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Abstract

We conduct a study on the problem of fair allocation of indivisible goods when

maximin share [1] is used as the measure of fairness. Most of the current

studies on this notion are limited to the case that the valuations are additive.

In this paper, we go beyond additive valuations and consider the cases that

the valuations are submodular, fractionally subadditive, and subadditive. We

give constant approximation guarantees for agents with submodular and XOS

valuations, and a logarithmic bound for the case of agents with subadditive

valuations. Furthermore, we complement our results by providing close upper

bounds for each class of valuation functions. Finally, we present algorithms to

find such allocations for submodular and XOS settings in polynomial time.

Keywords: fairness, maximin-share, approximation, submodular, XOS,

subadditive

1. Introduction

Fair division is a fundamental problem that has received significant attention

in economics, political science, mathematics, and more recently in computer

1The results in this paper have previously appeared at the nineteenth ACM conference
on Economics and Computation (ACM EC’18) [2]. In comparison to that version, a new
introduction is written, all the proofs are included and two Sections about XOS and subadditive
valuations are added.
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science [3, 4, 5, 1, 6, 7, 8, 9, 10]. In this problem, for a reasonable notion of

fairness, the goal is to divide a resource among a set of n agents in a fair manner.5

Initially, the resource was considered to be a cake (that is, a heterogeneous

infinity divisible resource) and the problem was called cake-cutting [4]. To

evaluate fairness in a cake-cutting problem, several notions of fairness have been

suggested, the most famous of which are proportionality [4] and envy-freeness [8].

A division is called proportional, if the total value of the allocated pieces to each10

agent is at least 1/n fraction of his total value for the entire cake. In an envy-free

division, no agent wishes to exchange his share with another agent, i.e., every

agent’s valuation for his share is at least as much as his valuation for the other

agents’ shares.

In the past decade, a new line of research focuses on the case that the resource15

is a set of indivisible goods. Unfortunately, most of the classic fairness notions

are tailored to the cake-cutting problem and none of them can be guaranteed

beyond the divisible case. For example, despite many strong positive results for

guaranteeing the envy-freeness and proportionality in the cake-cutting problem

[11, 5, 6, 12], none of these notions can be either exactly or approximately2
20

guaranteed in the case of indivisible items. Consider allocating a single indivis-

ible item to n agents. Since this item is indivisible, one agent receives this item

and the rest of the agents receive no item. Hence, there is no way to guarantee

proportionality or any approximation of it for the agents that receive no item.

This led the community to develop more relaxed fairness notions that align with25

the allocation of indivisible goods. In the past decade, several different crite-

ria are defined for the case of indivisible items, e.g., envy-freeness up to one

good (EF1), envy-freeness up to any good (EFX), proportional up to one good

(Prop1), and maximin-share (MMS) [13, 1, 14].

In this paper, we investigate the maximin-share (MMS) notion. This notion30

is introduced by Budish [1] as a relaxation of proportionality for the case of

indivisible goods. Imagine the following cut-and-choose game: we ask an agent

2Here by approximation we mean multiplicative approximation.
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ai to partition the items into n bundles and then ask the rest of the agents to

choose a bundle before agent ai. In the worst-case scenario, the least preferred

bundle remains for agent ai. The maximin share of ai is the largest value he35

can guarantee herself in this game in the worst-case scenario.

Formally, for a set M of goods, agent ai the maximin-share value of agent

ai, denoted by MMSi is defined as

MMSi = max
(π1,π2,...,πn)∈Π

min
j
vi(πj),

where Π is the set of all partitions ofM into n bundles and vi(πj) is the valuation

of agent ai for bundle πj . An allocation is then said to be MMS, if it guarantees

each agent ai a bundle with value at least MMSi.

Contrary to optimistic views about guaranteeing MMS, a counterexample by40

Kurokawa, Procaccia, and Wang [9] shows that some instances admit no MMS

allocation. On the positive side, it is shown that a 2/3-MMS allocation (allo-

cation that guarantees each agent ai a bundle with a value at least 2MMSi/3)

always exists [9]. Improving the approximation factor for guaranteeing MMS

has become an intriguing direction since 2014. The current best known approx-45

imation factor for the additive setting is 3/4+o(1) by Grag and Taki [15]. From

the algorithmic viewpoint, the best polynomial time approximation guarantee

for MMS is improved in series of studies to 2/3− ε [16], 2/3 [17], 3/4− ε [2],

and 3/4 [18]. On the negative side, for three agents and nine items, Feige,

Sapir, and Tauber [19] design an instance in which at least one agent does not50

get more than a 39
40 fraction of her maximin share. For n ≥ 4 agents, they show

examples in which at least one agent does not get more than a 1− 1
n4 fraction

of her maximin share.

