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Abstract

We consider a pricing game in which two competing sellersrdifro similar products
on a social network among agents (communities). Each af@aises, in an iterative
manner, between the two products depending on what his Ineigh do. This intro-
duces two separate games; one between the agents and oremé¢te two sellers.
We show that the first game is a full potential game and prosig®lynomial time

algorithm to compute where the game converges to. We alsly sfrious properties
of the second games such as its equilibrium points and itgergance.

Keywords: Social Networks, Pricing, Bounded Rationality, Game TleAfgorithm

1. Introduction

How can a seller make profit out of a social network? One restslerpolicy for
monetizing social networks is to spread the productin a [atioun through the network
of individual interactions. Because of the rapid growth angularity of on-line social
networks, the topic has attracted interest among researsbeking clever policies. For
example, several papers have studied agents’ behavioseosial markets [1, 2, 3, 4].

Most of these studies focus on a single seller. This work,dvar considers two
competing sellers and studies various related questiamsasithe behaviour of buyers,
the strategies of the two sellers, and so on. In our modelctwapanies are competing
within a social network. Like the classic approach, the alagetwork is modeled by
a graph whose edges represent the interaction betweenepeime main difference,
however, is that the nodes of the graph represent commsiiitiee society rather than
individuals. Each community consists of a continuum of ptigé small agents which
interact anonymously. So, the market is modeled based oulgtiyn games [5].

In our model, the two companies (sellers) announce thegeprfirst and then,
agents within communities choose which company to buy fra¥n. agent’s utility
depends basically on the fraction of neighbours that aréniguthe same product as
that agent. In our model, agents behave cooperatively imgsesihat they tend to buy
the same product as most of their friends do. Our aim is toydtuel behaviour of both
agents (as consumers) and two competing companies in tmis.ga

Preprint submitted to Elsevier February 21, 2011



To make the setting more realistic, we consider a repeatett ga which agents
repeatedly revise their decisions. For this, we considentisy best-response, logit-
response, dynamics for the evolution of the market. In thitrgy, agents revise their
strategies asynchronously. Each agent plays its besbmesstrategy with some prob-
ability close tol; hence, allowing a slight probability of making mistakedisTmay
happens in reality when agents’ information about the emvirent are incomplete,
when they may make mistakes in their computations, or whentagre not fully ra-
tional. The noisy best-response dynamics have been segigest method for refining
Nash equilibria in games [6, 7, 8, 9, 10].

1.1. Our Results

We consider two separate games in our model. The first onetigeba agents
(buyers) who choose between the two products and the secanid between the two
companies that announce their prices and sell their predudr the first game, we
show that with the logit-response dynamic, the market abianverges to an equilib-
rium point. We show in Section 3 that the game will b&uk potential gameand its
equilibrium pointis the global maximum of some potentiaidtion. We also prove that
agents within the same community buy the same product inghiilerium. Using this
observation, we propose, in Section 5.1, a polynomial-tatgerithm for computing
the unique equilibrium.

As for the game between the two companies, we study the balvasf the two
companies and obtain several results. We show, in Sectithratithe game has either
no pure Nash equilibrium or has a unique one. Furthermoedyéist-response dynamic
between companies converges to this unique equilibriumaMée prove the existence
of such equilibrium for some graph classes such as prefarattachment graphs and
regular graphs. We finally present, in Section 5.2, a polyiabtime algorithm for
computing the best response strategy for the companies.

1.2. Related Work

In the traditional game theory, we make strong assumptibositsknowledge of
individuals and consider them fully aware of others. Ewvoluary dynamics, on the
other hand, are introduced for relaxing these assumptiageral works (e.g., [6, 7, 8,
9, 10]) have extensively studied these dynamics and pomiéthat introducing per-
turbations to deterministic processes would create distim differences in behaviour
of dynamics. In a seminal work, Kandori et al. [7] investigatolutionary noisy best-
response dynamics and prove that the dynamics convergeseguélibrium in which
all agents adopt the same strategy. This strategy is the bizdwwould be chosen by
an agent who has no information about his neighbours or,dighbours would play
completely random. This strategy is namestk dominanby Harsanyi and Selten [11].

