊆ BPP, since a deterministic algorithm
that runs in polynomial time, is like a probabilistic
algorithm that runs in polynomial time with an error
probability of 0, which is less than 1/3. It is still an open
question whether P ⊂ BPP or P = BPP, though currently
there exist problems which are known to lie in BPP but
not known to lie in P, such as the problem of finding
square roots modulo a prime number. It is also an open
question whether BPP ⊆ NP or NP ⊆ BPP.
�

2.4. The Class PSPACE
The class PSPACE is the set of decision problems that
can be solved by a Turing machine using a polynomial
amount of tape, given an unlimited amount of time.
Analogously, EXPSPACE is the set of decision problems
that can be solved by a Turing machine using an
exponential amount of tape, given an unlimited amount of
time. It is clear that BPP ⊆ PSPACE, since a polynomial
time machine can only using a polynomial amount of
tape. It’s an open question whether this inclusion is strict,
though it is generally believed that BPP ⊆ PSPACE. It
has been proven that NP ⊆ PSPACE, and that PSPACE
⊆ EXPSPACE.

3. Quantum Abstract Machine
The quantum analog to a Boolean circuit that operates on
n bits is a quantum circuit that operates on n Qubits. A
Qubit, like a classical bit, can be either 0 or 1, but unlike
a classical bit, can also be in a normalized superposition
of these states. The state of n Qubits, then is a normalized
vector in N = 2n-dimensional Hilbert space In the same
way a boolean circuit is built from NAND gates, a
quantum circuit is built from universal gates, represented
by unitary N × N matrices, that can be composed to
produce any unitary N × N matrix. The result of applying
a gate is the product of its matrix and the vector
representing the state being operated on. One additional
operation on a quantum state is measurement, which
probabilistically determines a� physical property of the
state, and simultaneously removes elements of the initial
superposition� that are inconsistent with the result of the
measurement.*�

3.1. Quantum Turing Machines
A mathematical theory of computation that is based on
quantum physics is bound to be different. As you move
from classical physics to quantum physics there is a

* We have assumed that the reader has the rudimentary familiarity with
the Quantum Computation and Quantum Algorithms, [1],[2].

qualitative change in concepts that has profound
ramifications.

In the quantum Turing machine read, write, and shift
operations are all accomplished by quantum interactions.
The tape itself exists in a quantum state as does the head.
In particular in place of the Turing cell on the tape, that
could hold either 0 or 1, in quantum Turing machine there
is a Qubit, which can hold a quantum superposition of 0
and 1. The quantum Turing machine can encode many
inputs to a problem simultaneously, and then it can
perform calculations on all the inputs at the same time.
This is called quantum parallelism. The tape of the
quantum Turing machine can be drawn as shown in Fig.1
Which each arrowed circle stands for a Qubit.

The machine evolves in many different directions
simultaneously. After some time t its state is a
superposition of all states that can be reached from the
initial condition in that time. This model, like the
classical Turing machine was sufficiently simple and at
the same time universal to prove various theorems about
quantum computation. In 1990 Christopher Moore from
Cornell University showed that a single classical particle
moving in a three-dimensional potential well made of a
finite number of parabolic mirrors is equivalent to a
Turing machine, and hence is capable of universal
computation.

3.2. Formal Definition of Quantum Turing
Machine
A quantum Turing machine is defined as a triple),,(δ∑Q
where Q is a finite set of states that includes a start and
final state, ∑ is the tape alphabet and includes the blank
letter ‘#’, and δ is a transition functionψ

DQCQ ***: ∑→∑δ where D = {L,R} is the direction in
which the tape head moves. The set C is all complex
numbers whose kth bit can be computed in time
polynomial in k. The configuration of the quantum
machine is a superposition of configurations, where a
configuration is an element of ZQz **∑ the first member
of which corresponds to the tape contents, the second the
state, and the last the tape head position. The function δ
must be unitary. A quantum machine halts when its state
is a superposition of only those configurations that are in
the final state. The output of the machine is the
corresponding superposition of the tape contents. For a
decider, the output contains a 0 in the start cell if it
rejects, 1 if it accepts. The probability that the decider
accepts is the total amplitude of accepting configurations
in its output superposition.

Fig.1 Quantum Turing Machine

3.3. Quantum Computability
Bennet showed that any classical circuit can be converted
into an equivalent reversible circuit, and further that this
conversion can be done efficiently. Thus, we see
immediately that a quantum computer is at least as
powerful as a classical computer. To demonstrate that a
quantum computer is no more powerful than a classical
computer we present a classical Turing machine that
simulates an arbitrary quantum circuit. The quantum
gates of the circuit are given, suitably encoded, as input
to the Turing machine as N × N matrices, along with the
measurements made on the circuit, in the order of
application. In addition, the states of the Turing machine
contain all the information necessary about the physical
properties of each of the quantum basis states. The
machine also receives an encoding of the N-dimensional
initial state in its input. The machine then applies each
quantum gate to the current state by doing a matrix
multiplication.

