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Abstract 
 Lots of efforts in the last decades have been done to prove or disprove whether the set of polynomially 

bounded problems is equal to the set of polynomially verifiable problems. This paper will present an overview of 
the current beliefs of quantum complexity theorists and discussion detail the impacts these beliefs may have on 
the future of the field. We introduce a new form of Turing machine based on the concepts of quantum mechanics 
and investigate the domain of this novel definition for computation. The main object is to show the domain of 
these Computation machines and the new definition of Algorithms using these automata.  

In section one we give a brief fundamental overview of classical complexity theory, Turing machine and all 
the fundamental concepts required for the next chapters. In section two we describe various classes of classical 
complexity automata. In next chapter we introduce quantum complexity featuring Quantum Turing Machines 
and discuss its relationship to classical complexity. Section four presents a relationship between Quantum 
complexity classes based on the quantum Turing machines and Quantum oracles, and their relationship with 
corresponding classical complexity classes. And section five presents a discussion on the practical phenomena in 
problem solving using quantum computers. Finally in section five we speculate briefly on the direction we believe 
the field to be headed, and what might reasonably be expected in the future. 
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1. Introduction 
Early in the 20th century Gödel, Church and Turing 
proposed 3 different models of computation:  

• general recursive functions of Gödel  
• lambda expressions   
• the Turing machine  

Somewhat later it turned out that they were very much 
the same. But later still, towards the end of the 20th 
century, it turned out that certain physical assumptions, 
which may not necessarily correspond to how certain 
computations can be done, were smuggled into all three 
models. In particular quantum computation, the subject of 
this lecture, is not modeled correctly by any of the above. 
But there are even some aspects of classical computation, 
which are not adequately accounted for by the Turing 
machine and equivalent models, e.g., the thermodynamics 
of computation.  
 
The Turing machine was invented by Alan Turing   in 
order to address Hilbert's Entscheidungsproblem. It is 
sufficiently simple so that various mathematical theorems 
can be proven about it. In particular by using this model 
Turing was able to show that the Entscheidungsproblem 
must be answered in negative, i.e., there is no mechanical 
procedure, in general, which can be used to decide a 
theoremhood of an arbitrary statement in mathematics. 

This, in combination with Gödel theorem, came as a bit 
of a surprise to mathematicians. On the other hand, it 
merely demonstrated what the greatest mathematicians 
always knew and practiced, namely that mathematics is 
an art. Also, that some of the best mathematics is 
constructed by broadening a particular theory that is an 
object of some assertion and attacking the problem from a 
higher level. For example, algebraic problems can often 
be tackled with a surprising efficacy by rolling out the 
apparatus of complex analysis.  
 
The original Turing machine was deterministic (DTM): 
the head would be always in a single state, which would 
uniquely determine which direction it would go into and 
how far. There is a variant of the Turing machine, which 
is not deterministic. The head may be in a state, which 
gives the machine certain choices as to the direction and 
length of the next traverse. The choices are then made by 
throwing dice and possibly applying some weights to the 
outcome. A machine like that is called a probabilistic 
Turing machine  (PTM), and it turns out that it is more 
powerful than the deterministic Turing machine in the 
sense that anything computable with DTM is also 
computable with PTM and usually faster.  
 
But both PTM and DTM are based on classical physics: 
the states of the tape and of the head are always readable 
and writable, data can be always copied, and everything 



is uniquely defined. As a result, the definition of human 
computation is deeply affected by the environment we are 
living in. The main question is that on the grounds that 
the human brain is not environmental dependent and also 
new sorts of abstract environments have been innovated, 
is there a way to define the computation in a more 
abstract form? 

2. Classical Complexity Classes 

2.1. The Class P 
The set of all languages that can be computed in 
polynomial time on a deterministic Turing machine is 
called the class P. Familiar examples of problems in P 
include sorting a list of elements, computing the 
maximum flow between two points in a network of pipes, 
and finding the shortest path between two points in a 
graph.�
 

2.2. The Class NP 
Definition of NP is that it contains all languages that are 
verifiable in polynomial time on a deterministic machine. 
This means that given an input and a certificate of the 
input’s membership in a language, a machine can check if 
the certificate is valid in polynomial time. For example, 
in determining whether a number k is composite, one of 
the factors of k could be used as the certificate. A 
machine could then determine the validity of the 
certificate by dividing k by it and checking that the 
remainder is 0. 
   