Blum [8] investigates statistical aspects of various sygtrevision protocols. He
considers local interaction among a large population ohegga which each agent
interacts directly with limited number of agents and intsaindirectly with others
through a path in network. He introduces logit-responseadyins and characterizes
stationary distribution of related Markov process.

Ellison [9] studied the effect of the underlying graph sttre on the game; he
specifically discussed convergence time for certain gréggses. Following this work,



Montanari et al. [10] studied the logit-response dynamizsmade a general and pre-
cise connection between the convergence time and the wgteuct the graph. Our
model is inspired by these works with one major differencelike the previous mod-
els in which each vertex in these models represents a siggte avertices in our model
correspond to communities. This means that we are not dpalth individuals, rather
considering the behaviour of a large groups each contasemgral individual.

The problem of designing a pricing strategy for a company @o@al network
is extensively studied in literature (See, e.g., [1, 2, 3, All these works consider
a monopolistic situation in which one single company selisproduct and tries to
maximize his profit by employing a clever strategy. Harténel. [1] and Akhlaghpour
et al. [3] assume naive behaviour for consumers. In facy, shedy the market with
consumers who act myopically and buy the product as sooregsctim afford to buy
it. They don’t make any reasoning about future reaction eirtheighbours and their
long-term utility. In [1], the seller uses an adaptive priiscrimination strategy. In
their model, the monopolist visits consumers in some orddradfers private prices to
each of them; each consumer may accept or reject the offedlmsthe reactions of
her other friends. Akhlaghpour et al. [3] consider a markie¢re the seller iteratively
posts a price for the product at several time steps. The wivesible to all buyers
at each time step and a buyer may buy the product at a time orfava later time.
The utility of each buyer depends on the price and the setrafiéighbours who have
bought the product before her.

In order to consider more intelligent agents, Ahamdipow €f2] and Bimpikis et
al. [4] model the market as a game. Ahamdipour et al. [2] atersa situation in which
different prices are publicly announced over the time. Ttheragents choose the time
in which they want to buy the product. In these models, agevite are supposed to be
fully rational—strategically choose their best strateggéd on full information regard-
ing all future states of the market. They study agents’ reastin Nash equilibrium
situation. Bimpikis et al. [4] studied a two stage pricinglplem. In this problem the
seller first offers the prices for a divisible good and thée,agents simultaneously de-
cide about the amount of purchase. In these studies, agentsiad to be fully rational
and do not make mistakes. It seems that the correct modekottsidoehaviour prob-
ably lies somewhere between these two extremes of myopitsged fully rational
agents.

2. Our Model

In our model, we study a society that consists of severaglargtually influencing
communitiels Letn be the number of communities amdf be the mass of people
in the i community. For a subsét of communities, letn” = Y., m’ be the
mass of people ifi’. Letm = Y, m’ be the total mass of the society. We model the
interaction between different communities by an undirgeaphG = (V, F) whose
nodes correspond to communities and an €dgg} represents an interaction between
communities andj. We call this graph thenarket graph We also allow loops, i.e.

1We may use the terms community and population interchamgeab



h
S
o

Figure 1: The payoff matriXJ

edge{i,:}, in G to emphasize that agents in a same community influence ehetsot
as well. LetN (i) be the set of neighbours of communityncluding itself. For two
subsetsX andY of communities we definé(X,Y) = 3=, > cy (i jyep MM
which represents the amount of interaction between the aamtias inX andY. Note
that X andY may have non-empty intersection. We will also u$&’) for §(X, X)
for simplicity.

Assume there are two productsand B offered by two competing companies with
pricesp andpg, respectively. Each agent chooses either B; so, its strategy space
isthe setS = {A, B}. Letz’, wheres € S, be the fraction of people in the community
i that buy producs. Thus,z’y + 2%, = m' andz = (%) is a vector o2 x n elements
representing the strategy profile of the game. We defipér) = >, 2% to be the
mass of population who use produce S. LetDi(z) = 2 jeNG) zJ be the mass of
neighbors of community that use produdt, for s € S. Also, for everys € S, define
Dy(x) = D ey xiDi(x). The utility of every person is obtained by aggregating its
utility against every single agent that he interacts witat U (illustrated in Fig. 1) be
the payoff matrix for two players. Then, the utility of a pansin community: that
playss in a game with strategy profile would be

Fi(x) = U(s, A)D}y (x) + U(s, B)Djg(x) — ps (1)

We assume in our model thk is symmetric, i.ec = d and the game defined by
matrix U is a coordination game, i.e. the players obtain a higher fbé@yocadopting
same strategy. In other words, we have- d andb > c¢. Without loss of generality
and throughout the paper, let> b. Also, for the rest of this paper, we assume that
¢ = d = 0; we will prove, in Theorem 1, that this assumption does nat the
generality of our results.

