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Abstract
Packedness is a measure defined for curves as the ratio of maximum curve length inside any disk divided by its radius.
Sparsification allows us to reduce the number of candidate disks for maximum packedness to a polynomial amount in terms of
the number of vertices of the polygonal curve. This gives an exact algorithm for computing packedness. We prove that using
a fat shape, such as a square, instead of a disk gives a constant factor approximation for packedness. Further sparsification
using well-separated pair decomposition improves the time complexity at the cost of losing some accuracy. By adjusting the
ratio of the separation factor and the size of the query, we improve the approximation factor of the existing algorithm for
packedness using square queries. Our experiments show that uniform sampling works well for finding the average packedness
of trajectories with almost constant speed. The empirical results confirm that the sparsification method approximates the
maximum packedness for arbitrary polygonal curves. In big data models such as massively parallel computations, both
sampling and sparsification are efficient and take a constant number of rounds. Most existing algorithms use line-sweeping
which is sequential in nature. Also, we design two data-structures for computing the length of the curve inside a query shape:
an exact data-structure for disks called hierarchical aggregated queries and an approximate data-structure for a given set of
square queries. Using our modified segment tree, we achieve a near-linear time approximation algorithm.

Keywords Length query · Well-separated pair decomposition (WSPD) · Aggregated query diagram · Approximation
algorithms · Geographic information systems.
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1 Introduction

Packedness of a curve is the maximum ratio c between the
length of a curve inside any disk to the radius of that disk.
Most real-world curves have this property and it relates to
concepts such as the Fréchet distance between curves, the
complexity of the free-space diagram, and the performance
of algorithms for computing them [16]. We give the first
exact algorithm for finding the minimum c, for which a given
curve is c-packed, and we give improved approximation fac-
tor and time complexity for approximating the minimum
c. Our approach is based on clustering the segments via
well-separated pair decomposition (WSPD) [27], where the
endpoints are clustered into clusters τ1, . . . , τk such that for
each pair of points (u, v), there exists a pair τi , τ j , where
u ∈ τi , v ∈ τ j , and the distance between a point of τi and
a point of τ j is at least sr , and r is the maximum radius of
the clusters τi and τ j . Figure 13 represents an example of a
WSPD pair.
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Fig. 1 AWSPD pair with separation factor s

Afterward, we compute the queries for these clusters, and
use the results to approximate the results for the whole input.

Trajectories are an important type of data in geographic
information systems (GIS). Recently, aggregated query dia-
gram (AQD) [7] has been introduced as another example
of data-structures for aggregation queries on trajectories: a
selection based on criteria (the Euclidean distance) is applied
to the initial data, as well as a summation on the length, then a
maximum computation is performed on the partial results to
find popular places. When a query arrives, the data-structure
is used to answer the query without the need to perform any
aggregations.

We generalize AQD [7] to allow multi-resolution queries
instead of queries of the same shape and size. The idea is
to link the partitions based on the coordinates, so we do not
need to store all the details for all the possible sizes. A naive
discretization would have resulted in an unbounded error
(approximation factor) for the cost, since it would depend
on the aspect ratio of the input curve, i.e., the ratio between
the maximum and minimum distance between any pair of
points.

Assuming we have a batch of windowing length queries,
we discuss how to augment a segment tree by putting the
queries and data in the same data-structure, which saves the
time complexity of aggregation for each query. The idea
of building a data-structure on a batch of parallel queries
has already been used before for searching in phylogenetic
trees [2], nearest neighbor search on selections of data with
lower/upper bounds on each dimension under �1 distance
(also known as Manhattan distance) [6], length queries [7],
which are queries whose result is a function of both the input
and the query: to compute the length of an input segment
inside a rectangular query, the query can be shifted such that
the set of intersected segments remains the same, but the
length inside the shape changes. Sequential batched queries
existed long before these results [3]. Our method can be seen
as adding some helper queries that are the bounding box of
each input segment to help compute the actual queries, which
is more similar to the grid points added in [6] than the rest of
the methods.

D

P

Fig. 2 A polygonal path P and a disk D with packedness about 4

1.1 c-packedness

In 2012, Driemel et al. [16] introduced the c-packedness
property for a curve as having curve length at most cr
inside any disk of radius r (Definition 1), but did not give
an algorithm for computing, approximating, or deciding
it. Let P = {P1, . . . , Pn} be a polygonal curve, and let
Pi Pi+1,∀i = 1, . . . , n − 1 denote the i-th edge of P .

Definition 1 (c-Packed Curve [16]) Let P be a polygonal
curve. If the length of P within any disk of radius r is upper
bounded by cr , P is c-packed.

The packedness of a disk D of radius r with respect to a
curve P is denoted by γ (D, P) and defined as the length of
P inside D, divided by r . Formally,

γ (D, P) =
∑n−1

i=1 |Pi Pi+1 ∩ D|
r

.

Figure 2 shows an example with γ (D, P) ≈ 4.
After introducing this concept, fairly good approximation

algorithms for c-packed curves have been presented. Driemel
et al. [16] have shown that if two curves are c-packed, a (1+
ε)-approximation of their Fréchet distance can be achieved
in O( cn

ε
+ cn log n) time. Bringmann and Künnemann fur-

ther improved this running time to O( cn√
ε
log2( 1

ε
)+cn log n)

[9]. Several other studies [7,12,15,17,23,24] are only justified
when the input curves are c-packed.

For axis-aligned squares instead of disks, c-packedness
was discussed under the name relative-length [21] and they
gave an exact O(n3) algorithm for it. Computing the mini-
mum c for which a curve is c-packed for disks was discussed
byAghamolaei et al. [7]who formalized the problem (Defini-
tion2) andgave an algorithm for approximating theminimum
c. Approximation algorithms with factors 6+ ε and running
time O(n4/3 polylog(n)), 2-approximation in O(n2 log n)

time [22], and a (288+ ε)-approximation randomized algo-
rithm with O(n log2 n) time also exist [25].

Definition 2 (Minimum c for c-Packedness of a Curve [7])
For a given polygonal curve P with n vertices, the objective
is to compute the minimum value c for which P is c-packed,
in other words min ∀disks D,

γ (D,P)≤cr
c.
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Fig. 3 A polygonal path and a disk query centered at point q on the
left, and its AQD on the right. The green region is the cell containing
the query point q (in red), so, it intersects with {P3P4, P4P5, P5P6}

1.2 Aggregated query diagram (AQD)

Aghamolaei et al. [7] introduced a data structure called aggre-
gated query diagram (AQD) for computing the length of the
curve inside all translations of a query shape. The authors
designed a (1 + ε)-approximation algorithm for disks by
approximating a disk with a regular polygon, and a (1 + ε)-
approximation algorithm for computing the c-packedness
within any convex polygon (without rotation), with running
times O(

log(L/δ)
ε

n3) and O(
log(L/δ)

ε5/2
n3 log n), respectively.