Since a deterministic Turing machine is just a specific 
type of nondeterministic machine, P ⊆  NP. Perhaps the 
most famous open question in computer science is 
whether or not the classes P and NP are equivalent. Does 
nondeterminism increase the power of a Turing machine, 
to the point where we can quickly solve problems that we 
otherwise could not? Although it may appear “obvious” 
that these two classes are not equivalent, given that a 
nondeterministic machine can perform parallel 
computation, no one has been able to prove this 
distinction. 

2.3. The Class BPP 
 A language L is in the complexity class BPP (Bounded-
Error Probabilistic Polynomial-Time), if there exists a�
probabilistic Turing machine, M, that runs in polynomial 
time such that: 
�

1. if xψis in L, then Mψaccepts xψwith probability �←

2/3 
2..if x is not in L, then M accepts x with probability < 1/3 

 �
In other words, BPP is the class of decidable problems 
solvable by a probabilistic Turing machine in polynomial 
time with an error probability of at most 1/3. Note, 

however, that the constant 1/3  is arbitrary. Any constant 
value in the range (0, 0.5) gives an equivalent definition 
of the class BPP, since repeated executions of the 
probabilistic machine M on x can bring the probability of 
correct behavior arbitrarily close to 1. 
 
It is clear that P ⊆  BPP, since a deterministic algorithm 
that runs in polynomial time, is like a probabilistic 
algorithm that runs in polynomial time with an error 
probability of 0, which is less than 1/3. It is still an open 
question whether P ⊂  BPP or P = BPP, though currently 
there exist problems which are known to lie in BPP but 
not known to lie in P, such as the problem of finding 
square roots modulo a prime number. It is also an open 
question whether BPP ⊆  NP or NP ⊆  BPP. 
�

2.4. The Class PSPACE 
The class PSPACE is the set of decision problems that 
can be solved by a Turing machine using a polynomial 
amount of tape, given an unlimited amount of time. 
Analogously, EXPSPACE is the set of decision problems 
that can be solved by a Turing machine using an 
exponential amount of tape, given an unlimited amount of 
time. It is clear that BPP ⊆  PSPACE, since a polynomial 
time machine can only using a polynomial amount of 
tape. It’s an open question whether this inclusion is strict, 
though it is generally believed that BPP ⊆  PSPACE. It 
has been proven that NP ⊆  PSPACE, and that PSPACE 
⊆  EXPSPACE. 

3. Quantum Abstract Machine 
The quantum analog to a Boolean circuit that operates on 
n bits is a quantum circuit that operates on n Qubits. A 
Qubit, like a classical bit, can be either 0 or 1, but unlike 
a classical bit, can also be in a normalized superposition 
of these states. The state of n Qubits, then is a normalized 
vector in N = 2n-dimensional Hilbert space In the same 
way a boolean circuit is built from NAND gates, a 
quantum circuit is built from universal gates, represented 
by unitary N × N matrices, that can be composed to 
produce any unitary N × N matrix. The result of applying 
a gate is the product of its matrix and the vector 
representing the state being operated on. One additional 
operation on a quantum state is measurement, which 
probabilistically determines a� physical property of the 
state, and simultaneously removes elements of the initial 
superposition� that are inconsistent with the result of the 
measurement.*�

3.1. Quantum Turing Machines 
A mathematical theory of computation that is based on 
quantum physics is bound to be different. As you move 
from classical physics to quantum physics there is a 

                                                
* We have assumed that the reader has the rudimentary familiarity with 
the Quantum Computation and Quantum Algorithms, [1],[2].  



qualitative change in concepts that has profound 
ramifications. 
 
In the quantum Turing machine read, write, and shift 
operations are all accomplished by quantum interactions. 
The tape itself exists in a quantum state as does the head. 
In particular in place of the Turing cell on the tape,  that 
could hold either 0 or 1, in quantum Turing machine there 
is a Qubit, which can hold a quantum superposition of 0 
and 1. The quantum Turing machine can encode many 
inputs to a problem simultaneously, and then it can 
perform calculations on all the inputs at the same time. 
This is called quantum parallelism. The tape of the 
quantum Turing machine can be drawn as shown in Fig.1 
Which each arrowed circle stands for a Qubit. 
 
The machine evolves in many different directions 
simultaneously. After some time t its state is a 
superposition of all states that can be reached from the 
initial condition in that time. This model, like the 
classical Turing machine was sufficiently simple and at 
the same time universal to prove various theorems about 
quantum computation. In 1990 Christopher Moore from 
Cornell University showed that a single classical particle 
moving in a three-dimensional potential well made of a 
finite number of parabolic mirrors is equivalent to a 
Turing machine, and hence is capable of universal 
computation. 

