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The spread of influence in social networks is studied in two main categories: progressive 
models and non-progressive models (see, e.g., the seminal work of Kempe et al. [8]). While 
the progressive models are suitable for modeling the spread of influence in monopolistic 
settings, non-progressive models are more appropriate for non-monopolistic settings, e.g., 
modeling diffusion of two competing technologies over a social network. Despite the 
extensive work on progressive models, non-progressive models have not been considered 
as much. In this paper, we study the spread of influence in the non-progressive model 
under the strict majority threshold: given a graph G with a set of initially infected nodes, 
each of which gets infected at time τ iff a majority of its neighbors are infected at time 
τ − 1. Our goal in the MinPTS problem is to find a minimum-cardinality initial set of 
infected nodes that would eventually converge to the steady state where all nodes of G
are infected.
We prove that while the MinPTS problem is NP-complete for a restricted family of graphs, 
it admits a constant-factor approximation algorithm for power-law graphs. We do so by 
proving the lower and upper bounds on the optimal solution of the MinPTS problem in 
terms of the minimum and maximum degrees of nodes in the graph. The upper bound is 
achieved in turn by applying a natural greedy algorithm. Our experimental evaluation of 
the greedy algorithm also shows its superior performance compared to other algorithms 
for a set of real-world graphs as well as the random power-law graphs. Finally, we study 
the convergence properties of these algorithms and show that the non-progressive model 
converges in at most O (|E(G)|) steps.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Studying the spread of social influence in networks under various propagation models is a central issue in social network 
analysis [1–4]. This issue plays an important role in several real-world applications including the viral marketing [5–8]. 
As categorized by Kempe et al. [8], there are two main types of influence propagation models: the progressive and the 
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non-progressive models. In the progressive models, infected (or influenced) nodes will remain infected forever, but in the 
non-progressive models, under some conditions, infected nodes may become uninfected again. In the context of the viral 
marketing and diffusion of technologies over social networks, the progressive model captures the monopolistic settings 
where one new service is propagated among nodes of the social network. On the other hand, in the non-monopolistic 
settings, multiple service providers might be competing to get people adopting their services, and thus users may switch 
among two or more services back and forth. As a result, in these non-monopolistic settings, the more relevant model to 
capture the spread of influence is the non-progressive model [9–12].

While the progressive model has been studied extensively in the literature [8,13–18], the non-progressive model has 
not received much attention. In this paper, we study non-progressive influence models, and report both theoretical and 
experimental results for them. We focus on the strict majority propagation rule in which the state of each node at time 
τ is determined by the states of the majority of its neighbors at time τ − 1. As an application of this propagation model, 
consider two competing technologies (e.g., IM service) that are competing in attracting nodes of a social network to adopt 
their services, and nodes tend to adopt a service that the majority of their neighbors have already adopted. This type of 
influence propagation process can be captured by applying the strict majority rule. Moreover, as an illustrative example of 
the linear threshold model [8], the strict majority propagation model is suitable for modeling the transient faults in fault 
tolerant systems [19–21], and also used in verifying convergence of consensus problems on social networks [22]. Here, 
we study the non-progressive influence model under the strict majority rule. In particular, we are mainly interested in 
the minimum perfect target set problem where the goal is to identify a target set of nodes to infect at the beginning of 
the process so that all nodes get infected at the end of the process. We will present approximation algorithms and prove 
hardness results for the problem as well as experimental evaluation to validate our results. As our main contributions, we 
provide the improved upper and lower bounds on the size of the minimum perfect target set, which in turn, result in a 
constant-factor approximations for power-law graphs. Finally, we also study the convergence rate of our algorithms and 
report some preliminary results. Before stating our results, we define the problem and the model formally.

Problem formulations. Consider a graph G(V , E). Let N(v) denote the set of neighbors of node v , and d(v) = |N(v)|. Also, 
let �(G) and δ(G) denote the maximum and minimum degrees of nodes in G respectively.

A 0/1 initial assignment is a function f0 : V (G) → {0, 1}. For any 0/1 initial assignment f0, let fτ : V (G) → {0, 1} (τ ≥ 1) be 
the state of nodes at time τ and t(v) be the threshold associated with node v . For the strict majority model, the threshold 
t(v) = � d(v)+1

2 � for each node v .
In the non-progressive strict majority model:

fτ (v) =
{

0 if
∑

u∈N(v) fτ−1(u) < t(v)

1 if
∑

u∈N(v) fτ−1(u) ≥ t(v).
(1)

In the progressive strict majority model:

fτ (v) =
{

0 if fτ−1(v) = 0 and
∑

u∈N(v) fτ−1(u) < t(v)

1 if fτ−1(v) = 1 or
∑

u∈N(v) fτ−1(u) ≥ t(v).
(2)

The strict majority model is related to the linear threshold model in which t(v) is chosen at random and is not necessarily 
equal to � d(v)+1

2 �.
A 0/1 initial assignment f0 is called a perfect target set (PTS) if for a finite τ , fτ (v) = 1 for all v ∈ V (G), i.e., the 

dynamics will converge to the steady state of all 1’s. The cost of a target set f0, denoted by cost( f0), is the number of nodes 
v with f0(v) = 1. The minimum perfect target set (MinPTS) problem is to find a perfect target set with the minimum cost. 
The cost of this minimum PTS is denoted by PPTS(G) and NPPTS(G) respectively for the progressive and non-progressive 
models. This problem is also called target set selection [23]. Another variant of this problem is the maximum active set 
problem [23] where the goal is to find at most k nodes to activate (or infect) at time zero such that the number of finally 
infected nodes is maximized.

A graph is power-law if and only if its degree distribution follows a power-law distribution asymptotically. That is, the 
fraction P (x) of nodes in the network having the degree x goes for large number of nodes as E[P (x)] = αx−γ where α is a 
constant and γ > 1 is called power-law coefficient. It is widely observed that most social networks are power-law [24].