Our game is in category gfopulation gamesvhich provide a general framework
for studying the strategic interactions in which societpsists of several populations.
The behaviour of agents in each population are the same.ebethames, the num-
ber of agents is large, impact of each individual agent islisrand agents interact
anonymously, i.e., each agent’s payoff depends solely@ditribution of opponents’
choices. For more details on population games see [5].

2.1. Market Dynamics

As mentioned before, two competing companies are offerioglycts A and B
with pricesp 4 andp g respectively. In a normal situation, agents update theiteggies
by looking at their neighbours and buy a product that max@sitheir benefit. In our
model, we considenoisy best-response dynamicswhich agents adopt their best
response at each iteration with probability close to oneer&fore, there is a slight



possibility of making mistakes by agents. More specificallg studylogit dynamics
For specific treatment of these dynamics in the context ofugemary game theory,
one can refer to [5].

In our model, the noisy best response dynamics is specifieddayamete € R+
representing how noisy the system is. In fatt: co represents the noise-free or best-
response dynamics, ad= 0 represents the full noisy dynamics in which agents play
with no preference. We assume that each agent in a commenwiges its strategy by
arrival of Poisson clock of rate 1. We consider logit-resgoas revision protocol. So,
the probability that an agent in communitijakes actiors is:

Pig(slw) = m (2)

This defines a reversible Markov chain with vectoeras its states. As we see later,
this game is dull potential gamewith some potential functiorf. So, the stationary
distribution of the Markov chain is

p(w) o 1) 3)

It is immediate that ag — oo the dynamic spends most of its time on the global
maximum of f. We name the global maximum g¢fthe stationary statef the market.

We can now prove that assuming= d = 0 does not make any difference in our
results.

Theorem 1. Supposev < min(a, b, ¢,d). Agents’ decisions in game defined on ma-
trix U is equivalent to agents’ decisions in game with matiix- w, in whichU — w

is computed by subtracting from all the entries olU.

Proof : By equation (1), an agent’s payoff in communityor strategys using the
payoff matrixU — w is

Fi(e) = (U(s,A) = w)Dis(2) + (U(s, B) = w)D(x) - ps
= Fi(@) - w(Di() + Dy(@))

It is obvious that bothF and F* result in identical behaviour i.e. give the same proba-

bility P; g(s|z) in (2). O
Givenp, andpp, we represent the stationary state of the marketby, ps)

meaning that the game will eventually converge to the gisapeofilez(pa, ps). We

will later see thatz(p4, pp) depends solely on the difference@f andpg; i. e., if

pa —pp = py — v thenz(pa,pr) = z(p'y, p’5). We say that profilgp 4, pp) falls

inthe regiorRY, = RV, if ma(z(pa,pp)) =y andmp((pa,pp)) = m —y; ie.,

the masg of the society is using technology at the stationary state(pa,pg). It

is easy to see that increasipg decreaseg (as depicted in Fig. 2) and sinee> b,

z(0,0) € R7}.

2.2. Market Pricing Game

Our model introduces a game/competition between the twgpaniesA and B.
If 2(pa,p) € RY = R} Y then the utility (profit) of companiesl and B are
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Figure 2: A game with four regionﬁg, RJA, R’jq, andR’}, where0 < j < k < m.

Ua(pa,pB) = ypa andUg(pa,pp) = (m — y)pp, respectively. The best response
for the companyA is the pricep which maximizeU4(p,pg); i. €., bra(ps) =
argmaz,Ua(p, pg). Similarly,brg(pa) = argmaz,Up(pa, p).

In the Market Pricing Gamewe study the game between the two companies and
its properties such as its best response behaviour an@éesésof equilibria. We also
consider the convergence of the best response dynamics gathe.