One detail that may not be immediately obvious is the
manner in which our simulation should handle
measurement, since measurement appears to rely entirely
on the physical properties of the system and true
“randomness.” It turns out, however, that a non-
deterministic Turing machine will still compute correctly
Providing some computation path succeeds. Therefore we
appeal to nondeterminism and let our Turing machine
decide the outcome of the measurement
nondeterministically, and then use the information it
knows about each of the quantum basis states to delete
inconsistent elements. Finally, it renormalizes the
resulting vector. Thus the Turing machine can simulate
each of the operations of a quantum circuit, and therefore
compute anything that can be computed on a quantum
circuit.

4. Complexity of Quantum Turing
machines
Having proven that a quantum computer can compute
exactly the same set of languages as a classical computer,
we now examine quantum complexity.

4.1. The Class BQP
The quantum analog to BPP is the class BQP. This
consists of all languages for which a quantum machine
gives the right answer at least 2 3 of the time. It is known
that BPP ⊆ BQP, since anything that can be computed
on a classical machine can be computed on a quantum
machine with little overhead. However, it is not known
whether or not this containment is strict. While there are
problems such as factoring and computing a discrete log
that are in BQP but not known to be in BPP, no one has
actually proven that these problems are not in BPP. It is
currently known that BQP sits between BPP and
PSPACE in the complexity hierarchy. Thus BQP contains
all of P and BPP, and potentially some problems in NP
but probably none that are NP-complete, and perhaps
some problems in PSPACE that are not in NP. The latter
two postulations, however, have not been proven.

4.2. Relationship between NP and BQP
Although nothing universal has been proven about the
relationship between the relative speeds of quantum and
classical computation, several such relativized† results
have made progress that suggests the direction that future
work will eventually go. The first results discovered
appeared to suggest that quantum computation was
significantly faster than classical computation. Among
these was the discovery by Deutsch, Jozsa, Berthiaume,
and Brassard, of oracles under which problems could be
found for which a quantum machine computed the
answer with certainty in polynomial time, whereas
requiring a probabilistic classical machine to solve the
same problem with certainty required exponential time
for some inputs. Note, however, that relative to the same
oracle, these problems were in BPP, indicating that only
the requirement of certainty pushed the problem across�
the�exponential time barrier.

Bernstein and Vazirani showed that there exist oracles
under which there exist problems that are in BQP but not
BPP, which is now taken as some of the earliest evidence
that QTMs are more powerful than probabilistic Turing
Machines. Building upon this, Simon proved the stronger
result that there exists an oracle relative to which BQP
cannot even be simulated by a probabilistic Turing
Machine allowed to run for an exponential number of
steps Quantum Turing machine can be used to simulate
the classical Turing machine and the probabilistic Turing
machine too. But quantum Turing machine can do more

† A case can be determined to be true but there is no efficient algorithm
for it

than that. For example it can generate truly random
numbers, something that classical Turing machines
cannot do.

Despite this evidence as to the power of quantum
computation, the above results do not appear to break any
major ground in terms of computational complexity. That
is, although they suggest that quantum computation is at
least somewhat more powerful than classical
computation, they do not lend any real insight as to
whether it will allow us to compute NP-complete
problems. However, in the following sections we will
demonstrate that class NP can never be solved in less
than p2n time.

4.3. Oracle Quantum Turing machine
Consider SAT, the prototypical example of an NP-
complete problem. An instance of this problem consists
of a Boolean function f (x1, . . . ,xn) = c1 ^ . . . ^ cm the
SAT problem asks you to determine whether there exists
a satisfying assignment that is, an input (a1, . . . ,an) such
that f (a1, . . . ,an) = 1. UNIQUE-SAT is a variant of SAT
that poses the same problem with the restriction that f
must have zero or one satisfying assignments, but no
more. As it turns out, there is a randomized reduction
from SAT to UNIQUE-SAT; thus, the two problems are
equally hard. We will use the black box model when
considering this problem. In this model, we know that
either f ≡ 0 or there exists exactly one a such that f (a)
= 1, where a is chosen uniformly at random. That is, f is
treated as a black box; we can make queries to f, but we
have no access to the Boolean formula itself.
Equivalently we can represent f by a table of N = 2n
entries where either none or exactly one entry is 1. Ideally
we want a quantum algorithm that solves this problem in
time O(poly(n)).