3.2. Formal Definition of Quantum Turing 
Machine 
A quantum Turing machine is defined as a triple ),,( δ∑Q  
where Q is a finite set of states that includes a start and 
final state, ∑  is the tape alphabet and includes the blank 
letter ‘#’, and δ  is a transition functionψ

DQCQ ***: ∑→∑δ  where D = {L,R} is the direction in 
which the tape head moves. The set C is all complex 
numbers whose kth bit can be computed in time 
polynomial in k. The configuration of the quantum 
machine is a superposition of configurations, where a 
configuration is an element of ZQz **∑  the first member 
of which corresponds to the tape contents, the second the 
state, and the last the tape head position. The function δ   
must be unitary. A quantum machine halts when its state 
is a superposition of only those configurations that are in 
the final state. The output of the machine is the 
corresponding superposition of the tape contents. For a 
decider, the output contains a 0 in the start cell if it 
rejects, 1 if it accepts. The probability that the decider 
accepts is the total amplitude of accepting configurations 
in its output superposition. 

 

 
 

Fig.1 Quantum Turing Machine 
 

3.3. Quantum Computability 
Bennet showed that any classical circuit can be converted 
into an equivalent reversible circuit, and further that this 
conversion can be done efficiently. Thus, we see 
immediately that a quantum computer is at least as 
powerful as a classical computer. To demonstrate that a 
quantum computer is no more powerful than a classical 
computer we present a classical Turing machine that 
simulates an arbitrary quantum circuit. The quantum 
gates of the circuit are given, suitably encoded, as input 
to the Turing machine as N × N matrices, along with the 
measurements made on the circuit, in the order of 
application. In addition, the states of the Turing machine 
contain all the information necessary about the physical 
properties of each of the quantum basis states. The 
machine also receives an encoding of the N-dimensional 
initial state in its input. The machine then applies each 
quantum gate to the current state by doing a matrix 
multiplication. 
 
One detail that may not be immediately obvious is the 
manner in which our simulation should handle 
measurement, since measurement appears to rely entirely 
on the physical properties of the system and true 
“randomness.” It turns out, however, that a non-
deterministic Turing machine will still compute correctly 
Providing some computation path succeeds. Therefore we 
appeal to nondeterminism and let our Turing machine 
decide the outcome of the measurement 
nondeterministically, and then use the information it 
knows about each of the quantum basis states to delete 
inconsistent elements. Finally, it renormalizes the 
resulting vector. Thus the Turing machine can simulate 
each of the operations of a quantum circuit, and therefore 
compute anything that can be computed on a quantum 
circuit.  



4. Complexity of Quantum Turing 
machines 
Having proven that a quantum computer can compute 
exactly the same set of languages as a classical computer, 
we now examine quantum complexity. 

4.1. The Class BQP 
The quantum analog to BPP is the class BQP. This 
consists of all languages for which a quantum machine 
gives the right answer at least 2 3 of the time. It is known 
that BPP ⊆  BQP, since anything that can be computed 
on a classical machine can be computed on a quantum 
machine with little overhead. However, it is not known 
whether or not this containment is strict. While there are 
problems such as factoring and computing a discrete log 
that are in BQP but not known to be in BPP, no one has 
actually proven that these problems are not in BPP. It is 
currently known that BQP sits between BPP and 
PSPACE in the complexity hierarchy. Thus BQP contains 
all of P and BPP, and potentially some problems in NP 
but probably none that are NP-complete, and perhaps 
some problems in PSPACE that are not in NP. The latter 
two postulations, however, have not been proven. 
 

4.2. Relationship between NP and BQP 
Although nothing universal has been proven about the 
relationship between the relative speeds of quantum and 
classical computation, several such relativized† results 
have made progress that suggests the direction that future 
work will eventually go. The first results discovered 
appeared to suggest that quantum computation was 
significantly faster than classical computation. Among 
these was the discovery by Deutsch, Jozsa, Berthiaume, 
and Brassard, of oracles under which problems could be 
found for which a quantum machine computed the 
answer with certainty in polynomial time, whereas 
requiring a probabilistic classical machine to solve the 
same problem with certainty required exponential time 
for some inputs. Note, however, that relative to the same 
oracle, these problems were in BPP, indicating that only 
the requirement of certainty pushed the problem across�
the�exponential time barrier. 
 
Bernstein and Vazirani showed that there exist oracles 
under which there exist problems that are in BQP but not 
BPP, which is now taken as some of the earliest evidence 
that QTMs are more powerful than probabilistic Turing 
Machines. Building upon this, Simon proved the stronger 
result that there exists an oracle relative to which BQP 
cannot even be simulated by a probabilistic Turing 
Machine allowed to run for an exponential number of 
steps Quantum Turing machine can be used to simulate 
the classical Turing machine and the probabilistic Turing 
machine too. But quantum Turing machine can do more 

                                                
† A case can be determined to be true but there is no efficient algorithm  
for it 

than that. For example it can generate truly random 
numbers, something that classical Turing machines 
cannot do. 
 