Our results and techniques. In this paper, we study the spread of influence in the non-progressive model under the strict 
majority threshold. We present approximation algorithms and hardness results for the problem as well as experimental 
evaluation of our results. As our main contribution, we provide improved upper and lower bounds on the size of the 
minimum perfect target set, which in turn, result in improved constant-factor approximations for power-law graphs. In 
addition, we prove that the MinPTS problem (or computing NPPTS(G)) is NP-hard for a restricted family of graphs. In 
particular, we prove lower and upper bounds on NPPTS(G) in terms of the minimum degree (δ(G)) and the maximum 
degree (�(G)) of nodes in the graph, i.e., we show that

2n ≤ NPPTS(G) ≤ n�(G)(δ(G) + 2)
.

�(G) + 1 4�(G) + (�(G) + 1)(δ(G) − 2)



38 M. Fazli et al. / Theoretical Computer Science 550 (2014) 36–50
The proofs of these bounds are combinatorial and start by observing that in order to bound NPPTS(G) for general graphs, 
one can bound it for bipartite graphs. The upper bound is achieved in turn by applying a natural greedy algorithm which can 
be easily implemented. Our experimental evaluation of the greedy algorithm also shows its superior performance compared 
to other algorithms for a set of real-world graphs as well as the random power-law graphs. Finally, we study the convergence 
properties of this process. We first observe that the process will always converge to a fixed point or a cycle of size two (an 
easy corollary of a result in [25]). Then we focus on the convergence time and prove that for a given graph G , it takes at 
most O (|E(G)|) rounds for the process to converge. We also evaluate the convergence rate of the non-progressive influence 
models on some real-world social networks, and report the average convergence time for a randomly chosen set of initially 
infected nodes.

More related work. The non-progressive spread of influence under the strict majority rule is related to the diffusion of two 
or more competing technologies over a social network [9–12]. As an example, an active line of research in economics and 
mathematical sociology is concerned with modeling these types of diffusion processes as a coordination game played on a 
social network [9–12]. Note that none of these prior works provides a bound for the perfect target set problem.

In epidemic modeling, the SIS (Susceptible-Infected-Susceptible) model [3] follows the non-progressive paradigm, where 
infected nodes may recover from a disease but not get lifelong immunity and still be susceptible. This model is different 
from ours, because firstly, the SIS model studies the propagation process at a different granularity (nodes are not studied 
individually). Secondly, different mathematical toolsets are used for modeling. Finally to our knowledge, they have not been 
examined from an optimization perspective in the context of influence maximization.

It has been brought to our attention that in a relevant work by Chang and Wang [26], the MinPTS problem on power-law 
graphs is studied and the bound of NPPTS(G) = O (� |V |

2γ −1 �) is proved under non-progressive majority models in a power-law 
graph. But his results do not practically provide any bound for the strict majority model. We will show that our upper 
bound is better and practically applicable for different values of γ under the strict majority threshold. Reference [26] also 
includes bounds for Erdös–Rényi random graphs.

Tight or nearly tight bounds on PPTS(G) are known for general and special types of graphs such as torus, hypercube, 
butterfly and chordal ring [27,19,28,20,29,30,16,23,26]. The best bounds for progressive strict majority model in general 
graphs are due to Chang and Lyuu. In [16], they showed that for a directed graph G , PPTS(G) ≤ 23

27 |V (G)|. In [30], they 
improved their upper bound to 2

3 |V (G)| for directed graphs and |V (G)|
2 for undirected graphs. In a work of Khoshkhat et al. 

[31], the upper bound for directed orientation of undirected graphs with no vertex of in-degree zero (such as strongly 
connected graphs) is improved to 	 |V (G)|

2 
.
However, to the best of our knowledge, there is no known tight bound for NPPTS(G) for any type of graphs, which was 

a problem asked by Peleg [32]. Peleg proposed a generalized version of our model which adopts a tie breaking parameter 
that can have four values: Prefer-White, Prefer-Black, Prefer-Current and Prefer-Flip. If at any round r, node v has exactly 
half of its neighbors colored white (infected) and half black (uninfected), then at round r + 1, v ’s state will be specified by 
this parameter (thus our model is Prefer-Black, since in our model when there is a tie for a node v , v becomes uninfected 
in the next round; see Eq. (1)). Peleg asked how small a PTS may be. Three years later, Berger [33] found examples for 
Prefer-Current case with PTS of size O (1). In this paper, we will combinatorially prove that for each graph G , 2n

�(G)+1 ≤
NPPTS(G) and this bound is tight. We will also show that NPPTS(G) ≤ n�(G)(δ(G)+2)

4�(G)+(�(G)+1)(δ(G)−2)
.

It is known that the target set selection problem and the maximum active set problem are both NP-hard in the linear 
threshold model [8], and approximation algorithms have been developed for these problems. Kempe et al. [8] and Mos-
sel and Roch [34] present a (1 − 1

e )-approximation algorithm for the maximum active set problem by showing that the 
set of finally influenced nodes as a function of the originally influenced nodes is submodular. On the other hand, it has 
been shown that the target set selection problem is not approximable for different propagation models [14,15,30,17]. The 
inapproximability result of Chen in [17] on the progressive strict majority threshold model is the most relevant result to 
our results. They show that unless NP ⊆ TIME(npolylog(n)), no polynomial time O (2log1−ε n)-approximation algorithm exists for 
computing PPTS(G). To the best of our knowledge, no complexity theoretic result has been obtained for the non-progressive 
models.

The optimization problems related to the non-progressive influence models are not well-studied in the literature. The 
one result in the area is due to Kempe et al. [8] who presented a general reduction from the non-progressive models to the 
progressive ones. Their reduction, however, is not applicable to the perfect target set selection problem.

2. Non-progressive spread of influence in general graphs

In this section, we prove a lower bound and an upper bound for the minimum PTS in graphs, and finally show that 
finding the minimum PTS in general graphs is NP-hard.