Can a quantum computer solve this problem by going
into a superposition of all exponentially many possible
truth assignments? To answer this question precisely, let
us define the black box query model:

 Here’s the problem: You are given a Boolean
function f : {1, . . . ,N} → {0,1}, and are promised that
for exactly one a ∈ {1, . . . ,N}, f (a) = 1. Think of this as
a table of size N, where exactly one element has value 1,
and all the others are 0. Since we assume f can be
computed classically in polynomial time, we can also
compute it in superposition:

∑ ∑ 〉〉→〉〉
x x

xx xfxx)(0 αα

 Another way we can implement f is put the answer
register in superposition:

()∑∑

∑ ∑

 〉−〉
−〉=

 〉−〉
〉=

 〉〉−〉〉
→

 〉−〉
〉

x

x
x

x
x

x x
xx

x
xfxf

x

xfxxfx
x

2
10

1
2

)()(

2
)()(

2
10

αα

αα

Now, we might as well assume f is a black box or oracle.
All we need to do is design an algorithm that finds a:
 f (a) = 1

For the purposes of this discussion, we want to separate
the quantum algorithm itself from the function f. We
assume that the quantum algorithm is infinitely powerful
and focus instead on the number of queries it must make
to f. All queries to f occur in superposition; that is, a
single query on ∑ 〉〉

x
x x 0α yields the output 〉〉)(xfxxα .

Theorem: In the black box model, any quantum
algorithm for determining whether there exist x1, . . . ,xn
such That f (x1, . . . ,xn) = 1 must make)(NΩ) queries to
f .

Proof: Consider any quantum algorithm A for solving
this search problem. First do a test run of A on the
function f ≡ 0. Let T be the number of queries that A
makes to f, and let

tx ,α be the amplitude with which A
queries x at time t (that is, the query at time t is

),∑ 〉
t

tx xα .

 Now, define the query magnitude of x to be∑
x

tx
2

,α . The

expectation value of the query magnitude of x is

⇒=

∑ N
TE

t
tx

2
,α

N
T

t
txx ≤

∑ 2
,min α

.

Let z be the input at which this minimum occurs; then by
the Cauchy-Schwarz inequality:

∑∑ =≤

t
tx

t
tx N

TT
22

,

2

, αα

Let 〉Φ t
| be the states of fA Af after the t-th step. Now

run the algorithm A on the function g such that g(z) = 1
and for all zy ≠ , g(y) = 0. Suppose the final state of gA

is 〉tω . By the lemma proven in follow:

〉++〉=〉−〉Φ −10 ... ttt EEω |where |
tztE ,2α≤ .Using the

triangle inequality and the inequality proved above, we
have:

N
TE tx

t
ttt

22 , ≤≤≤〉−〉Φ ∑∑ αω
.

This implies that the two states can be distinguished with
probability at most

N
T

O by any measurement. Thus any quantum

algorithm that distinguishes f from g with constant
probability of success must make)(NΩ queries.

Lemma: 〉++〉=〉−〉Φ −10 ... ttt EEω

Proof: Consider two runs of the algorithm A, which differ
only on the t-th step. The first run queries the function f
on the first t steps and queries g for the remaining T −t
steps; the second run queries f on the first t −1 steps and
g for the remaining T −t +1 steps. After the first t −1
steps, both runs are in state 〉Φ t . On the t-th step, one
run queries f and the other queries g. The outputs of these
queries differ only on the amplitude of the two basis
vectors 〉〉 0z and 〉〉1z , so overall the output vectors
differ by at most

tz,2α . Thus, at the end of the t-th step,

the state of the first run is 〉Φ t , whereas the state of the

second run is 〉Φ t
+ 〉tF , where

tztF ,2α≤ . Now if U is
the unitary transform describing the remaining T −t steps
(of both runs), then the final state after T steps for the two
runs are U(〉Φ t) and U(〉Φ t

+ 〉tF), respectively. The

latter state can be written as U(〉Φ t + 〉tE), where

)(〉=〉 tt FUE . Since unitary transformations preserve

length, we know that
tztE ,2α≤ . Thus, the effect of

switching the queried function only on the t-th step can
be described by an “error” tE in the final state of the

algorithm, where
tztE ,2α≤ .

We can transform the run Af to Ag by a succession of T
changes of the kind described above. Overall, the
difference between the final states of Af and Ag is

〉++〉 −10 ... tEE , where
tztE ,2α≤ .

Finally, it is useful to consider where this factor of N
comes from. In the worst case, we query z with amplitude

N
1 at each time step .The vectors that indicate the

differences at each step could all be orthogonal, in which
case the total distance is the sum of the squares of each
vector’s length, which is about N. However, if all vectors
are in the same direction, the total distance is the sum of
the length of each vector, which is approximately N .