Definition 3 (Aggregated Query Diagram (AQD) [7]) For a
set P of n line segments and a query shape X , a partitioning
c1, . . . , ck of the plane with a set Oi ⊂ P at each ci , is called
an aggregated query diagram if for any point q ∈ ci , the
query shape with representative point q intersects the subset
Oi of segments, and k is minimized.

Aghamolaei et al. [7] showed the arrangement created by
the Minkowski sum of the shape with the input curve gives
the cells of the AQD of that curve and the Minkowski sum
places a copy of the shape centered at each point of the curve.
Figure 3 is an example of an AQD for the curve and disk of
Fig. 2.

The number of the cells in the AQD of a convex shape
X of complexity m is O(n2m2), and its total complexity is
O(n3m2). Also, it takes O(n3m2 log(mn)) time to construct
the corresponding AQD of X .

1.3 Approximating c-packedness

Later in [22], the authors provided a 2-approximation algo-
rithm with running time O(dn2 log n) in R

d , and a (6 +
ε)-approximation algorithm based on WSPD [27] with run-

ning time O(( n
ε3

)
4
3 polylog n

ε
) in R

2, for computing the
maximum packedness of axis-aligned squares centered at the
vertices of the curve.

A generalization of the relative c-packedness is the max-
imum of the packedness of queries centered at a given point
set S. For a set S of points and a curve P , if for any disk
centered at a point of S, the length of the path inside the disk
divided by its radius is at most c, the curve is an S-relative
c-packed curve.

c-packedness can be defined for any shape X of fixed
orientation and its scalings. Let P = {P1, . . . , Pn} be a
polygonal curve, and X be a shapewith the smallest enclosing
disk of diameter 2r . If the length of P within any translation
of X is upper bounded by cr , then P is c-packed.

1.4 Semi-group computations and parallelization

For a given set of objects x1, . . . , xn , and a commutative and
associative binary operator ⊕, the basic parallel computa-
tions are defined as follows:

– Semi-groupThe parallel semi-group computes x1⊕· · ·⊕
xn .

– Parallel prefix The parallel prefix computes all prefixes
x1⊕· · ·⊕xi , for all i = 1, . . . , n. The diminished parallel
prefix computes x1 ⊕ · · · ⊕ xi for i = 0, . . . , n − 1.

Examples of semi-group computations are maximum, min-
imum, summation, union, and intersection. Examples of
parallel-prefix computations are computing the rank of ele-
ments (in sorted order), computing carries in a bit-wise
summation, and some routings where there are no more
(source, sink) pairs between a source and its destination(s),
like broadcast that sends each data to every other processor.
See [26,28] for more information.

In the massively parallel computations (MPC) [8] data is
distributed among a sublinear number of machines O(n1−η)

each with sublinear memory O(nη), that process it dur-
ing O(poly( 1

η
)) parallel rounds and communicate with each

other after each round.
The parallel version of batched queries [3] are simulta-

neous geometric queries in MPC. Some examples in MPC
are 2-sided range queries [6] and length queries [7]. We
improve the simultaneous length queries algorithm to take
O(poly( 1

η
)) rounds instead of O(log L

δ
).

1.5 Contributions

– We show the lower bound on the vertex-relative c-
packedness for c-packedness is 2, which matches the
upper bound of the existing algorithms.

– We give a massively parallel (MPC) algorithm for S-
relative c-packedness for sets S of sublinear size using
O(1) rounds, and a MPC approximation algorithm for
c-packedness with O(log n) rounds based on WSPD.

– We give an O(n5) time exact algorithm for the minimum
c-packedness. The number of events in our algorithm is
O(n3), which is close to the lower bound on the time
complexity of similar problems, such as maximum sub-
array in a matrix [29]. Some of the differences are the
packedness problem asks for the subarray with the max-
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imum average instead of the maximum sum, and that the
packedness allows taking fractions of a segment, while
the maximum subarray problem does not.

– We give a O(n(log2 n)(log2 1
ε
) + n

ε
) time (4 + ε)-

approximation algorithm, improving the (6+ε)- approx-
imation algorithm, and a O(n2) time 2- approximation
algorithm improving the existing O(n2 log n) time 2-
approximation algorithm.

– We give a data-structure for length queries using disks
of arbitrary size, called Hierarchical Aggregated Query
(HAQ)data-structure. It canbe constructed inO(n6 log n)

time, usingO(n6) space, andhas query timeO(log n+k).
– We give experimental results for packedness on small and
medium-sized datasets and compare the performance of
our exact algorithm with the existing relative packedness
which is the current state of the art in Sect. 6. For trajec-
tories with more vertices, we compare the approximate
solution of WSPD sparsification with random sampling.

A Summary of the Results on Minimum c-Packedness
Table 1 summarizes the results on minimum c-packedness
and vertex-relative minimum c-packedness.

2 A polynomial-time exact algorithm for
c-packedness

Here, we show that disks of maximal size and optimal c-
packedness can be computed by checking O(n4) candidate
disks.

Lemma 1 For a polygonal curve P, one event for each con-
tinuous set of affine transformations of a query disk Q that
intersects with the same set of edges E, given that the same
subset F of E is used to define Q, is enough to compute the
query with the maximum length.

Proof A circle can be defined by the two endpoints of its
diameter (|F | = 2), or three points on its boundary (|F | = 3).
Let R1 be the radius of the smallest disk with the same sets
E and F , and let R2 be the radius of the largest such disk.
Let D(c, r) be any of the disks with the same intersection
set E and defined by points from F and of radius r cen-
tered at a point c, and assume R1(c) = minr D(c, r) and
R2(c) = maxr D(c, r). An example of two disks with the
same intersection edge set E and different definition points
F is given in Fig. 4.