The lower bound. Theorem 1 shows that if we have some lower bound and upper bound for the minimum perfect target 
set in the bipartite graphs then these bounds could be generalized to all graphs.
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Theorem 1. If α|V (H)| ≤ NPPTS(H) ≤ β|V (H)| for every bipartite graph H under strict majority threshold, then α|V (G)| ≤
NPPTS(G) ≤ β|V (G)| under strict majority threshold for every graph G.

Proof. Consider a graph G with n nodes and node set V (G) = {v1, v2, . . . , vn}. Define t to be the threshold function. 
Assume that there exists a perfect target set f0 for G such that cost( f0) < α|V (G)|. Let H be a bipartite graph whose 
partition has the parts X and Y with X = {x1, . . . , xn} and Y = {y1, . . . , yn} and t′ be the threshold function of nodes 
of H such that for every 1 ≤ i ≤ n, t′(xi) = t′(yi) = t(vi). Define E(H) = {xi y j |vi v j ∈ E(G)}. Let g0 be a target set for H
such that g0(xi) = g0(yi) = f0(vi) for every 1 ≤ i ≤ n. We claim that g0 is a PTS for H . By induction on τ , we prove that 
gτ (xi) = gτ (yi) = fτ (vi) for every 1 ≤ i ≤ n. By definition, the assertion is true for τ = 0. Now let the assertion be true at 
time τ . Consider a node xi ∈ X . We have 

∑
y∈N(xi)

gτ (y) = ∑
v∈N(vi)

fτ (v) and also t(xi) = t(vi), thus xi is influenced at 
time τ + 1 by g0 iff vi is influenced at time τ + 1 by f0. By similar justification we can show that gτ+1(yi) = fτ+1(vi) too. 
Therefore g0 is a PTS for H iff f0 is a PTS for G . This is a contradiction, since NPPTS(H) ≥ α|V (H)| and g0 is a PTS for H
with cost(g0) < α|V (H)|.

Now we prove that NPPTS(G) ≤ β|V (G)|. Consider the bipartite graph H with the aforementioned definition. By assump-
tion there is a perfect target set g′

0 with weight at most β|V (H)| for H . With no loss of generality assume that the number 
of nodes v in X with g′

0(v) = 1 (initially infected nodes) is less than the number of initially infected nodes of Y . Let f ′
0 be 

a PTS for G such that f ′
0(vi) = g′

0(xi) for every 1 ≤ i ≤ n. We have cost(g′
0) ≤ β|V (G)| since |V (H)| = 2|V (G)|. By induction 

on τ , we show that f ′
2τ (vi) = g′

2τ (xi) and f ′
2τ+1(vi) = g′

2τ+1(yi) for every 1 ≤ i ≤ n and every τ ≥ 0. The assertion is trivial 
for τ = 0. Now let the assertion be true for time 2τ . Consider a node vi ∈ V (G). We have 

∑
v∈N(vi )

f ′
2τ (v) = ∑

x∈N(yi)
g′

2τ (x)
and also t(vi) = t(yi), thus vi is influenced at time 2τ + 1 by f ′

0 iff yi is influenced at time 2τ + 1 by g′
0. By sim-

ilar justification we can show that f ′
2τ+2(vi) = g′

2τ+2(xi) too. Therefore g′
0 is a PTS for H iff f ′

0 is a PTS for G , thus 
NPPTS(G) ≤ β|V (G)|. �

Lemma 1 shows characteristics of PTSs in some special cases. This lemma will be used in proof of our theorems.

Lemma 1. Consider the non-progressive model and let G be a bipartite graph whose partition has the parts X and Y . Assume that f0
is a perfect target set under threshold function t. For every S ⊆ V (G) if 

∑
v∈S∩X f0(v) = 0 or 

∑
v∈S∩Y f0(v) = 0, then there exists at 

least one node u in S such that dS(u) ≤ d(u) − t(u), where dS(u) denotes the number of neighbors of u in S.

Proof. With no loss of generality, suppose that f0(v) = 0 for every v ∈ S ∩ X . We prove the lemma by contradiction. Assume 
that for every u ∈ S , dS (u) > d(u) − t(u). For every y ∈ S ∩ Y , f1(y) = 0, since y has at least d(y) − t(y) + 1 adjacent nodes 
r ∈ S ∩ X for which f0(r) = 0. Similarly, for every x ∈ S ∩ X , f2(x) = 0 since x has at least d(x) − t(x) + 1 adjacent nodes in 
S ∩ Y for which f1 is zero, and so on. Thus f0 is not a perfect target set. �

If the conditions of the previous lemma hold, we can obtain an upper bound for the number of edges in the graph. 
Lemma 2 provides this upper bound. This will help finding a lower bound for NPPTS of graphs. The function t : V (G) → N

may be any arbitrary function but it is interpreted here as the threshold function.

Lemma 2. Consider a graph G with n nodes and a perfect target set f0 on G under threshold function t. If for S ⊆ V (G), all nodes of 
one side are white with respect to f0, then |E(G[S])| ≤ ∑

u∈S(d(u) − t(u)).

Proof. We prove the lemma by induction on |S|. For |S| = 1 the assertion is trivial. Assume that it is also true for |S| < k
and we want to prove that for |S| = k, |E(G[S])| ≤ ∑

u∈S (d(u) − t(u)). By Lemma 1 we know that there exists a node v ∈ S
such that dS (v) ≤ d(v) − t(v). Assume that S ′ = S \ {v} and apply the induction hypothesis on S ′ , so we have∣∣E

(
G[S])∣∣ = dS(v) + ∣∣E

(
G
[

S ′])∣∣
≤ d(v) − t(v) +

∑
u∈S ′

d(u) − t(u)

≤
∑
u∈S

d(u) − t(u)

and we are done. �
Theorem 2 shows that for every bipartite graph G , NPPTS(G) ≥ 2|V (G)|

�(G)+1 . Theorem 1 generalizes this theorem to all graphs. 
More than that, Theorem 3 shows that this bound is tight. In the following, the induced subgraph of G with a node set 
S ⊆ V (G) is denoted by G[S]. From now on, we denote �(G) by �.