3. Market Behaviour

In this section we analyse the behaviour of communities wheriwo companies
set prices tw4 andpp. This will later help us study the market pricing game. First
we show that our game isfally potential gameas defined in [12], and has various
nice properties. So, the maximizer of potential functiofi aharacterize the market
stationary state whefi — oo. We then use this property to find the market stationary
state. We show that the stationary state is very simple whet pg. In this case, in
the stationary state all agents playing stratelgyBut the problem is not trivial when
pa > pp. Inthis case, we design a polynomial time algorithm thatratizrizes the
stationary state of the market.

3.1. Full Potential Games

Our main result of this section is that our game is a fully ptitd game. We use
the following definition fro [12]. For more details and uskiittuitions, refer to the
main article.

Definition 1. LetF' : R} — R™ represent a population game. We cAlla full poten-
tial gameif there exist a continuously differentiable functipn R’} — R satisfying

Vf(z) = F(z),Vx € R 4)



In potential games we can capture all information about ejanentives in a scalar
valued function, callegotential function Existence of such function provides us with
many nice properties and enable us to derive various resiittat our model. In our
model, the functionF” takes a vector of 2n values ¢*’s) and output the utilities, i.e.,
the vector ofF'’s. We prove that our game is full potential by simply findinythat
satisfies equation (4).

Theorem 2. The functionf defined below is the potential function for the gae
defined on graplé: = (V, E) with payoff matrixU:

F(#) = § (@Da(x) +bD5(x)) ~ pama(e) — pimis(x) ©)
Proof : We have

f(x) Z Z a:vAxA—i—Z Z b:vB:CB

i€V jEN (1) 1€V jEN (1)
7 7
- pa E Ta—PB E TB
eV eV

Note that, as mentioned befo¥ i) includes: itself. The partial derivative of with
respect to arbitrary’, is

of (x 1 , . )
(:f( ) 52 20 arh | —pa=aDi(@) —pa = Fi()
A JEN (i)
Comparing with (1) the proof is complete. o

3.2. Market Stationary State

In this section we study the stationary state of the markedt We provide a lemma
that relates global maximum of potential function to theisteary state of the market.
Then we characterize the global maximum of potential florcii for the case that
pa < ppg. Finally, We will study the casg4 > pp which is more complicated.

As stated before, we consider noisy best response dynarBigs strategies are
updated with respect to probability in (2). In this case,eptial games have a nice
property described in the following lemma. It is worth mening that this lemma is
a succinct result of a more detailed description in [5], vehidve number of agents in
each population is infinite.

Lemma 3. Let F' be a potential game with potential functigh Then invariant distri-
bution of Markov chain defined on logit-response dynamiggig oc ¢?/(*),

Wheng — oo the dynamic converges to the global maximunyfoSpeaking more
precisely, the dynamic spends most of its time around theaglmaximum off. So,
finding the global maximum of, market stationary state, is important to estimate the
outcome of the game.

First, we show in Proposition 4 that the stationary statdésstate of all agents
playing strategyd, whenp, < pp.



Proposition 4. The logit-response dynamic will converge to the state ofagknts
playing strategyA, if pa < pg and — oc.

Proof : Lety be the state of all agents playing stratefygandz be any other state. By
equation (5), we can rewritg(y) as:

1 1 i
I(4) = 5Daly) = pamaly) = 503 > mimi —pam
i€V jEN (i)

We boundf(x) as follows:

f@) = 3(aDa(@) +Pn(w)) — pamale) ~ ppms(2)

AN

< % (aDa(x) + aDp(x)) — pama(z) — pamp(x)

1 y o
5(12 Z (v42) +2BaE) —pam
i€V jEN (i)

Now by knowing thatr’, 2, + ala’y < (2% + %) (2 + 2%) = m'm/, we can
concludef(z) < f(y). So, the maximum of happens aj and, therefore, the dynamic
converges to the state of all agents playihgy Lemma 3. o

Computing the stationary state is more complicated when> pg. In order to
solve the problem in this case, we observe, in Lemma 5, th#ttdriong run each
community will behomogeneouys.e. all people within same community buy same
product. This fact helps us to predict the stationary sthtbemarket in polynomial
time in Theorem 6. The idea is to build a weighted graph whosgénmum cut char-
acterizes the stationary state. The proofs are omitted dnaileappear separately in
Section 5.1

Lemma 5. In the logit-response dynamic each community will be homeges in the
long run, whens — oo.