Although most early investigations on maximin-share focus on the additive

settings, it is very natural to extend the definition to other classes of set func-55

tions. For instance, it is quite natural to expect that an agent prefers to receive

two items of value 400, rather than receiving 1000 items of value 1. Such a

constraint cannot be imposed in the additive setting. However, submodular

functions which encompass k-demand valuations are strong tools for modeling
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these constraints. Such generalizations have been made to many similar prob-60

lems, including the Santa Claus max-min fair allocation, welfare maximization

and Nash social welfare maximization [20, 21, 22, 23, 24, 25]. The most common

classes of set functions that have been studied before are submodular, XOS, and

subadditive functions. In this paper, we consider the fair allocation problem

when the agents’ valuations are in each of these classes. In contrast to the65

additive setting in which finding a constant MMS allocation is trivial, the prob-

lem becomes much more subtle even when the agents’ valuations are monotone

submodular. Independent of this work, Barman et. al. [17] prove the existence

of a 1/10-MMS allocation for monotone submodular valuations and provide a

polynomial-time 1/30-MMS allocation algorithm for that setting. In this paper,70

we propose algorithms with the approximation guarantee of 1/3 for submodular,

1/5 for XOS, and logarithmic for subadditive valuations. In Section 2 we review

some mathematical background and basic definitions related to our work. Next,

In Section 3 we discuss our results and techniques in detail.

2. Preliminaries75

Throughout this paper we assume the set of agents is denoted by N and

the set of items is referred to by M. Let |N | = n and |M| = m, we refer

to the agents by ai and to the items by bi, i.e., N = {a1, a2, . . . , an} and

M = {b1, b2, . . . , bm}. We denote the valuation of agent ai for a set S of

items by vi(S). Our interest is in valuation functions that are monotone and

non-negative. More precisely, we assume vi(S) ≥ 0 for every agent ai and set

S ⊆M, and for every two sets S1 and S2 we have

∀ai ∈ N vi(S1 ∪ S2) ≥ max{vi(S1), vi(S2)}.

Due to obvious impossibility results for the general valuation functions 3 ,

we restrict our attention to three classes of set functions:

3If the valuation functions are not restricted, no approximation guarantee can be achieved.

For instance consider the case where we have two agents and 4 items. Agent a1 has value 1
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• Submodular: Given a ground set G, A function f : 2G → R is submod-

ular if for every two sets S1, S2 ∈ G,

f(S1) + f(S2) ≥ f(S1 ∪ S2) + f(S1 ∩ S2).

• Fractionally Subadditive (XOS): Given a ground set G, an XOS func-

tion f : 2G → R can be shown via a finite set of additive functions

{f1, f2, . . . , fα} where f(S) = maxαi=1 f
i(S) for any set S ⊆ G.80

• Subadditive: Given a ground set G, a set function f : 2G → R is subad-

ditive if for every two sets S1, S2 ⊆ G,

f(S1) + f(S2) ≥ f(S1 ∪ S2).

For additive functions, it is reasonable to assume that the value of the func-

tion for every element is given in the input. However, representing other classes

of set functions requires access to oracles. For submodular functions, we assume

we have access to value-query oracle defined below. For XOS and subadditive

settings, we use a stronger oracle which is called demand-query oracle. In ad-85

dition to this, we consider a special oracle for XOS functions which is called

XOS oracle. Access to query oracles for submodular functions, XOS oracle for

XOS functions, and demand oracles for XOS and subadditive functions are quite

common and have been very fruitful in the literature [26, 23, 24, 27, 28, 29, 30].

In what follows, we formally define the oracles:90

• Value-query oracle: Given a function f , a value-query oracle Oval is an

algorithm that receives a set S as input and computes f(S) in time O(1).

• Demand-query oracle: Given a function f , a demand-query oracle

Odem is an algorithm that receives a sequence of prices p1, p2, . . . , pn as

for sets {b1, b2} and {b3, b4} and 0 for the rest of the sets. Similarly, agent a2 has value 1 for

sets {b1, b3} and {b2, b4} and 0 for the rest of the sets. In this case, no allocation can provide

both of the agents with sets which are of non-zero value to them.
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input and finds a set S such that

f(S)−
∑
e∈S

pe

is maximized. We assume the running time of the algorithm is O(1).

• XOS oracle: (defined only for an XOS function f) Given a set S of items,

it returns the additive representation of the function that is maximized95

for S. In other words, it reveals the contribution of each item in S to the

value of f(S).

Maximin-share. As mentioned before, the maximin-share of agent ai, denoted

by MMSi is defined as follows:

MMSi = max
π1,π2,...,πn∈Π

min
1≤j≤n

vi(πj),

where Π is the set of all partitions ofM into n bundles. Throughout this paper,

we suppose without loss of generality that the valuations are scaled so that for

every agent ai we have MMSi = 1.100

An allocation of items to the agents is a collection A = 〈A1, A2, . . . , An〉

where Ai is the bundle allocated to agent ai. For an allocation A, we have⋃
Ai = M and Ai ∩ Aj = ∅ for every two agents ai, aj ∈ N . An allocation

A is α-MMS, if every agent ai receives a subset of the items whose value to

that agent is at least α times MMSi. Given our assumption that MMSi = 1 for

every agent ai, we can say an allocation is α-MMS if and only if for every agent

ai ∈ N ,

vi(Ai) ≥ α.