Since the curve is polygonal, using the chord-length for-
mula, the rate of increase in the length of a chordwith distance
h from c in terms of r is d

dr

√
r2 − 4h2 = r√

r2−4h2
= r

l ,

where l is the length of the chord of the disk of radius r
containing a segment s ∈ E , for r ∈ [R1(c), R2(c)]. Let

s1 s2

p1

p2
p3

p4

p5

D1

D2

R1

R2

Fig. 4 Two diskswith intersection sets E = {s1, s2}. Disk D1 is defined
by F1 = {p2, p3} and disk D2 is defined by F2 = {p1, p4, p5}. All the
disks defined by s1 and s2 lie between the two dashed circles

ms = 1
l . So, the packedness of D(c, r) is

L(c) + ∑
s∈E ms(r + Δr − R1(c))

r + Δr

=
∑

s∈E
ms + L(c) − ∑

s∈E ms R1(c)

r + Δr
,

where L(c) is the length of the curve inside D(c, R1(c)),
and Δr is the changes to r . This function has its maxi-
mum in its domain at radius R2(c), which is

∑
s∈E ms +

L(c)−∑
s∈E ms R1(c)
R2(c)

. Taking the maximum packedness of disks
D(c, r) with the same sets E and F over different points c,
gives:

max
c

∑

s∈E
ms + L(c) − ∑

s∈E ms R1(c)

R2(c)

=
∑

s∈E
ms + max

c

L(c) − ∑
s∈E ms R1(c)

R2(c)
.

Based on the definition of L(c), at least one of the segments
has length 0 inside D(c, R1), so

L(c) −
∑

s∈E
ms R1(c) ≤ 0.

So, the maximum happens when R2(c) is maximized, which
happens for the disk of radius R2 with intersection set E and
defined by F . 
�

Computing the Disk Described in Lemma 1 If small-
est enclosing circle of the endpoints of the segments in F
contains one point from each segment in E , we are done;
otherwise, compute the smallest disk Ds intersecting at least
one point of F , and call this set of points Fs . Ds can be com-
puted by enumerating all

(6
3

)
or

(6
2

)
possible cases. Then, find

the closest point of each segment in E to the center of Ds

123



International Journal of Data Science and Analytics

Table 1 A summary of results on minimum c-packedness of curves

Shape Approx. Time References Relative c-Packed

Convex polygon (constant complexity) 2 + ε O(
log(L/δ)

ε
n3 log n) [7] -

Circle 2 + ε O(
log(L/δ)

ε5/2
n3 log n

ε
) [7] -

Square exact O(n3) [21] -

d-cube 2 O(dn2 log n) [22] Yes

Square 6 + ε O(( n
ε3

)
4
3 polylog n

ε
) [22] Yes

Square 288 + ε O(n log2 n) [25] -

Circle exact O(n5) Theorem 1 -

α-fat shapes α2β Tc(n) Theorem 2 -

Square 2 O(n2) Section 2.1 Yes

Square, rectangle 4 + ε O( n
ε
log2 n + n

ε5/2
log n

ε
) Section 3 Yes

L is the length of the curve. δ is the minimum distance between two points from disjoint edges. Tc(n) is the time complexity of a β-approximation
for c-packedness using circles

and call this set C . The smallest enclosing disk of C ∪ Fs is
the solution and it can be computed in O(|E |) time.

So, we focus on finding the sets described in Lemma 1.
Let C(u, v, w) denote the smallest circle containing points
u, v, and w.

Algorithm 1 Enumerating The Events of Exact Minimum
c-Packedness
1: for each i, j ∈ 1, . . . , n do
2: pi , p j = the closest points of Pi Pi+1 and Pj Pj+1 to each other.
3: dp[0] = 1
4: for k = 1, . . . , n do
5: pk = the point p on segment sk with the smallestC(pi , p j , p).
6: dp[k] = ∑

0≤z<k,
pk∈C(pi ,p j ,pz )

dp[z]
7: if ∀z < k, pk /∈ C(pi , p j , pz) then
8: dp[k] = dp[k] + 1

Lemma 2 The recurrence relation of Algorithm 1 finds
O(n2) events for each pair of segments si and s j .

Proof We use induction on the number of edges checked so
far. At step k ≤ n, the set of edges of the curve that can be
used to create the events are s1, . . . , sk .

The circle determined by pi and p j as the endpoints of its
diameter is the base case. Based on Lemma 1, since pi , p j

and pk are known, there are two cases:

– C(pi , p j , pk) determines a circle that was not given by
any subset of s1, . . . , sk−1, i.e., it is a new event.

– ∃k′ : C(pi , p j , p′
k) determines the circle intersecting sk ,

i.e., there is no circle that intersect si , s j and sk but not
any of sz, z < k.

This is all the possibilities of the segments being intersected,
which is what the recurrence in the algorithm computes. 
�

Similarly, the other endpoints of the segments can be con-
sidered for removing the segment from the set of intersected
segments, and the number of events is still O(n2), since the
number of involved endpoints in computing the events has
changed from n to 2n.

Theorem 1 The number of events is O(n4).

Proof Choosing two segments si and s j has
(n
2

) = O(n2)
possibilities, and using Lemma 2, there are O(n2) events for
each of them. This is O(n4). Each event is counted at most
via

(3
2

) = 3 subroutines, which is O(1). 
�

For any of the computed events, sets E and F are con-
structed, and the largest disk described in Lemma 1 is
computed, which takes O(n) time per event, and the algo-
rithm runs in O(n5) time. Assuming the packedness of each
event is computed at its construction time, and only the max-
imum is stored, the space complexity of the algorithm is
O(n).

2.1 Vertex-relative c-packedness of squares

Corollary 1 (of Lemma7 in [22])Vertex-relative c-packedness
is at most twice c-packedness. There is an optimal square H∗
of side length r defined by the vertices of the curve, so, there
is a square H with side length 2r centered at a vertice of the
curve, such that H covers H∗.

Algorithm 2 is a modification of the 2-approximation algo-
rithm of [22] that uses Corollary 1 to find the events and
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Algorithm 2 Relative c-Packedness for Squares
Require: A curve P = {P1, . . . , Pn}
Ensure: The minimum c for which P is vertex-relative c-packed
1: Lx = the edges of P sorted on x , Ly = the edges of P sorted on y.
2: for i = 1, . . . , n do
3: L = merge Lx and Ly based on their �∞ distance to p
4: Traverse L and update the length � and side length r at each point.
5: c = max(c, �

r )

computes vertex-relative c-packedness, which improves the
running time to O(n2). �∞ distance of a vector is the maxi-
mum of the absolute values of its coordinates.

Merging Lx and Ly

The list Lx is the sorted list of points of P based on their
first coordinate. Ly is the list of the points of P based on their
second coordinate. The goal is to compute the list L that is
sorted based on the distances of the points of P to a point
p = (px , py).

Partition each of the sets Lx and Ly into two sets based
on whether their coordinates are at least as much as p or
not, call these sets: Lx,x≥xp , Lx,x<xp and Ly,y≥yp , Ly,y<yp .
We explain how to merge Lx,x≥xp and Ly,y≥yp , and the rest
of the cases are similar. Scan both lists simultaneously, add
the element q = (qx , qy) with the minimum distance to p
from the two list and advance the pointer of that list, so,
q = argminq∈Lx∪Ly max(|qx − px |, |qy − py |). Since the
lists Lx and Ly each contain a copy of the points, only keep
the first occurrence of q in the list.