Theorem 2. For every bipartite graph G of order n whose partition has the parts X and Y , NPPTS(G) ≥ 2n .

�+1
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Proof. Let f0 be an arbitrary PTS for G . Partition the nodes of graph G into three subsets B X , BY , and W as follows.

B X = {
v ∈ X

∣∣ f0(v) = 1
}

BY = {
v ∈ Y

∣∣ f0(v) = 1
}

W = {
v ∈ V (G)

∣∣ f0(v) = 0
}

Consider the induced subgraph of G with node set B X ∪ W and assume that S ⊆ B X ∪ W . For every node v ∈ Y ∩ S , we 
have f0(v) = 0. By Lemma 2, this implies that G[B X ∪ W ] has at most 

∑
u∈B X ∪W (d(u) − t(u)) edges. Similarly, we can prove 

that G[BY ∪ W ] has at most 
∑

u∈BY ∪W (d(u) − t(u)) edges. Let eW be the number of edges in G[W ], eW X be the number 
of edges with one end in B X and the other one in W and eW Y be the number of edges with one end in BY and one end 
in W . We have

eW X + eW ≤
∑

v∈B X ∪W

(
d(v) − t(v)

)
eW Y + eW ≤

∑
v∈BY ∪W

(
d(v) − t(v)

)
and therefore,

eW X + eW Y + 2eW ≤
∑

v∈V (G)

(
d(v) − t(v)

) +
∑
v∈W

(
d(v) − t(v)

)
.

The total degree of nodes in W is 
∑

v∈W d(v) = eW X + eW Y + 2eW . Thus∑
v∈W

d(v) ≤
∑

v∈V (G)

(
d(v) − t(v)

) +
∑
v∈W

(
d(v) − t(v)

)
.

If we denote the set of nodes v with f0(v) = 1 by B , we have∑
v∈W

(
2t(v) − d(v)

) ≤
∑
v∈B

(
d(v) − t(v)

)
.

For every node v , t(v) ≥ d(v)+1
2 , therefore

|W | ≤
∑
v∈B

d(v) − 1

2
. (3)

Therefore,

|W | ≤ � − 1

2

(|B|).
Since |B| + |W | = n, we have

|B| ≥ 2n

� + 1
. �

We now show that the bound in Theorem 2 is tight.

Theorem 3. For infinitely many n and for any 0 < ε < 1 there exists a graph with n nodes such that NPPTS(G) < 1
1−ε ( 2n

�+1 ) under 
strict majority rule.

Proof. Suppose that k ∈ N is given. Consider a (d + 1)-regular graph G1 with m1 = c(d + 1)(k+1) nodes where c ∈ N. In step i
(1 ≤ i ≤ k), add mi+1 = d

d+1 mi nodes to the graph and connect each of them to Gi by d + 1 edges. Each node of Gi must 
receive exactly d new edges. Name the subgraph formed by these newly added nodes as Gi+1. This process is shown in 
Fig. 1. Repeat k iterations of this process. The final graph has

n =
k+1∑
i=1

mi = m1

[
1 − ( d

d+1 )k+1

1 − d
d+1

]
= m1

[
(d + 1) − (d + 1)

(
d

d + 1

)k+1]

nodes. By taking a large value k such that ( d
d+1 )k+1 < ε , we have

n > m1
[
(d + 1) − (d + 1)ε

] = m1(d + 1)(1 − ε).



M. Fazli et al. / Theoretical Computer Science 550 (2014) 36–50 41
Fig. 1. A tight example for NPPTS(G)’s lower bound.

Algorithm 1 Greedy NPPTS.
Input: G: The graph, t: Threshold function
Output: f0: A PTS

1: sort the nodes in G in ascending order of their degrees as the sequence v1, . . . , vn .
2: for i = 1 to n do
3: whiteadj[vi ] = 0
4: blocked[vi ] = 0
5: end for
6: for i = 1 to n do
7: for each u ∈ N(vi) do
8: if whiteadj[u] = d(u) − t(u) then
9: blocked[vi ] = 1

10: end if
11: end for
12: if blocked[vi ] = 1 then
13: f0(vi) = 1
14: else
15: f0(vi) = 0
16: for each u ∈ N(vi) do
17: whiteadj[u]+ = 1
18: end for
19: end if
20: end for

V (G1) is a PTS. So, with � = 2d + 1, we have

NPPTS(G) ≤ ∣∣V (G1)
∣∣ = m1 <

2n

2(d + 1)(1 − ε)
= 1

1 − ε

(
2n

� + 1

)
. �

The upper bound. In this section, we present a greedy algorithm (Algorithm 1) which gives an upper bound for NPPTS(G). 
Algorithm 1 guarantees this upper bound. This algorithm reads a graph G of order n and the threshold function t as input 
and determines the value of f0 for each node.

Lemma 3. The algorithm Greedy NPPTS finds a perfect target set for the non-progressive spread of influence. More than that, initially 
infecting the nodes of this set will infect all the nodes of the graph after one step of propagation.