Despite this evidence as to the power of quantum 
computation, the above results do not appear to break any 
major ground in terms of computational complexity. That 
is, although they suggest that quantum computation is at 
least somewhat more powerful than classical 
computation, they do not lend any real insight as to 
whether it will allow us to compute NP-complete 
problems. However, in the following sections we will 
demonstrate that class NP can never be solved in less 
than p2n time.  

4.3. Oracle Quantum Turing machine 
Consider SAT, the prototypical example of an NP-
complete problem. An instance of this problem consists 
of a Boolean function f (x1, . . . ,xn) = c1 ^ . . . ^ cm  the 
SAT problem asks you to determine whether there exists 
a satisfying assignment that is, an input (a1, . . . ,an) such 
that f (a1, . . . ,an) = 1. UNIQUE-SAT is a variant of SAT 
that poses the same problem with the restriction that f 
must have zero or one satisfying assignments, but no 
more. As it turns out, there is a randomized reduction 
from SAT to UNIQUE-SAT; thus, the two problems are 
equally hard. We will use the black box model when 
considering this problem. In this model, we know that 
either  f ≡   0 or there exists exactly one a such that f (a) 
= 1, where a is chosen uniformly at random. That is, f is 
treated as a black box; we can make queries to f, but we 
have no access to the Boolean formula itself. 
Equivalently we can represent f by a table of N = 2n 
entries where either none or exactly one entry is 1. Ideally 
we want a quantum algorithm that solves this problem in 
time O(poly(n)). 
 
Can a quantum computer solve this problem by going 
into a superposition of all exponentially many possible 
truth assignments? To answer this question precisely, let 
us define the black box query model: 
 
       Here’s the problem: You are given a Boolean 
function f : {1, . . . ,N} → {0,1}, and are promised that 
for exactly one a ∈  {1, . . . ,N}, f (a) = 1. Think of this as 
a table of size N, where exactly one element has value 1, 
and all the others are 0. Since we assume f can be 
computed classically in polynomial time, we can also 
compute it in superposition: 
 

∑ ∑ 〉〉→〉〉
x x

xx xfxx )(0 αα  

 Another way we can implement f is put the answer 
register in superposition: 
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Now, we might as well assume f is a black box or oracle. 
All we need to do is design an algorithm that finds a: 
 f (a) = 1 
 
For the purposes of this discussion, we want to separate 
the quantum algorithm itself from the function f. We 
assume that the quantum algorithm is infinitely powerful 
and focus instead on the number of queries it must make 
to f. All queries to f occur in superposition; that is, a 
single query on ∑ 〉〉

x
x x 0α  yields the output 〉〉 )(xfxxα . 

 
Theorem: In the black box model, any quantum 
algorithm for determining whether there exist x1, . . . ,xn 
such That  f (x1, . . . ,xn) = 1 must make )( NΩ ) queries to 
f . 
 
Proof: Consider any quantum algorithm A for solving 
this search problem. First do a test run of A on the 
function f ≡  0. Let T be the number of queries that A 
makes to f, and let 

tx ,α be the amplitude with which A 
queries x at time t (that is, the query at time t is 

),∑ 〉
t

tx xα . 

 Now, define the query magnitude of x to be∑
x

tx
2

,α . The 

expectation value of the query magnitude of x is  
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Let z be the input at which this minimum occurs; then by 
the Cauchy-Schwarz  inequality: 
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Let  〉Φ t
| be the states of fA Af after the t-th step. Now 

run the algorithm A on the function g such that g(z) = 1 
and for all zy ≠ , g(y) = 0. Suppose the final state of gA  

is 〉tω . By the lemma proven in follow: 

〉++〉=〉−〉Φ −10 ... ttt EEω |where |
tztE ,2α≤  .Using the 

triangle inequality and the inequality proved above, we 
have: 

N
TE tx

t
ttt

22 , ≤≤≤〉−〉Φ ∑∑ αω
. 

 
This implies that the two states can be distinguished with 
probability at most 










N
T

O  by any measurement. Thus any quantum 

algorithm that distinguishes f from g with constant 
probability of success must make )( NΩ  queries. 