Proof Sketch
The list L is sorted based on the �∞ distances from p,

since increasing the side length is a monotone movement in
the directions of the axes, so the intersection of the square
with a line through its center and parallel to each axis is also
monotone. A similar idea was used in [21], but the algorithm
was different. By scaling a square without changing the set
of intersected segments or its center, the length of the curve
inside it increases by a constant factor (similar to disks as
described in Lemma 1) So, updating the lengths when reach-
ing a new point takes O(1) time and the algorithm takes
O(n2) time.

2.2 Packedness using fat shapes

A shape enclosed inside two concentric disks of radii ρ and
αρ is called α-fat [5]. Approximating an α-fat shape with the
disk of radius ρ in this definition, gives an α2-approximation
for minimum c-packedness:

Theorem 2 The packedness of the smaller disk in the def-
inition of an α-fat shape is an α2-approximation for the
packedness of the shape.

Proof Let P be a c-packed curve, and D be the smaller disk
of the optimal translation of query Q. Let l be the length of
P inside Q, and r be the radius of Q. Then, l is at least as
much as the length of the curve inside D, which is cρ, and
the radius of Q is at most αρ. So, the approximation factor
is α2: cρ ≤ γ (Q, P) ≤ cαρ, ρ ≤ r ≤ αρ ⇒ c

α
≤ l

r ≤ cα.


�

3 An approximation algorithm for
c-packedness for squares and rectangles
based onWSPD

A pair of sets (A, B) of points are s-separated [27], if disks
CA and CB of radius ρ containing the bounding boxes of A
and B fits inside them and the distance between CA and CB

is at least sρ. A well-separated pair decomposition (WSPD)
[27] of a point set S is a set of s-separated pairs {(Ai , Bi )}mi=1
from S, such that for any points p, q ∈ S, there is exactly
one index i such that p ∈ Ai and q ∈ Bi , or p ∈ Bi and
q ∈ Bi . The size of a WSPD is m = O(s2n).

We say a square is defined by a WSPD pair (Ai , Bi ) if it
is the smallest square centered at a point of Ai and covers the
points of Bi .

Lemma 3 The relative packedness of the squares defined
by WSPD pairs is a (2 + ε)-approximation for the relative
packedness and there are O(n/ε2) squares.

Proof For a square D∗ with optimal relative packedness cen-
tered at p and with q on its boundary, there is a s-separated
pair (Ai , Bi ) with p ∈ Ai , q ∈ Bi or p ∈ Bi , q ∈ Ai .
Based on this property of WSPD, half the side length of D∗
is d ≥ sρ. Consider the smallest square D centered at p and
containing Ai ∪ Bi ; the half of side length of this square is
at most 4ρ + d. Let � be the length of the curve inside D∗.
Then, the packedness of D is: γ (D) ≥ �

4ρ+d ≥ �
4d/s+d ≥

�
d/2

1
8/s+2 ≥ γ (D∗) 2s+8

s = γ (D∗)(2 + 8
s ). For s = 8

ε
, this

is a (2 + ε)-approximation. 
�

The packedness of a curve with rectangle queries is an
upper bound on the packedness of that curve with square
queries, since the set of squares is a subset of the set of rect-
angles. By substituting squares with rectangles in Lemma 3,
the result holds for rectangles as well. The reason is that the
aspect ratio of rectangles built on points of a WSPD pair is
O(s). Note that the results do not hold for arbitrary curves,
for example a space-filling curve that almost covers the area
of a rectangle has an unbounded approximation factor for
squares. More specifically, a a × b rectangle with a ≥ b
might contain curve length f (b),while a bounding square has
size a × a, resulting in packedness f (b)/a for the bounding
square, while any square inside the rectangle has packedness
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f (b), resulting in an unbounded approximation factor for a
small enough a.

A corollary of Lemma3 is that by preprocessing the length
queries computed on rectangles defined by WSPD pairs, a
rectangular query defined on two points of this point set can
be answered by finding the WSPD pair containing those two
points and reporting the result, and the approximation factor
is the same as the approximation factor of computing the
c-packedness.

3.1 Approximate length queries for squares and
rectangles

We first break each segment between each endpoint and the
closest query side, resulting in at most 3n segments. Seg-
ments with both endpoints on queries (set W ) and ones with
at least one of their original endpoints (set M) are solved
using different methods. If the original endpoints of a seg-
ment lie on the boundary of queries, it is placed in W . So,
|W | ≤ n and |M | ≤ 2n. The rest of this section explains the
algorithms for computing M ,W and length queries on them.

Line-Sweeping
A line-sweeping algorithm [14] has a set of event points

stored in an event queue, and a status data-structure. The
event points are traversed in sorted order and at each event
point, the status is updated, which can result in adding points
to the event queue.

We use two line-sweeping algorithms, one from left-to-
right, and the other from bottom-to-top.

The event queue consists of the endpoints of the interval
of the projection of the query rectangles on the x-axis (for the
left-to-right sweep) and on the y-axis (for the bottom-to-top
sweep) and the endpoints of the interval of the projection of
the edges of the curve on the axes. Since there are n segments
and m queries, the number of events is m + n.

The status data-structure stores the set of edges of the
curve that are intersected by a rectangle edge at query edge
events for the first or last time since their endpoints, so that no
other intersecting query edge event has happened since their
endpoint event. The query edges are the set of vertical query
edges in the left-to-right sweep, and the set of horizontal ones
in the bottom-to-top sweep. Computing the last query side
visited before an endpoint event is easy, since it only requires
the last status. The status has at mostm segments at each time
(event) and those segments are perpendicular to the sweeping
direction. Note that we do not need the order of edges of the
curve that intersect the sides of query shapes, and no new
events are added at the intersections of an edge with a query
shape.

At each edge event, we check if the interval built on the
events of a segment and the interval built on the events of
a rectangle query in the status intersect, then, we check if
they actually intersect and check if this is the first time they

intersect. Checking if an endpointwas already separated from
the segment can be easily done by marking the endpoints of
segments.

At each query event, we update the status to include the
last seen side of a query rectangle. Updating the status tree
takes O(logm) time, querying the tree takes O(log n) time,
if a 1D segment tree is used as the status data-structure.
Therefore, the overall time complexity of the algorithm is
O((n + m) log n).

Processing M :
For segments in M , we keep the endpoint p that is not

on a query shape and remove the rest of the segment, and
assign a weight w(p) to p which is equal to the length of the
removed segment. Note that if a segment of M is intersected
by a rectangle query the segment falls completely inside the
query.