Proof. By induction on the number of nodes v with determined f0(v), we prove that f0 remains a PTS after each step of 
algorithm if we assume that f0 is 1 for undetermined values. It is clear that the claim is true at the beginning. Consider a 
set of values of f0 which forms a PTS and let v be a node for which the value of f0(v) is set to 0 by the algorithm in the 
next step. By induction hypothesis, f0 is a PTS if f0(v) is assumed to be 1. According to the algorithm, f0(v) is set to 0
iff the value of blocked[v] is zero, i.e., no adjacent node of v , say u, has exactly d(u) − t(u) adjacent initially uninfected 
nodes. Therefore by setting f0(v) to 0, each initially infected node w still has at least t(w) infected nodes and also v has 
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at least t(v) initially infected neighbors itself. Thus, after one step of propagation, all initially infected nodes plus v are 
infected and by induction hypothesis, all nodes will be infected eventually. Thus f0 remains a PTS. �

One important fact proved in Lemma 3 is that the initially infected vertices picked by Algorithm 1 actually infect all 
vertices within one time step, thus the set of picked vertices forms the so-called “strict-majority static monopoly” in some 
earlier papers (see, e.g., [33]).

Theorem 4. For every graph G of order n, Greedy NPPTS guarantees the upper bound of n�(δ+2)
4�+(�+1)(δ−2)

for NPPTS(G) under strict 
majority threshold where � and δ are maximum and minimum degrees of nodes respectively.

Proof. For δ ≤ 2, n�(δ+2)
4�+(�+1)(δ−2)

≥ n and the bound is trivial. So we assume that δ > 2. According to Algorithm 1, for each 
node v , the value of f0(v) is set to 1 iff whiteadj[u] = d(u) − t(u) for some u ∈ N(v). Let S be the set of nodes u
with whiteadj[u] = d(u) − t(u). B and W denote the set of infected and uninfected nodes at the end of the algorithm 
respectively. We have:∑

v∈S

(
d(v) − t(v)

) ≤
∑
v∈W

d(v). (4)

Therefore,(
δ

2
− 1

)
|S| ≤ �|W |,

then for δ ≥ 2, we have

|S| ≤ 2�

δ − 2
|W |.

Each node in B has at least one adjacent node in S and each node v ∈ S has at least d(v) − t(v) adjacent edges to W . So it 
has at most t(v) adjacent edges to B , thus:

|B| ≤
∑
v∈S

(
t(v)

) ≤
∑
v∈S

(
d(v)

2
+ 1

)
≤ 2|S| +

∑
v∈W

d(v) ≤ 2|S| + �|W |.

Thus,

|B| ≤ �(δ + 2)

4� + (� + 1)(δ − 2)
n. �

The approximation factor of the algorithm follows from previous lemma and the lower bound provided by Theorem 2:

Corollary 1. The Greedy NPPTS algorithm is a �(�+1)(δ+2)
8�+2(�+1)(δ−2)

approximation algorithm for NPPTS problem.

NP-hardness. In this section, we use a reduction from the minimum dominating set problem (MDS) [35] to prove the 
NP-hardness of computing NPPTS(G).

Theorem 5. If there exists a polynomial-time algorithm for computing NPPTS(G) for a given graph G under the strict majority thresh-
old, then P = NP.

Proof. In an instance of the minimum dominating set problem (MDS), given a graph G(V , E), our goal is to find a subset 
S ⊆ V (G) of minimum cardinality such that for any node v /∈ S , we have S ∩ N(v) �= ∅. We give a reduction from this 
NP-hard problem to our problem. Given an instance G of MDS with V (G) = {u1, u2, ..., un} and |E(G)| = e, we define an 
undirected graph H as follows (see Fig. 2). First, let

X0 = {g1, g2}, X1 = {ai | 1 ≤ i ≤ 2e + 1},
X2 = {bi | 1 ≤ i ≤ 2e + 1}, X3 = {ci | 1 ≤ i ≤ 2e},
X4 = {wi | 1 ≤ i ≤ n}, X5 = {vi | 1 ≤ i ≤ n},
X6 = {di | 1 ≤ i ≤ 2e}.

Now, let H(V , E) be
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Fig. 2. The graph H .

V (H) =
6⋃

i=0

Xi,

E(H) = {g1ai | 1 ≤ i ≤ 2e + 1}
∪ {g2bi | 1 ≤ i ≤ 2e + 1}
∪ {g1ci | 1 ≤ i ≤ 2e}
∪ {g2ci | 1 ≤ i ≤ 2e}

∪
{

wic j
∣∣ 1 ≤ i ≤ n,

i−1∑
k=1

d(uk) ≤ j ≤
i∑

k=1

d(uk)

}

∪ {
vi w j

∣∣ uiu j ∈ E(G) ∨ i = j
}

∪
{

vid j
∣∣ 1 ≤ i ≤ n,

i−1∑
k=1

d(uk) ≤ j ≤
i∑

k=1

d(uk)

}
.

Suppose that D is a minimum dominating set for G . Define D H = {vi | ui ∈ D}. We show that NPPTS(H) = 2e + n + 4 + |D|. 
The set X0 ∪ X3 ∪ X4 ∪ D H plus one node from each of X1 and X2 form a perfect target set for the graph H . Therefore, we 
have

NPPTS(H) ≤ |X0| + |X3| + |X4| +
∣∣D H

∣∣ + 2 = 2e + n + 4 + |D|.
It remains to prove that NPPTS(H) ≥ 2e + n + 4 + |D|. Suppose that S ⊆ V (H) is a PTS for H with minimum cardinality. 

Consider node g1 in time τ . If fτ (g1) = 0, in time τ +1 for every node ai ∈ X1 we have fτ+1(ai) = 0 and then fτ+2(g1) = 0. 
Therefore, g1 ∈ S . Similarly, we have g2 ∈ S . Moreover, at least 2e + 1 nodes from each of g1 or g2’s neighbors must be in S , 
so w.l.o.g suppose that X3’s members plus at least one node from each of X1 and X2 are in S . By this setting, the nodes of 
X0 ∪ X1 ∪ X2 ∪ X3 become infected and remain infected for every τ > 0.