 
Lemma: 〉++〉=〉−〉Φ −10 ... ttt EEω  
 
Proof: Consider two runs of the algorithm A, which differ 
only on the t-th step. The first run queries the function f 
on the first t steps and queries g for the remaining T −t 
steps; the second run queries f on the first t −1 steps and  
g for the remaining T −t +1 steps. After the first t −1 
steps, both runs are in state 〉Φ t . On the t-th step, one 
run queries f and the other queries g. The outputs of these 
queries differ only on the amplitude of the two basis 
vectors 〉〉 0z and 〉〉1z , so overall the output vectors 
differ by at most 

tz,2α . Thus, at the end of the t-th step, 

the state of the first run is 〉Φ t , whereas the state of the 

second run is 〉Φ t
+ 〉tF , where 

tztF ,2α≤  . Now if U is 
the unitary transform describing the remaining T −t steps 
(of both runs), then the final state after T steps for the two 
runs are U( 〉Φ t ) and U( 〉Φ t

+ 〉tF ), respectively. The 

latter state can be written as U( 〉Φ t + 〉tE ), where 

)( 〉=〉 tt FUE . Since unitary transformations preserve 

length, we know that 
tztE ,2α≤ . Thus, the effect of 

switching the queried function only on the t-th step can 
be described by an “error” tE  in the final state of the 

algorithm, where 
tztE ,2α≤ .  

 
We can transform the run Af to Ag by a succession of T 
changes of the kind described above. Overall, the 
difference between the final states of Af and Ag is 

〉++〉 −10 ... tEE  , where 
tztE ,2α≤ . 

 
Finally, it is useful to consider where this factor of N  
comes from. In the worst case, we query z with amplitude 

N
1 at each time step .The vectors that indicate the 

differences at each step could all be orthogonal, in which 
case the total distance is the sum of the squares of each 
vector’s length, which is about N. However, if all vectors 
are in the same direction, the total distance is the sum of 
the length of each vector, which is approximately  N .  
 

5. Quantum Problem Solving 
Now that we have come up with the idea of Quantum 
black box lets have a more practical look at the concept 
of solving problems using Quantum Computers. The 
unique features of a quantum computer pose the 
following paradox: imagine that the computer is used to 
prove automatically a mathematical theorem. Classical 
computer programs that do just that exist and have 
delivered a number of genuine proofs of nontrivial 
theorems. But in a quantum computer the details of the 
reasoning cannot be followed. An attempt to do that 



converts the quantum computer into a classical computer. 
The situation is exactly the same as in the Feynman 
double-slit Gedankenexperiment The moment you insert 
an apparatus that can tell you which way the particle 
goes, the quantum interference image vanishes and you're 
left with a classical distribution and a classical trajectory. 
This led some authors, e.g., Williams and Clearwater to 
ponder a situation whereupon a quantum computer would 
be able to tell you if your theorem is true or false, but it 
would not be possible to extract the proof.  
 
This may indeed be the case, but it does not imply that a 
classical proof of that theorem does not exist or that it 
cannot be found. One can demonstrate easily that the 
solution of the Schrödinger wave equation that describes 
the double-slit Gedankenexperiment represents a 
congruence of classical trajectories. Whether there is a 
classical particle that follows those trajectories or not is 
highly debatable. But this is a matter of interpretation. 
From a strictly mathematical point of view a congruence 
of trajectories is there in the solution of the Schrödinger 
equation.  
 
Translating this result onto our quantum theorem prover 
tells us that if we were able to somehow measure the 
whole wave function of the computer as it goes through 
the proof, and it may be possible to do that by running the 
job repetitively and measuring distributions, then it 
should be possible to extract a ``classical trajectory'' from 
that function that represents a classical proof of our 
theorem. The wave function will, in fact, deliver a whole 
congruence of proofs of numerous theorems, of which 
ours will be but one. 

5. Conclusion 
Perhaps unsurprisingly, quantum complexity theory now 
faces many of the same big questions that have faced the 
classical complexity community for many years. And 
unfortunately there doesn’t appear to be a solution on the 
horizon. Despite a great deal of effort by people hoping to 
prove both sides of the issues, virtually nothing concrete 
is known about the true power of quantum computation. 
Since we are left then to sift through relativized results 
that, at best offer mere glimpses at what might be the 
larger picture, we choose to take a cautious position. 
We believe that the present evidence suggests that the 
realistic gains to be reaped from quantum computing 
are going to be polynomial, and not exponential. 
Nevertheless we acknowledge that a quadratic speedup in 
processing time is significant, and as nano-production 
continues to develop, we expect that practical 
implementations of quantum computation will become a 
reality. Initially the applications may be limited to 
database systems and other specific applications that 
require enormous problem sizes (with which to exploit 
Grover’s algorithm), but we believe that in time other 
examples of modest, but substantial, polynomial gains 
will be discovered. 
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