Then, we use an axis-parallel windowing query [14] to
compute the sum of the weights of the points inside each
query.

Processing W : A rectangular windowing query asks for
the set of segments that intersect with a given rectangle or
fall inside it. Building a 2D segment tree on W is enough to
answer rectangular windowing queries, since the problem of
finding intersecting segments with a set of rectangle queries
on that set reduces to computing the intersections between
the set of axis-aligned bounding boxes of the segments of
W with the query rectangles: first, search the range x of the
query in the first dimension of the tree, then, search the range
y of the query on the second dimension of the tree, for the first
range. Reporting these intersections would take time linear
in the number of intersected segments.

If a segment s falls inside the query rectangle Q, then
the bounding box of s also falls inside Q, and it is reported
because its x and y ranges are a subset of the x and y ranges
of Q. For a segment s that intersects with Q, its bounding
box also intersects with Q, and vice versa, because if s is
axis-aligned, then its bounding box is a segment and lies on
the boundary of Q, otherwise, its not parallel to the boundary
edges of Q and s will intersect Q somewhere in the intersec-
tion of their x and y ranges.

Windowing query on x or y is an axis-aligned strip, on
both x and y it becomes a rectangle, on x, y,Δθ (θ is the
inclination angle of the segment) it can detect intersections
of the rectangle with segments of slope θ ± Δθ , and on
x, y,Δθ,Δr (Δr discretizes the perimeter into segments of
length εΔr ) has the shape of a strip inside the rectangle. To
handle rectangle queries, in addition to x, y,Δθ , we need
another dimension Δr in the segment tree.

Since we only need the first two dimensions to answer
rectangular length queries, we group the last two dimen-
sions. Also, after querying the first two dimensions, we can
discretize θ based on x + y. Similarly, we can discretize
the intersection with the boundary based on x, y, θ (the strip
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Δx

Δy

r

s

Fig. 5 Asegment definedby its bounding box, inclination angle (slope),
and its offset

inside the rectangle) for a given ε, because the length of
the query would be at least max(x, y) because of another
segment in that cell, otherwise the segment tree would have
divided the cell. Because of the discretizations εΔθ and εΔr
on the last two dimensions, their trees have O(poly( 1

ε
)) ele-

ments instead of O(n) elements. This is similar to type B
queries in [22].

Lemma 4 Given ranges on [x1, x2], [y1, y2], θ, r for a seg-
ment s, where [x1, x2] and [y1, y2] are the ranges for the
coordinates of the bounding box of s, θ is the inclination
angle and r is the offset inside the rectangle x, y, it is possible
to compute the length of s. If these values are approximated
by factors αi , i = 1, . . . , 4, the approximation factor for the
length of s is α2

1α
2
2(1 + α3 + α4 + α3α4).

Proof The first two ranges [x1, x2], [y1, y2] define a rectan-
gle [x1, x2] × [y1, y2]. The third dimension (θ) defines a set
of infinitely many parallel line segments. The last dimension
(r) defines the intersection of the segment with the rectan-
gle, which uniquely defines the segment. Figure 5 represents
these parameters and the segment defined by them.

The length of the segment, assuming it is placed as shown
in Fig. 5, is

Δy − r

Δy

√
(Δx)2 + (Δx cot(θ))2

= Δy − r

Δy
Δx

√
1 + cot(θ)2.

Applying the approximation factors of the parameters gives
the upper bound on the approximation factor of the length:

(α2
2 + α4)(α

2
1)(1 + α3) ≤ α2

1α
2
2(1 + α3 + α4 + α3α4).


�

For α1 = α2 = 1, α3 = α4 = ε, the approximation factor
of Lemma 4 is 1+ 4ε, so we use ε/4 in the input algorithm,
which only changes the time and space complexities by a
constant factor.

A segment in W has the property that its endpoints lie on
query edges. Several cases can happen for a segment of W
intersecting a set of axis-aligned rectangles:

– Case I: The segment intersects two opposite edges of the
same query shape. In this case, we only need to know
the slope of the segment to compute the length that falls
inside the query. Using a (1 + ε)-approximation for the
slope results in a (1+O(ε))-approximation for the length.

– Case II: The segment intersects two consecutive edges of
the same query shape. In addition to the slope, we also
need the intersection point of the segment with one of the
boundaries to compute the length of the segment. Using
a (1+ε)-approximation for the slope and the intersection
point with the perimeter of the shape gives a (1+ O(ε))-
approximation for the length.

– Case III: The segment intersects two edges from different
query shapes. Based on the elementary intervals of the
segment tree, which correspond to two consecutive coor-
dinates of the segments stored in the tree, this case can be
partitioned into a set of rectangles where both endpoints
lie on the sides of a rectangular cell of the tree. Such a
partitioning is automatically computed when elementary
intervals (the 2D intervals in the lowest level of the tree)
are constructed during the construction of the tree.

Lemma 5 A segment tree built on the query squares and the
segments of W with dimensions of the coordinate system
(x, y) partitions the input into the 3 cases mentioned above.

Proof A segment tree on a set of segments partitions those
segments. The 2D segment tree also partitions the squares. It
remains to prove a query contains all the segments that inter-
sect it in consecutive cells of the tree.A segment is continuous
on its first coordinate x , so it falls inside adjacent cells in the
first dimension. In the second dimension (coordinate y), for
each interval x , both the query (square or rectangle) and the
segment are continuous. The aggregated trees on y connect
the adjacent cells in the y dimension. Then, the aggregated
trees on the first dimension (x), concatenate the consecu-
tive x values. Since both the coordinates of queries and the
segments are in the tree, these sums include the cost of all
queries. 
�

A set of examples for these cases are shown in Fig. 6.
The intervals on the lengths of these segments are com-

puted by the algorithm. Assume ε = 0.1 and the boundary is
traversed in counter-clockwise order starting from the left-
most lowermost corner in the last dimension of the tree. The
lengths stored in the tree are as follows:
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Fig. 6 Examples of different cases of segments of W with respect to
square queries

– s1: This is an example of case I. With inclination angle 0,
s1 intersects with intervals [0, 4], [4, 8] on the x-axis.
The y intervals (in the segment tree) for these inter-
vals are [2, 4], [2, 5]. Then, the inclination angle (θ)

is used, which is [0, 0.1] for all of these intervals. s1
intersects the boundary of all these cells with offset
[0, 0.1]. For offset 0, the lengths stored at these cells
are ≈ [4, 4.005], [4, 4.011] and the algorithm gives the
range [8, 8.061] for the length of s1.