Theorem 6. We can predict the stationary state of the market in polyabtirne in
the logit response dynamic, whén— co.

4. Market Pricing Game

In this section we study the game between the two competintpaaies. First,
using the results of previous section, we resolve the lesgiense price for each com-
pany. We show that the game has either no pure Nash equifitmithas a unique one
in whichpp = 0. Then we consider the best-response dynamic and provef tinat i
game has a pure Nash equilibrium then the best-responseniygwill converge to it.

It is important to point out here, for the market pricing game can compute
each player’s best response in reasonable amount of tim&edtion 5.2 we have
introduced a polynomial time algorithm in number of comnii@si, in which each
company knowing its opponent’s price, can compute the nmaditable response.



It is worth mentioning that, in this setting, we can model mpolistic societies by
just settingh and the price of produds to zero. Soitis just one company in the market
who should decide the best price for its product.

Given the results of previous sections, the game betweeoaimpanies could be
simplified as follows. Two companies announce two prigesindpz. The maximum
of f is computed. As stated in Lemma 5, every community would bmadgeneous
in the long run. LetS4 be the set of communities who buyandSg = V — S,
be those who buy3. The utilities of the two communities agg;m°4 andpgm?°s,
respectively.

4.1. Pure Nash Equilibrium

We now study equilibrium aspects of pricing game. In homegess state of the
market, we can writg as follows.

fe) = 5(a8(54) +b5(Sp)) — pam® — ppm
= fo—fuo—C

wherefs = 1(a6(Sa) + b5(Sg)), fo = (pa — pp)m®4 andC = ppm. SinceC

is a constant independent §f;, maximizing f is equivalent to maximizings — f.
Note thatfs is independent op , andpg, and solely depends on the structure of the
graph. Letf! = max,,s,_, f5. Assumef{ = 0, if there is no sef 4 with m®+ = y.
Therefore, wherp, andpg is fixed, maximizingf is equivalent to findingy that
maximizesfy — ya, in whicha = pa — pp.

Let (pa,pp) be a strategy profile of the pricing game. When= 0 then by
Proposition 4 all communities adopt and, henceS, = m. As « increases, less
communities buyA. Leta,, be the very first point that whem = «,,, then the mass
of communities that buyl changes to some new valug. Let the set of threshold
points bea,,, < a,, < -+ < as, . For convenience we add,, = 0. Itis clear that
m=mng >ny > - >n; = 0. S0, Wherps — pp € [an;, n,,,) thenmS4 = n;
and the utility of companyl is n;p 4. See Fig. 3 for illustration.

Lemma?7. If (pa,pr) be a Nash equilibrium theny is slightly less than,, and
PB = 0.

Proof: If a,;, 1 < a < ay,; for somej > 1 thenB increases his price until = a,,
(See Fig. 3). This increaséss payoff as it will not affect the communities that bisy

If o = a,; for somel < j < ny thenA increases his price until it is slightly less than
an,,,- This increasesl’s payoff as it will not affect the communities that bu. If

a = ay,, i.e. no one buysl, thenA can decrease his price until at least one community
buysA and brings more utility tol. So, we must have < «,,, . If the strategy domain
of companies is continuous then we don't have any Nash éqiuith as companyl
wants to makey as close tay,,, as possible which gives no Nash equilibrium. But, if
we discretized the strategy domain then the only possibitethe largest value (in the
discrete domain) less than,, . Let this value bey,, . We argue thapp = 0 as if not

B can decrease its price toand the newy would be at leastv,,, which means some
communities buyB and B gets more utility. m|
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Figure 3: The action of company (B) has been shown by green(red) line.

So, the only possible Nash equilibrium(s;, ,0). At this point, B is obviously
playing best response as he does not get any utility no ntfadtehe plays. However,
A necessarily is not playing best response as he may gain mafielyy increasing his
price.