Consider a node wk ∈ X4. Let B(wk) = {di ∈ X6 | disH (di, wk) = 2}, where disH (u, v) is the distance between u and v
in H . Suppose that wk /∈ S . If there exists a di ∈ B(wk) ∩ S , we replace it by wk in S . This modification does not prevent 
S from being a PTS and also does not increase |S|. Thus, we may assume that when wk /∈ S , B(wk) ∩ S = ∅. Assume that 
wk /∈ S and consider one of wk ’s neighbors in X5 such as v p . None of v p ’s neighbors in X6 are infected initially. Therefore 
v p has at most d(up) initially infected neighbors. This implies that f1(v p) = 0 and it is true for all other wk ’s neighbors 
in X5. Similarly, f2(wk) = 0 and f2(d j) = 0 for all d j ∈ B(wk). Similar to this argument, one can show that for every τ > 0, 
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f2τ (wk) = 0 and f2τ (d j) = 0 for all d j ∈ B(wk). Therefore, after the modification, for each vertex wk ∈ X4, we should have 
f0(wk) = 1. With almost the same argument we can show that for each vertex w ∈ X4, at least one of its neighbors in X5
should be infected as well. This comes from the fact that otherwise, in the next step, neither w nor any of vertices of B(w)

will be infected, and the same arguments as before can be applied. So, at least |D| vertices of X5 should be infected and 
we have |S ∩ (X4 ∪ X5)| ≥ n + |D|.

By summing up the above arguments we have

|S| = S ∩ V (G)

=
∣∣∣∣∣S ∩

(
6⋃

i=0

Xi

)∣∣∣∣∣
≥ 2 + 1 + 1 + 2e + n + |D|
= 2e + n + 4 + |D|

and so |S| = 2e + n + 4 + |D| and we are done. �
3. Non-progressive spread of influence in connected power-law graphs

In this section, we investigate the non-progressive spread of influence in connected power-law graphs and show that 
the greedy algorithm presented in the previous section is indeed a constant-factor approximation algorithm for connected 
power-law graphs. For each natural number x, we assume that the expected number of nodes with degree x is proportional 
to x−γ and use α as the normalization coefficient. The value of γ , known as power-law coefficient, is known to be between 
2 and 3 in real-world social networks [24]. We denote the number of nodes of degree x by P (x), so E[P (x)] = αx−γ where 
E[·] denotes the expectation operator.

The lower bound. Consider a connected power-law graph G with a threshold function t and a perfect target set f0. Denoting 
the set of initially influenced nodes by B and the rest of the nodes by W , from Eq. (3), we have

|W | ≤
∑
v∈B

d(v) − 1

2
.

The term 
∑

v∈B
d(v)−1

2 is maximized when B consists of higher degree nodes, therefore the maximum cardinality of W is 
achieved when the degree of all nodes in B is greater than or equal to the degree of all nodes in W . We take the expected 
value of the number of vertices in W over all connected power-law graphs for which the minimum degree of nodes in B is 
k and 100p percent of nodes of degree k is in B (0 ≤ p ≤ 1). We have

k−1∑
x=1

αx−γ + (1 − p)αk−γ ≤ E
[|W |] ≤ E

[∑
v∈B

d(v) − 1

2

]

≤
∞∑

x=k+1

αx−γ

(
x − 1

2

)
+ pαk−γ k − 1

2
. (5)

Therefore,

k−1∑
x=1

x−γ + (1 − p)k−γ ≤
∑∞

x=k+1(x1−γ − x−γ ) + pk−γ (k − 1)

2
.

Thus,

ζ(γ ) − ζ(γ ,k − 1) + (1 − p)k−γ ≤ ζ(γ − 1,k) − ζ(γ ,k) + pk−γ (k − 1)

2
. (6)

From (5), we have the following lower bound for E[|B|]:

E
[|B|] ≥

∞∑
x=k+1

αx−γ + αpk−γ = ζ(γ ,k) + pk−γ

ζ(γ )
n. (7)

For all (k, p) pairs satisfying constraint (6), we calculate the value of the lower bound of E[|B|] and the minimum value is 
depicted in Fig. 3 as the lower bound of NPPTS(G) for all connected power-law graphs.
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Fig. 3. Values of the upper bound and the lower bound in power-law graphs.

The upper bound. Suppose that one has run Greedy NPPTS algorithm on a connected graph with power-law degree distri-
bution. The following theorem shows that unlike general graphs, the Greedy NPPTS algorithm guarantees a constant factor 
approximation algorithm on connected power-law graphs.

Theorem 6. The expected number of initially influenced nodes by Algorithm Greedy NPPTS under the strict majority threshold on 
connected power-law graphs of order n is at most (1 + 1

2γ +1 − 1
2ζ(γ )

)n.

Proof. We prove that the number of uninfected nodes of degree 1 are sufficient for this upper bound. Let v be a node 
of degree more than 1 with k adjacent nodes of degree 1 say u1, u2 . . . uk . If d(v) is odd, it is clear that at least k

2 of 
the nodes u1, u2 . . . uk will be uninfected since k ≤ d(v). Note that according to the greedy algorithm, the value of f0 for 
degree 1 nodes are determined before any other node. If d(v) is even, at least k

2 −1 of nodes u1, u2 . . . uk will be uninfected. 
Therefore the expected number of nodes infected by Algorithm Greedy NPPTS is less than or equal to:

n − 1

2

(
P (1) −

∞∑
x=1

P (2x)

)

≤ n − 1

2

(
α

1

1γ
− α

∞∑
x=1

1

(2x)γ

)

= n − α

2

(
1 − 1

2γ
ζ(γ )

)
= n

(
1 + 1

2γ +1
− 1

2ζ(γ )

)
. �

By previous theorem, we conclude that the Greedy NPPTS algorithm is a constant-factor approximation algorithm on 
connected power-law graphs under strict majority threshold. The lower bound and the upper bound for different values of γ
are shown in Fig. 3. As you can see our algorithm acts optimally on social networks with large value of power-law coefficient 
(values greater than 2.68) since upper and lower bound diagrams meet each other for these values of the power-law 
coefficient. In Section 5, we will compare the optimality of our algorithm with typical heuristics by running the algorithm 
on real network data.