– s2: It has two points on consecutive edges of the same
query (case II) and inclination angle tan−1(5/6) ≈ 0.695.
The x intervals are [2, 4], [4, 8]. The y intervals are
[0, 2], [5/3, 2] ∪ [2, 5]. The range for θ is [0.6, 0.7]. The
offset ranges are [0, 0.1], [0.1], [4.4, 4.5]. The lengths
are ≈ 2.603, 0.521, 4.686, which sum to ≈ 7.81.

– s3: s3 has its two endpoints on different queries, and
the cells of the tree used to compute the length are
[1, 2] × [4, 8] and [2, 3] × [4, 8]. The inclination angle
is tan−1(4) ≈ 1.326, which is in the range [1.32, 1.33].
The offsets are [0, 0.1]. So, the lengths are √

5,
√
5.

Lemma 6 Each non-empty elementary 2D interval (cell of
a leaf) of size x × y in our segment tree contains at least
max(x, y) length of the curve.

Proof An elementary interval contains two endpoints in each
dimension, so if it is non-empty, there is at least one segment
that covers that range. The length of that segment is at least
as much as the length of the range. So, the length inside each
elementary cell is at least max(x, y). 
�

The idea of discretizing θ already existed in spanners
like -graphs and Yao-graphs [27], ε-kernels [4] and range
queries [6].

Lemma 7 Discretization on Δθε/4 and Δrε/4 gives a (1+
ε)-approximation for Δθ and Δr .

Proof We partition the segments W based on their inclina-
tion angle (θ) into a set of groups [2(i − 1)π

√
ε, 2iπ

√
ε],

for i = 1, . . . , � 1√
ε
�, in which the difference between differ-

ent angles in a group is at most 2π
√

ε. Each segment with
inclination angle θ with endpoints on a strip of width Δr has
length Δr

cos θ
. So we can get a (1 + ε)-approximation of the

total length in any strip (see Lemma 4). 
�
We preprocess W into a stabbing windowing data-

structure on (x, y,Δθ,Δr) for countingqueries [14].Assume
it is a 4D segment tree, where first the last two dimensions
are aggregated, then the nodes of the first two are augmented
by the prefix sums of the leaves of their subtrees.

Lemma 8 A 4D segment tree with aggregated queries can be
obtained from a segment tree by storing O(1) data in each
node.

Proof To build such a tree, first build the 4D segment tree,
then aggregate the results in the subtrees. Computing the sum
of all the segments with less y than yi , for each yi from the
input gives the aggregation for the y dimension. This can
be done by a dynamic program on the tree, where the sums
are computed from leaves to root: each internal node takes
the values of its children, sums them with its own value, and
sends the result to its parent.

For the x dimension, each internal node receives a tree
instead of a single value, and has to sum those values. Since
the values of y in the subtrees are a subset of values of y in
their parent node, this can be done recursively. The aggrega-
tion visits every node of the tree at most once.

Each square query is a range on x and a range on y. At
query time, the differences of the values of the ranges in
the tree give the solution. This is possible because rectan-
gular ranges map to subtrees with consecutive leaves (see
Lemma 5). 
�
It is also possible to use a hash function for (Δθ,Δr) after
the initial construction (before answering queries) to sim-
plify the algorithm, which also increases the complexity by
converting log 1

ε
factors in the query time to 1

ε
factors in the

preprocessing time or space.
To answer length queries, aggregate on the last two dimen-

sions, by computing the weighted sum usingms described in
Lemma 1.

Theorem 3 The sum of the length queries for M and W gives
a (1+ε)-approximation of the length queries in O( n

ε
log2 n+

n
ε5/2

log n
ε
) time.

Proof Lemma 4 shows approximating the parameters x, y,
Δθ,Δr with factors 1, 1, 1 + ε/4, 1 + ε/4 gives a (1 + ε)-
approximation for the length, and Lemma 7 proves the
discretization used in the algorithm achieves these approxi-
mation factors.

Lemma 5 shows an aggregated segment tree, gives an
exact solution for rectangular range queries with coordinates
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from the input segments. Lemma 8 proved this tree can be
constructed from a segment tree by adding sum of subtrees
to the internal nodes of the tree. The last two dimensions
have O(1/ε) values, because they discretize π

√
ε) (for Δθ )

and x + y (for Δr ) by ε and max(x, y)(ε/4) (based on Lem-
mas 4,6), respectively.

Dimensions x and y each have O(n/ε) leaves, the other
two dimensions have O(1/

√
ε) and O(1/ε) leaves, since

we have O( n
ε
) queries and an input of size n + O( n

ε
). The

last two dimensions are aggregated before query time, which
takes O( 1

ε3/2
) time. The time complexity of building and

aggregating a segment query in this segment tree with aggre-
gations is O( n

ε
log2 n + n

ε5/2
log n

ε
). 
�

4 MPC algorithms for S-relative
c-packedness

In this section, we give parallel equivalences of the algorithm
described in Sect. 3.1 and Algorithm 2.

4.1 An approximation algorithm for c-packedness of
squares

Algorithm 3 is the parallel version of the algorithm described
in Sect. 3.1 in the PRAMmodel. Computing theWSPD takes
O(log n) time in PRAM [11] and building a segment tree and
computing a set of O(n) queries takes O(1) time in BSP and
O(n log2 n) work [18]. The algorithm also works in MPC
with slowdown 2, so its round complexity is O(log n) [20].

Algorithm 3Approximate Parallel S-Relative c-Packedness
for Squares and Rectangles (The algorithm of Sect. 3.1 in
PRAM)
Require: A curve P = {P1, . . . , Pn}
Ensure: The minimum c for which P is vertex-relative c-packed
1: T = Build aWSPD in PRAM and for each edge of theWSDP, build

an axis-aligned rectangle with that edge as its diameter.
2: Build the elementary intervals of the segment tree from Sect. 3.1

and compute the length query for them.
3: Compute the sum of the values in the leaves of the tree to compute

the values of rectangles covered by the internal nodes of the segment
tree.

4: Compute the queries T using this segment tree by simulating the
sequential algorithm.

5: For all queries T , divide the length (value) of the query by the side
length of the query shape to compute its packedness.

6: return The maximum packedness from the previous step.

An algorithm for segment tree and one query with O(1)
rounds exists [18], which is the simulation of the BSP
algorithm in MapReduce [20]. However, for T queries that
request the same block, the queries need to be managed,

which adds another factor O(logm |T |), wherem is themem-
ory of each machine.