Theorem 8. If the strategy domain of companies is continuous then we hawWNash
equilibrium. Otherwise(c,,, ,0) is the unique Nash equilibrium if and onlydf, <
bra(0).

4.2. Market equilibrium on special graphs

In this section we show that pure Nash equilibrium existssfane special graphs
such as regular and preferential attachment graphs.

We first obtain the following sufficient condition for haviagNash equilibrium and
then prove it for the above class of graphs. Recall fijat max,,,s,_, fs.

Lemma9. If mf{ < yfi™ + (m —y)fJ for everyy < m, thenbr(0) = o and the
market has a unique equilibrium
Proof : We prove that under the above conditions there is only onglesithreshold
point, i.e., asy increases the situation changes fraliplaying Ato all playing B. Let
a be a point at whichS 4| = y in the maximum off. At this point we havefy —yo >
m_ ry y_ 0 )

f{—0xa=f)andf! —ya > fI* —ma. So, we havd‘% <a< %Whlch
meansnf{ > yf™ + (m — y) f2; this contradicts the lemma condition. Therefore,
either all or no communities bugt. Obviously,A’s best response at this situation is to
play o; . So we have a unique Nash equilibrium by Theorem 8. m|

We conclude this section by showing that several real woddket graphs satisfy
the condition of Lemma 9 and have pure Nash equilibrium. Rertheorem below
we consideuniform marketsin which we assume the that all populations masses are
similar i.e. we have a uniform distribution of agents amoogudations. In fact, we
assume there are communities in the market witlhh; = 1. So the total mass of

10



society ism = n. This game is important when we want to focus on the strucitire
the market graph.

Theorem 10. For the uniform markets, if market graph is a regular or prefgial
attachment then it has a Nash equilibrium.
Proof : It suffices to prove the condition of Lemma 9.

Regular graph: Assume we have a regular graph of degiegith e = nd/2 =
md/2 edges. Note thaff” = ae, f) = be and f{ < (ady + bd(m — y)/2. So
mf¥ < md)2ay +bm — ) = elay + b(m —y)) = g + (m — y) 2

Preferential Attachment Graphs: Assume we have a preferential attachment
graph with parameted with ¢ = nd = md edges. In this model each new node
creates exactly edges to the previous nodes. Note tfigt = amd and f{ = bmd.

On the other hands, consider an induced sub-g€dphith y vertices. Note&=' is con-
nected to the? — G’ with at least one edge. S@/ has less thapd edges. Therefore
fY < ayd+ b(m —y)d, which impliesmf{ < yfi" + (m —y) f2.

a

5. Algorithmic Aspects

In this section we propose polynomial time algorithms foo feroblems. First, we
consider the problem of computing the stationary state ¢ti@e5.1. The main result
is the proof of Lemma 5 and Theorem 6 that we have stated indde®t Second, we
propose a polynomial time algorithm for computing best oese for companies in the
market pricing game in Section 5.2.

5.1. Computing the Stationary State

Letps andpp be fixed. As we know from Lemma 3, the market converges to the
maximum of the potential functiofi. Note that, we have shown in Proposition 4 that in
the stationary state, all agents will play strateywhenp, < pp. So, we focus on the
casep4 > pp and propose a polynomial-time algorithm to compute suchx@mam.

Our solution is based on an algorithm for thieximum Weighted Set Problerhhis
problem has been defined below.

Definition 2. Maximum Weighted Set Problem (MWSP):we are given a directed
grpah G = (V, E) with (possibly negative) weighfs on vertices, and non-negative
weightsw;; on edges. The aim is to find a subSeC V' so as to maximize

Ws = ZL‘ + Z Wij (6)
€S (i,j)eE
ijes
Lemma 11. The MWSP can be solved in polynomial time.
Proof : The idea is to build a weighted graph whose minimum cut is theti®n
to the MWSP. For every nodg let h; = I; + ZjeN(i) w;;. We build a graphG’
out of G as follows. Add two new nodesandt. For every: with h; < 0 add an
edge with weight-h; from i to t. For every vertex with h; > 0 add an edge from