4. Convergence issues

Let the state graph H of a non-progressive spread of influence process for graph G be as follows: Each node of this graph 
represents one of possible states of the graph. An edge between two states A and B in H models the fact that applying 
one step of the influence process on state A changes the state to state B . First of all, one can easily see that there exists a 
dynamics for which the non-progressive model may not result in a singleton steady state. To see this, consider the following 
example: a cycle with 2k nodes C = v1 v2...v2k and at time 0 infect nodes with odd indices. In this case, the process will 
oscillate between exactly two states. In fact, one can show a general theorem that any dynamics will converge to either one 
or two states:

Theorem 7. The non-progressive spread of influence process on a graph reaches a cycle of length of at most two.

Proof. In [25], it is shown that, for a function � from {0, 1}n to {0, 1}n whose components form a symmetric set of threshold 
functions, the repeated application of �, leads either to a fixed point or to a cycle of length two. More formally for any 
y ∈R there exists s ∈N such that �s+2 y = �s y. Since the set of functions fτ (defined in Section 1) are symmetric threshold 
functions, the lemma follows immediately from this fact. �
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Using this intuition, one can define the convergence time of a non-progressive influence process under the strict majority 
rule as the time it takes to converge to a cycle of size of at most two states, i.e., the convergence time is the minimum time 
T at which f T (v) = f T +2(v) for all nodes v ∈ V (G). For a set S of initially infected nodes, let ctG(S) be the convergence 
time of the non-progressive process under the strict majority model (T ). In the following theorem, we formally prove an 
upper bound of O (|E(G)|) for this convergence time:

Theorem 8. For a given graph G and any set S ⊆ V (G), we have ctG(S) = O (|E(G)|).

Proof. In each time step τ of the non-progressive spread of influence, all the nodes apply the function fτ concurrently. 
In order to prove the theorem for such concurrent dynamics, we first define a simplified sequential dynamics, prove the 
convergence time for this simplified dynamics, and finally give a reduction from the concurrent to the sequential dynamics. 
In the sequential dynamics, the nodes apply the influence process one by one in a sequence of rounds, where in each step 
one node applies the influence process exactly once.

We first show that the sequential dynamics on every graph G and under the strict majority model converges after at 
most O (|E(G)||V (G)|) steps. To see this bound, consider the following potential function for a graph G: the number of edges 
whose endpoints have different states (Like it is used in [19]). One can see that whenever a node changes its state from 
uninfected to infected the potential of G will decrease at least by one and otherwise it remains unchanged. Consider a node 
which has k state changes during the process until its final convergence. At least k/2 of these changes were from uninfected 
state to infected and so they cause one decrement in the potential function. The initial amount of G ’s potential is at most 
|E(G)| and in each step (or |V (G)| consecutive steps), we have at least one state change. So after at most 2|E(G)||V (G)|
steps the potential of G would reach its minimum, and the proof for the sequential dynamics is complete.

Now using the above observation, we show that the concurrent dynamics convergences fast. Consider graph H = (X, Y )

built from G in Lemma 1. We show that for every concurrent dynamics in G with convergence time of T , there is an equiva-
lent sequential dynamics in H with convergence time of c|V (G)|T for some constant c. This will prove ctG ∈ O (|E(G)|), since 
we know that the convergence time of the sequential dynamics in graph H is at most 2|V (H)||E(H)| = 8|V (G)||E(G)| =
cT |V (G)|. Therefore T ∈ O (|E(G)|). The main claim follows from the proof of Lemma 1. By induction on the number of 
steps, we can show that the state of nodes in G is equal to the state of nodes in X at odd steps and is equal to the state of 
nodes in Y at even steps (as we did in the proof of Lemma 1). Now order nodes of X and Y with numbers 1, 2, · · · , |V (G)|
and from |V (G)| + 1 to 2|V (G)|. It is easy to see that the sequential dynamics with this ordering, after |V (H)| steps, has 
the same outcome under the concurrent dynamics in this graph. �

The above theorem is tight, i.e., there exists a set of graphs and initial states with convergence time of Ω(|E(G)|). 
In power-law graphs since average degree is constant, the number of edges is O (|V |) and thus the convergence time of 
these graphs is O (|V |). From Theorem 8, we can also conclude that checking whether a set S is PTS or not is verifiable is 
polynomial time. So one can extend Theorem 5 by showing that the MinPTS problem is NP-complete.

In Section 5, we study convergence time of non-progressive dynamics on several real-world graphs, and observe the fast 
convergence of such dynamics on those graphs.

5. Experimental evaluations

In this section, we run our algorithm on real-world social networks as well as random power-law graphs with a wide 
range of power-law coefficients. Following the method used in [8], we compare the performance of our algorithm to other 
heuristics for identifying influential individuals.

5.1. Greedy NPPTS

We evaluate the performance of the Greedy NPPTS algorithm (Algorithm 1) on graphs with various values of power-law 
coefficients. Following a previously developed way of generating power-law graphs from [36], we set two parameters α and 
γ defined as follows: α is the logarithm of the graph size and γ is the log–log growth rate (power-law coefficient).

We also run these algorithms over four social networks’ data: Who-trusts-whom network of Epinions.com, Slashdot social 
network, collaboration network of Arxiv Astro Physics, Arxiv High Energy Physics paper citation network, Amazon product 
co-purchasing network. In cases where graph is not connected we select the graphs’ giant component.

Generating random power-law networks. We evaluate the performance of the greedy algorithm on graphs with various 
amount of power-law coefficient. Following a previously developed way of generating the power-law graphs from [36], we 
set two parameters α and γ defined as follows: α is the logarithm of the graph size and γ is the log–log growth rate 
(power-law coefficient). Let y be the number of nodes with degree x. y and x must satisfy

log y = α − γ log x.
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Fig. 4. Results on the random power-law graphs.