To build a 2D segment tree (Line 3), a parallel semi-group
algorithm can be used in each dimension, since summation
is a semi-group. At query time, the number of blocks that
need to be summed in order to compute a rectangular query
is O(log2 n). So, the total communication and work required
to compute all queries T is O(|T | log2 n) = O(n log2 n). So,
it is near-linear and satisfies the space constraints of MPC.

4.2 An exact MPC algorithm for S-relative
c-packedness

The parallel algorithm can only compute the packedness
of O(nη) shapes at each round. The naive algorithm that
sends the query shape to all themachines has communication
complexity O(n) and round complexity O( 1

η
), since rout-

ing (broadcasting) also requires using parallel prefix. This is
because for broadcasting, n copies need to be created, which
do not fit inside the memory of one machine.

Algorithm 4 is the parallel version of Algorithm 2.

Algorithm 4 Parallel S-Relative c-Packedness for Squares
(Algorithm 2 in MPC)
Require: A curve P = {P1, . . . , Pn}
Ensure: The minimum c for which P is vertex-relative c-packed
1: Sort the edges on their x to build Lx , and on their y to build Ly .
2: Runaparallel prefix for eachpoint Pi ∈ S to compute the packedness

of squares centered at Pi and through one of Pj , j = 1, . . . , n on
their boundaries.

3: Run a parallel semi-group to find the maximum.

It uses two sortings, |S| simultaneous parallel-prefix com-
putations and a semi-group, each of which take O( 1

η
) rounds

for |S| = O(nη) [19,20], so the algorithm also takes O( 1
η
)

rounds.

5 A data-structure for exact length queries

The results of [7] allow querying translations of the query
shape Q. We also allow querying all scalings with scale fac-
tor at least one (enlargements) of Q. Using the events for
the candidate values of the radii of the disks with maximum
packedness, we build a set of AQDs for each disk of that
radius. We call this data-structure hierarchical aggregated
query (HAQ) data-structure (see Algorithm 5).

During query time, the AQD built for the smallest radius
that is greater than or equal to the radius of the query shape
is used (see Algorithm 6).

Theorem 4 The HAQ for disks (Algorithms 5, 6) can be con-
structed in O(n6 log n) time using O(n6) space, and the
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Algorithm 5 Building The Data-Structure HAQ for Disks
Require: A polygonal curve P
1: E = the set of radii of the events for the c-packedness of P for disk

queries
2: Build a balanced search tree T on E
3: for r ∈ E do
4: Build an AQD for radius r and store it at the node with number

r in T .
5: return The augmented tree T .

Algorithm 6 Length Query using HAQ for Disks
Require: An HAQ data-structure, a query disk Q
1: v = Search HAQ to find the smallest radius that is greater than or

equal to the radius of Q.
2: In the AQD of node v, find the center of Q and compute the length.

query time is O(log n + k), where k is the number of inter-
sected segments with the query shape.

Proof The size of an AQD of a polygonal curve with disk
queries is O(n2). Based on Theorem 1, there are O(n4) dif-
ferent radii. So, the size of the data-structure is O(n6). The
construction time of AQD is O(n2 log n), so the construction
time of HAQ is O(n6 log n).

The query time consists of the time required for finding the
value of r , which is the first level of tree and takes O(log n)

time. Then, a query is made to the AQD for radius r , which
takesO(log n+k), since the intersection events donot change
between the radii in HAQ and the set of intersected segments
remains k.

Algorithm 6 computes an exact solution, since the query
shape falls inside the query shape used in the construction of
the AQD. 
�

Given the set of events for a shape other than a disk, by
replacing the AQD for disks with AQD for polygons, the
HAQ data-structure extends to convex polygons. The com-
plexities change according to the time and space complexity
of the data-structure.

6 Empirical results

Our results contain improvements on the time complexity,
approximation factor, and applicability to big data. We focus
on the approximation factor and perform the experiments on
small- and medium-size trajectories. Some of the ideas, such
as WSPD sparsification and discretization have been used
in different algorithms, where the difference is only in the
running time. To isolate the effect of each method, we use
the same length computation code and the differences are
only in the set of queries for each method.

Figures were drawn using TikZ package on the output
of the codes. The implementation language is C++. Experi-
ments were done on a machine with 4 GB RAM and using

Fig. 7 The disk with maximum relative packedness on trajectory 46 of
Go!Track GPS dataset

Fig. 8 A random sample of disks checked by our exact algorithm on
trajectory 46 of Go!Track GPS dataset

Fig. 9 Top 100 disks based on packedness on trajectory 46 of Go!Track
GPS dataset

one processing core. In all our experiments, we only consider
the latitude and longitude of the points. Some modifications
on the data were done using Microsoft Excel.

We define the packedness of a rectangle as the ratio of the
curve length inside it to its average side length.

6.1 Exact packedness and relative packedness

In this experiment,weuseGPS trajectorydata fromGo!Track
application published as a dataset [13] which is available in
UCI Machine Learning Repository [1]. We use trajectory 46
with 110 vertices.

Our exact algorithm reports the packedness of the curve
equal to c ≈ 132.230 and it takes less than 4 minutes
to compute this. The relative packedness (which is a 2-
approximation of c) is ≈ 119.112. So, here the observed
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Fig. 10 The distribution of packedness of all queries used by the exact algorithm
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Fig. 11 Packedness in terms of the curve length inside each query shape (value of length query)

approximation factor is ≈ 1.11. Figure 7 shows the disk
with maximum relative packedness. Figure 8 shows a ran-
dom sample of the possible disks with sampling ratio 1%.
Figure 9 shows the top 100 disks based on packedness. Both
Figs. 7 and 9 seem to show disks enclosing curve length
close to their diameters, but the curve length inside each of
the disks in Fig. 9 seems to be more. The steps seem to be
shorter at the beginning of the trajectory where more circles
(queries) were chosen (Fig. 8).

The diagram of Fig. 10 shows the distribution of packed-
ness of queries. Figure 11 shows the average packedness and
maximum packedness in terms of the value of length queries,
after binning the values of candidate disk queries from our
exact packedness algorithm. Most queries have packedness
around 80 ± 30. Noises in GPS data can be measurement
errors that happen for small movements and some jumps
where a point far from the actual trajectory is added to it.
For example, a car in traffic makes tiny movements, each of
which adds a measurement error which aggregates to a large

amount compared to the same car traveling the same dis-
tance with constant velocity. Jumps increase the maximum
packedness, but the average packedness is less affected by
them.

6.2 Approximate packedness of GPS trajectories

On large data sets, algorithms with running times more than
n1+ρ for a constant ρ ∈ (0, 1), become inefficient. Using
WSPD pairs as the sparsification method, we decrease the
number of candidate queries for the one with the maximum
packedness.