11



s to ¢ of weight h;. The value of the out-cut from any sStwhich containss is:
6+(S) = Zhi>0 h; + Zhi<0 —h; + Z(i,j)GE Wij, whereT = V(GI) — S. Let
i€T S ieSjeT
W =3 50l =2 ni>0hi + 3 n,>0 hi. We can rewritdV — ot (9) as:
€S €T

hi>0 hi<0 (i,5)€EE
i€s i€sS i€S,jeT
= Ehi_ E Wij
€S (i,9)€EE
i€S,j€T
= DT+ Y wy)— Y wy
€S JEN(7) (i,9)€EE
1€S,jET
= Efi-l- E Wi
€S (i,9)€EE
i,J€ES

SinceWV is a constant independent 8f we conclude that maximizinEieS I; +
> (i.j)eE wij iS equivalent to minimizing* (S) which could be done in polynomial
_ i€S,jeT
time. ]

Lemma 5 helps us to find a connection between MWSP and congpthiérstation-
ary state. So, we first prove this lemma. Then, we use theitligofor the MWSP and
compute the stationary state of the market and prove Theérem

Proof of Lemma 5:  Fix communityi. As we saw in the proof of Lemma 3,
wheng — oo, the dynamic converges to the global maximunyofThe part off that
depends on populatian(i.e. involvesz?’, andz’;) is:

i Loi i i i i j i j
g(zy) = §(a$A$CA+b$B$B)+$A Z ar’y + x5 Z bl
JEN(3) JEN(3)
i) i£]

—PATY — PBTR

Sincezy = m; — x4, (') will be quadratic inz’, and the coefficient ofi,” is

¢ = i(a +b) > 0. Thereforeg(z}) takes its maximum on extreme points, i.e.
Yy = 0orz’y =m’. Sincez"'s are independent, the maximum phappens when for
everyi, 2y =0 orz’, = m'. O

Proof of Theorem 6: We know from Lemma 5 that each population is homoge-
neous, so it is suffices to find each population’s strategyrétface this problem to the
MWSP as follows. As proven before, the dynamic of the gameeaes to the global
maximum of the potential functiofi. Let S4 andSp be the set of communities i@
that playA and B, respectively. We can write potential function (5) for thiate of the
game as below:

f = 5(@5(5) + b3(S) ~ pam — pm®s )
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By replacingn®® by m —m®4 ands§(Sg) by §(V)—6(Sg, Sa)—3(Sa,SB)—6(Sa)
we have:

1
[ = §(a5(SA) +b5(V) —00(SB,Sa) — b3(Sa,Sp) —bd(Sa))
_pAmSA +m?S® —pBmMm

By omitting constant terms that do not affect the maximaatthe problem reduces to
the following:

max f = %((a—b)é(SA) —b0(S4,V=54)=b3(V—S4,54))+(pp—pa)m>* (8)

We show that the above value is the solution to the MWSP on gpnaqghsGyy
that is constructed fror&" as follows. The vertex set @y is that ofG. The weight
I, of every vertex is (pgp — pa)m® — bm'! ZjeN(i) m? andw;;, for every edgéi, j)
is %(a +b)mim?.

For every set5 C V we have

Ws = Z((pB—pA)mi—bmi > m >+ > ( a—I—bmmJ)

€S JEN(4) (1] )EE
i,jES
1
= (pp —pa)m® —bé(S,V) + 5(a +b)3(S)
1
= 5((& —b)5(S) = b3(S,V = S) —bd(V = 5,9)) + (pp — pa)m®

Itis clear that finding a maximum weighted setGfy is equivalent to finding a set
S 4 that maximizes (8) and, hence, maximizes the potentialtfoimg’. o

5.2. Best-response Pricing

An interesting and important question that we can resoltteadest response strat-
egy of companies in the market pricing game. Given the pricempanyB, pg, what
pricep 4 should the company set so as to benefit most?

Let us fixpg. We first obtain lower and upper bounds for the best respdndeaad
then compute it by using binary search. We know from Profuos# that ifp, < pp
then all populations will playd. So the minimum of 4 is obviouslypg. Also the
maximum ofp 4 is the point where no one play. The following lemma characterizes
this point.