Fig. 5. Results on the real network data.

The random power-law graph model is defined as follows: given n weighted nodes with weights w1, w2, · · · , wn , a pair 
(i, j) of nodes appears as an edge with probability wi w j p independently. These parameters p and w1, w2, · · · , wn must 
satisfy

• |{i|wi = 1}| = 	eα
 − r and |{i|wi = k}| = 	 eα

kγ 
 for k = 2, 3, ..., 	e
α
γ 
. Here α is a value minimizing |n − ∑	e

α
γ 


k=1 	 eα

kγ 
| and 

r = n − ∑	e
α
γ 


k=1 	 eα

kγ 
.

• p = 1∑n
i=1 wi

.

One can easily see the expected degree of ith node would be wi and also nodes’ weights follow power-law.

Setup. We compare our greedy algorithm with heuristics based on nodes’ degrees and centrality within the network, as 
well as the baseline of choosing random nodes to target. High-degree and distance-centrality heuristics choose nodes in the 
order of decreasing degree and decreasing average distances to other nodes, respectively. These heuristics are commonly 
used in the social science literature as estimates of a node’s influence in the social network [37,8].

In each of these cases, in each step, we check whether the selected nodes are a perfect target set or not. This can 
be easily verified by simulating the dynamics until the states of nodes become stable. The simulation process ends at a 
polynomially bounded time τ when for each v ∈ V (G) we have fτ (v) = fτ−2(v) (see Theorem 7 and Theorem 8).

Notice that because the optimization problem is NP-hard (Theorem 5), and the testbed graphs are prohibitively large, we 
are not able to compute the optimum value to verify the actual quality of approximations.

Results. Fig. 4 shows the performance of our algorithm in comparison to the introduced heuristics on random power-law 
graphs. For any value of γ (power-law coefficient), all heuristics pick almost the entire nodes of the graph while our 
algorithm picks a number of them between the proved lower-bound and upper-bound. The same phenomenon happens for 
the four real-world social networks data. The results are depicted in Fig. 5.
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Table 1
Results on the real networks.

Network No. of nodes γ No. of nodes selected by algorithm

Greedy High degree Central Random

Who-trusts-whom network of Epinions.com 75 888 1.50 27 131 75 878 75 879 75 888
Slashdot social network 77 360 1.68 49 978 77 327 77 360 77 360
Collaboration network of Arxiv Astro Physics 18 772 1.84 8287 18 771 18 772 18 763
Arxiv High Energy Physics paper citation network 34 546 2.05 14 647 34 539 34 546 34 505
Amazon product co-purchasing network 262 111 2.54 155 085 262 111 262 005 262 026

Table 1 includes the exact amount of greedy NPPTS’s output compared to the output of other heuristics.

5.2. Convergence

In Section 4, we showed that the non-progressive spread of influence under strict majority threshold converge in asymp-
totically linear time over power-law graphs such as real social networks. In this part, we compute the average convergence 
time of this process in various networks and observe the fast convergence of such dynamics on those graphs. The average 
convergence time of a network G is the average number of rounds to reach a steady state when the initial infected set of 
nodes is picked uniformly, i.e., for a given network G , we calculate E[ctG(S)] = 1

2|V |
∑

S⊆V ctG(S).

Computing this average in a brute force manner needs Ω(|V (G)|2|V (G)|) time, but the following theorem shows that 
bearing some error reduces this time to polynomial time.

Theorem 9. Computing the average convergence time of the non-progressive spread of influence over strict majority threshold on 
graph G, with an additive error of ε is possible in time O (

e3 log(n)

ε2 ) where e = |E(G)| and n = |V (G)|.

Proof. Define the random variable X S = ctG(S). We uniformly select some of V (G)’s subsets S1, S2, ..., Sm and take the 
average of X Si s. In [38], Hoeffding shows that with the large value of m and if X Si are bounded between ai and bi , X S
would be a good estimation (with an error less than ε) for E[X S ] that is our desired target:

Pr
(∣∣XS − E[XS ]

∣∣ ≥ ε
) ≤ 2 exp

(
− 2ε2m2∑m

i=1(bi − ai)
2

)
.

From Theorem 8 we know putting ai = 0 and bi = 8e for all 1 ≤ i ≤ m, meets the preconditions of the above inequality. To 
have Pr(|X S − E[X S ]| ≥ ε) ≤ 2

n , we can set

m2 ≥ ln(n)
∑m

i=1(bi − ai)
2

ε2
= 64me2 ln(n)

ε2
.

Thus:

m ≥ 64e2 ln(n)

ε2
.

Since computing each X Si needs O (e) (Theorem 8) the total time will be at most O (me) = O (
e3 log(n)

ε2 ). �
In a power-law graph G , since |E(G)| ∈ O (|V (G)|), the average convergence time can be computed in time O (

n3 log(n)

ε2 )

where n = |V (G)|.
As a result of Theorem 9, we can perform experimental evaluation of the convergence time in several families of graphs. 

In particular, through experimental evaluations, we show the average time of convergence for random power-law graphs 
with ε = 0.1. Fig. 6 shows the average convergence time calculated by sampling for 500 random power-law graphs with an 
average of 100 nodes. 

6. Conclusions

In this paper, we study the minimum target set selection problem in the non-progressive influence model under the 
strict majority rule and provide theoretical and practical results for this model. Our main results include upper bound and 
lower bounds for these graphs, hardness and an approximation algorithm for this problem. We also apply our techniques 
on power-law graphs and derive improved constant-factor approximation algorithms for this kind of graphs.

An important follow-up work is to study the minimum perfect target set problem for the non-progressive models under 
other influence propagation rules, e.g., the general linear threshold model. It is also interesting to design approximation 
algorithms for other special kinds of complex graphs such as small-world graphs. Another interesting research direction is 
to study maximum active set problem for non-progressive models.
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Fig. 6. The average convergence time on random power-law graphs.
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