First, we use curve 20090520231518 from GeoLife GPS
Trajectories dataset [30–32] which has 16480 vertices. Com-
puting the exact packedness of this curve requires checking(32960

3

) = 745, 832, 508, 960 ≈ 1012 circles using the exact
algorithm (Theorem 1).

Since small changes in the trajectory are not visible in
a low-resolution drawing, we also give the packedness of
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Fig. 12 Packedness of the curve using random queries

Fig. 13 A trajectory (in red) and candidate rectangles (using WSPD)
for computing its packedness (in green). Darker regions are tested more
often for finding the rectangle with the maximum packedness

a random sample of the path in Fig. 12. The vertices were
sampled based on their x coordinates with 50 points between
them. The radii were sampled by factors of 50 based on the
distance to their nearest vertical or horizontal neighbor (also
known as the L∞ norm).

The high packedness of the center part of the curve might
be due to high traffic in that part of the city.

UsingWSPDwith separation factor s = 0.0001, the num-
ber of queries on this trajectory reduces to 1173 (Note that
since WSPD pairs approximate all pairwise distances in a
point set (see [27]), so this summarization technique works
for all rectangles, not just squares).

Figure 13 shows this trajectory, along with the set of rect-
angles chosen based on the WSPD pairs built on its vertices.

Fig. 14 A trajectory (in red) and a selection of non-empty rectangles.
Darker regions contain more path length

Fig. 15 A trajectory (in red) and a selection of rectangles with high
packedness. Darker regions have a higher approximate packedness
(colour figure online)

Figure 14 shows the curve lengths inside the candidate
rectangles.

Figure 15 shows the rectangle with the highest approxi-
mate packedness.

Both codes take less than 2 minutes, use about a thousand
queries, and give roughly the same values for the packedness:
The WSPD sparsification reports 751.75 and the random
sampling reports 2109.4, which is much less than the fac-
tor 2 + 8/s = 8002.

The second trajectory that we use in this experiment
is associated with bird 104 of GPS Data of Seabirds [10]
dataset, which is the trajectory with the maximum number of
data points in that dataset. We use longitude and latitude of
the birds location. The number of vertices of this trajectory
is 6048. UsingWSPD summarization, the number of queries
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Fig. 16 Track 104 of GPS Data of Seabirds

Fig. 17 Track 104 of GPS Data of Seabirds and the rectangular queries
computed using WSPD

Fig. 18 Track 104 of GPS Data of Seabirds and rectangles with high
packedness

reduces to 9117, and the number of querieswith high packed-
ness is 398.

Figure 16 shows the input track.
Figure 17 shows theWSPD candidate rectangles for com-

puting packed regions.
Figure 18 represents the selected rectangles. The values

of the parameters were set the same as the previous track.
Our algorithm estimates 7230.21 for the packedness of this
curve.

So, the sparsification method based on WSPD efficiently
determines regions with high packedness.

6.3 Implementation details and improvements

A 2D segment tree for points can be used to implement the
segment tree for segments and rectangles: simply query both
endpoints of the segment, and break the segment on the
boundaries of the node containing it. This is done at both
preprocessing and query steps.

Our segment tree for segments also supports similar
queries, such as weighted length query, and it works for
dynamic weights as well: subtract the previous weight and
add the new weight.

If the endpoints are chosen from a τ × τ grid, by build-
ing the segment tree on the grid, which takes O(τ 2 log τ)

time, it is possible to have insertions, deletions, and modifi-
cations. Both length queries and modifications take O(log τ)

time, and traverse the tree from leaf to root on each of their
endpoints.

If you are interested in the packedness of the shape of the
curve in large scale, first simplify the curve, then compute
the packedness. Otherwise, the packedness mostly shows the
regions with high traffic. The set of possible radii is the one
described in HAQ, i.e., the same set of query sizes used when
computing the packedness.

To get a better approximation factor on big data, use par-
allel or MapReduce algorithms for WSPD. The simplest
method is the recursive construction based on a quadtree,
where the subproblems are pairs of nodes of the tree. By
building and storing these pairs after the first round, you can
recurse on their children until the WSPD condition is satis-
fied or the space limit is reached, where you store the current
pairs for the next round.

Sampling works well on curves where the packedness is
high at least for a dense or long part of the curve, for sampling
the vertices or fixed intervals of the curve length.

When normalizing the data, be careful to scale the coor-
dinates by the same factor, or scale the query shape to match
it. For example if you are using TikZ package to draw the
diagrams.

7 Conclusions and open problems

Detecting mass gatherings based on mobile GPS data, ana-
lyzing the movement of a robot to detect unwanted circular
sequences of movements, tracing genetic mutations in ani-
mals based on theirmigration paths, and estimating the traffic
congestion of roads based on GPS trajectories from vehicles
are examples where computing the traveled distance in an
area can give valuable insights about the data.

We described the problem of computing the packedness
of a curve as a batch of length queries. We then reduced the
number of queries by grouping the spatially similar queries of
roughly the same size together. For other problems, domain-
specific pruning rules and grouping correlated queries can be
used to sparsify queries. On massive data sets, a sparsified
batch of queries can be parallelized by sending the sparsi-
fied queries to all machines. Even an inherently sequential
algorithm such as line-sweeping can be parallelized using
this method, since it has spatial dependency defined by the
sweep line.

Our hierarchical aggregated queries (HAQ) data-structure
is a proof of concept for the existence of polynomial time
algorithms for a batch of length queries. Generalizing our
method to finding non-intersecting top-k queries, computing
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packedness assuming some vertices of the curve can be out-
liers and therefore ignored, and designing a simplification
algorithm whose simplification error for each point of the
curve is a function of the packedness of that point are some
immediate future works.

Definingpersonalizedmovement profiles basedonpacked-
ness instead of just using thresholds on the speed for defining
movement patterns such aswalking, jogging, etc. for humans,
incorporates more detailed information, including the effects
of weather conditions and day of the year on traffic condi-
tions in different areas. To build such profiles, the packedness
of different parts of a GPS trajectory can be used, assum-
ing the sampling frequency is fixed. Packedness and features
extracted from it, can be stored in a non-spatial database,
which makes them easier to integrate with such systems,
compared to communicating queries and their solutions
at query time. The extract-transform-load (ETL) process
required for computing packedness in the streaming setting
requires three passes over the data. In the first pass, the spar-
sified or sampled queries are computed. In the second pass,
the values of these queries are computed. Finally in the third
pass, the values of sparsified queries are used to solve the
actual batch of queries. Reducing the number of sparsified
queries, and therefore the amount of memory used by the
algorithm, from near-linear to sublinear makes the algorithm
more efficient and scalable in the streaming setting.
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