Lemma 12. Global maximum of potential functighis the state of all agents playing
strategyB, if for all i € V we haveps > pp+ 3 (a—b) ZjeN(i) m’. So the maximum

of p4 is at mosp™ = pp + max; (% (a — b) 2 jen() ™)
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Proof : Lety be the state of all agents playing stratdgyandx be an arbitrary state.
We have:

1
flz) = 5 (aDa(z) +bDp(2)) — pama(z) — ppmp (@)
1
< §(a’DA(:v)+bDB(:C)) ppm — —az Z xym? + bz Z xym?
i€V ieN (1) i€V €N (i)
L i g i g i i g
= Eaz Z (x'y2?y —a'ym?) + sz Z (zgaly +xym’) — ppm
i€V jEN(7) i€V jEN (1)
< —bz Z m'm? — pgm = f(y)
1€V jEN (1)

O
It is clear that the total mass of communities that plegiecreases gs, increases.
Also, we know from Lemma 5 that each community is homogene@gsthere are
certain points at which if we increage, a little more, at least one population will
change its strategy. We call these pointdtaeshold points The following lemma
proves that by increasings no population will change its strategy froBto A.

Lemma 13. Let S4 and S’, be the set of communities that plalyin the stationary
state of the market when the price of compdhig pg and the price of company is
pa andp’y, > pa, respectively. Thef’, C Sa.

Proof : AssumeS’; ¢ Sa. Note that the set of communitiet, play A in the the
stationary state of the market with prices andpp. Using proof arguments of The-
orem 6, we can conclude théat, is the maximum weighted set of graghy with
I; = (pg — pa)m® — bm® 2 jeNG) m? andw;; = 3(a + b)m’m’. So the weight of
setS 4 is greater than or equal to the weight of gtU S’,, which means:

LD ST DI S DN
i€SA (i,5)EE 1€S4US", (1,5)EE
1,J€ESA i,jESAUS)
=0 > Z I; + Z Wij 9
i€S8% —Sa (1,7)€E

i€S) —Sa,jESAUS,

Similarly, we can show tha$’, is the maximum weighted set of graghy with
Il=1—(py —pa)m’ andw;; = w;;. So the weight of set’, is greater than or equal
to the weight of sef4 N S’;, which means:

4 / ! /
Yo Y owh s Y Yo
1€5aNS’, (i,9)€E 1€S’, (1,7)€E
i,j€ESANSY i,j€S5%
=0 < Z I+ > wi;,  (10)
1€S8 — (i,5)€EE

ZGS/A—SA7jEqu
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Becausep’, > p4, we havel] < I;, for everyq < i < n. On the other
hands, we assumeSf, ¢ S4, which meangs’, — Sa| > 0. So Zies,rSA I <

EieS’A—SA I;. Now using inequalities (9, 10) and the fact; = w;;, we conclude

(i,j)€E w;; is less than zero. This is a contradiction because we know
iES/A—SAJESA—S/A
w;; > 0, forevery0 <4,j <mn. O

So, one can fixy, as the total mass of populations who hdyand compute the
maximum possible value of, for which at least mass af people buyA. The latter
could be done by a simple binary search algorithm. This gaveofit of at leasyp 4.
Finally, we find this maximum over all values gfand take the maximum.

Note that for each pricing Theorem 6 finds each populatidrésesyy in polynomial
time. So if we acceptdeviation, we can find each threshold poin€it?® log &;”))
time. In whichO(n?) is for finding minimum-cut, in order to find each population’s
strategy, as described in proof of Theorem 6. As mentionesl@tve should take the
maximum over all threshold points. Using Lemma 13, we carckaie that number
of these points at most would be equal to number of commusnitience, we have the
following theorem.

Theorem 14. Inthe market pricing game each company, knowing its oppipreduct
price, can determine the best price in polynomial time in hanmof communities.

6. Conclusion

We considered a network of communities through which twteselcompete on
selling a similar product. We analyzed both games (betweemunities and between
sellers) and obtained several results regarding the bdailof the game, the conver-
gence problem in the dynamic market and their efficient caatfmn.

One important research direction is to study convergeries nathe above settings:
how long does it take to get to or close to the convergencetpoire there some
general graph classes for which there exist rapid converfen

Another interesting problem is to consider more than twteeel This seems like
a challenging but very interesting question. Also, a simieoblem is to different
treatments of communities. For example, a seller be abldféo different prices to
different communities.
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