5. Quantum Problem Solving
Now that we have come up with the idea of Quantum
black box lets have a more practical look at the concept
of solving problems using Quantum Computers. The
unique features of a quantum computer pose the
following paradox: imagine that the computer is used to
prove automatically a mathematical theorem. Classical
computer programs that do just that exist and have
delivered a number of genuine proofs of nontrivial
theorems. But in a quantum computer the details of the
reasoning cannot be followed. An attempt to do that

converts the quantum computer into a classical computer.
The situation is exactly the same as in the Feynman
double-slit Gedankenexperiment The moment you insert
an apparatus that can tell you which way the particle
goes, the quantum interference image vanishes and you're
left with a classical distribution and a classical trajectory.
This led some authors, e.g., Williams and Clearwater to
ponder a situation whereupon a quantum computer would
be able to tell you if your theorem is true or false, but it
would not be possible to extract the proof.

This may indeed be the case, but it does not imply that a
classical proof of that theorem does not exist or that it
cannot be found. One can demonstrate easily that the
solution of the Schrödinger wave equation that describes
the double-slit Gedankenexperiment represents a
congruence of classical trajectories. Whether there is a
classical particle that follows those trajectories or not is
highly debatable. But this is a matter of interpretation.
From a strictly mathematical point of view a congruence
of trajectories is there in the solution of the Schrödinger
equation.

Translating this result onto our quantum theorem prover
tells us that if we were able to somehow measure the
whole wave function of the computer as it goes through
the proof, and it may be possible to do that by running the
job repetitively and measuring distributions, then it
should be possible to extract a ``classical trajectory'' from
that function that represents a classical proof of our
theorem. The wave function will, in fact, deliver a whole
congruence of proofs of numerous theorems, of which
ours will be but one.

5. Conclusion
Perhaps unsurprisingly, quantum complexity theory now
faces many of the same big questions that have faced the
classical complexity community for many years. And
unfortunately there doesn’t appear to be a solution on the
horizon. Despite a great deal of effort by people hoping to
prove both sides of the issues, virtually nothing concrete
is known about the true power of quantum computation.
Since we are left then to sift through relativized results
that, at best offer mere glimpses at what might be the
larger picture, we choose to take a cautious position.
We believe that the present evidence suggests that the
realistic gains to be reaped from quantum computing
are going to be polynomial, and not exponential.
Nevertheless we acknowledge that a quadratic speedup in
processing time is significant, and as nano-production
continues to develop, we expect that practical
implementations of quantum computation will become a
reality. Initially the applications may be limited to
database systems and other specific applications that
require enormous problem sizes (with which to exploit
Grover’s algorithm), but we believe that in time other
examples of modest, but substantial, polynomial gains
will be discovered.

References
[1] Zdzisaw Meglicki, "Introduction to Quantum

Computing",http://beige.ucs.indiana.edu/M743/M743.pdf
,2005.

[2] Riffel, Polak, "An Introduction to Quantum Computer for
Non-Physicists", Palo laboratory,2004.

[3] Dasgupta, Papadimitriou ,and Vazirani, "Algorithms",
http://www.cse.ucsd.edu/users/dasgupta/mcgrawhill,2006

[4] Steane, M., “A quantum computer only needs one
universe,” lanl e-print quant-ph/0003084, Mar.2003.

[5] Robinson, S., “Emerging insights on limitations of
quantum computing shape quest for fast algorithms,”
SIAM News, vol. 36, no. 1, Jan./Feb. 2003.

[6] Fortnow, L., “One complexity theorist’s view of quantum
computing,” Theoretical Computer Science, 292(3):597-
610, 2003.

[7] Dam, W. V. “Quantum complexity theory,” SQuInT
Retreat 2003, lecture, June 2003.

[8] Bennet, C., “Logical reversibility of computation,” IBM�
J.�Res.�Develop., Vol. 17, 1993, pp. 525-532.

[9] Bennet, C., Bernstein, E., Brassard, G., and Vazirani, U.,
“Strengths and weaknesses of quantum� computation,”
Special issue on Quantum Computation of the Siam
Journal of Computing, Oct. 1999.

[10] Bernstein, E. and Vazirani, U., “Quantum complexity
theory,” Special issue on Quantum Computation of the
Siam Journal of Computing, Oct. 1999.

[11] Berthiaume, A. and Brassard, G., “Oracle quantum
computing,” Journal of Modern Optics, vol. 41,no. 12,
Dec. 1994, pp. 2521-2535.

[12] Boyer, M., Brassard, G., Høyer, P., and Tapp, A., “Tight
bounds on quantum searching,” arXiv e-print quant-
ph/9605034, 1996.

[13] Grover, L., “A framework for fast quantum mechanical
algorithms,” lanl e-print quant-ph/9711043, Nov. 1998.

[14] Nielsen, M. and Chuang, I, Quantum Computation and
Quantum Information. Cambridge University Press, 2004.

[15] Simon, D., “On the power of quantum computation,”
Proceedings of the 35th Annual IEEE Symposium on
Foundations of Computer Science, 1996, pp. 116-123.

[16] Sipser, M., Introduction to the Theory of Computation.
PWS Publishing Company, 1997.