Lemma 2.1 represents a well-known and very useful structural property of

maximin-share notion proved by Amanitidis et. al. [16]. Throughout this paper,

we frequently use this property.

Lemma 2.1 ([16]). Assuming that the goal is to find an α-MMS allocation, we

can suppose without loss of generality that for every item bj and every agent ai

we have

vi({bj}) < α.
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We remark that Lemma 2.1 holds for all the valuation classes, including

submodular, XOS, and subadditive valuations.105

3. Our Results and Techniques

We begin with submodular set functions. First, we show that in some in-

stances with submodular valuations, no allocation is better than 3/4-MMS.

Theorem 3.1. For any n ≥ 2, there exists an instance of the fair allocation

problem with n agents with submodular valuations where no allocation is better110

than 3/4-MMS.

We show Theorem 3.1 by a counterexample. In this counterexample, we

have n agents and 2n items. Moreover, the valuation functions of the first n− 1

agents are the same, but the last agent has a slightly different valuation function

that makes it impossible to find an allocation that is better than 3/4-MMS. The115

number of agents in this example can be arbitrarily large.

Next, in Section 5, we show that when the valuations of the agents are

submodular, guaranteeing a 1/3-MMS is always possible. In addition, we show,

given access to value-query and demand-query oracles, one can find such an

allocation in polynomial time. We further complement our result by showing120

that a 3/4-MMS is the best guarantee that one can hope to achieve in this

setting. This is in contrast to the additive setting for which the only upper

bound is that 39
40 -MMS allocation is not always possible [19]. We begin by

stating an existential proof.

Theorem 3.2. Every fair allocation problem in which the agents have submod-125

ular valuations admits a 1/3-MMS allocation.

To prove Theorem 3.2, first, by Lemma 2.1 we assume without loss of gener-

ality that MMSi = 1 for every agent ai ∈ N . Next, for a given a function f(·),

we define the ceiling function f{x}(·) as follows:

f{x}(S) = min{x, f(S)} ∀S ⊆ ground(f).
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An important property of the ceiling functions is that they preserve submodular-

ity, fractionally subadditivity, and subadditivity (see Lemma 5.2). Accordingly,

we define the bounded welfare of an allocation A as∑
v
{2/3}
i (Ai).

Given that, we show an allocation that maximizes the bounded welfare is 1/3-

MMS. To this end, let A be an allocation with the maximum bounded welfare

and suppose for the sake of contradiction that in such an allocation, an agent ai

receives a bundle that is worth less than 1/3 to him. Since MMSi = 1, agent ai130

can divide the items into n sets, where each set is worth at least 1 to him. For a

valuation function V , define the contribution of an item bj in set S (bj ∈ S) as

v(S)−v(S\{bj}). Now, we randomly select an element bj which is not allocated

to ai. By the properties of submodular functions, we show that if we allocate

bj to ai, the expected contribution of bj to the bounded valuation function of ai135

would be more than the currently expected contribution of bj to the bounded

welfare of the allocation. Therefore, there exists an item bj such that if we

allocate that item to agent ai, the total bounded welfare of the allocation will

be increased. This contradicts the optimality of the allocation.

Notice that Theorem 3.2 is only an existential proof. A natural approach to140

finding such a solution is to start with an arbitrary allocation and iteratively

increase its bounded welfare until it becomes 1/3-MMS. The main challenge

though is that we do not even know what the MMS values are. Furthermore,

unlike the additive setting, we do not have any PTAS algorithm that provides

us a close estimate of these values. To overcome this challenge, we propose a145

combinatorial trick to guess these values without incurring any additional factor

to our guarantee. The high-level idea is to start with large numbers as estimates

to the MMS values. Every time we run the algorithm on the estimated values,

it either finds the desired allocation or reports that the maximin-share value of

an agent is misrepresented by at least a multiplicative factor. Given this, we150

divide the maximin-share value of that agent by that factor and continue with

the new estimates. Therefore, at every step of the algorithm, we are guaranteed
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that our estimates are not less than the actual MMS values. Based on this, we

show that the running time of the algorithm is polynomial and that the resulting

allocation has the desired properties. The reader can find a detailed discussion155

in Section 5.

Theorem 3.3. Given access to value-query oracles, one can find a 1/3-MMS

allocation for agents with submodular valuations in polynomial time.

We also study the problem with fractionally subadditive (XOS) agents. Sim-

ilar to the submodular setting, we provide an upper bound on the quality of160

any allocation in the XOS setting. We show Theorem 3.4 by a counterexample.

Theorem 3.4. For any n > 1, there exists an instance of the fair allocation

problem with n agents with XOS valuations where no allocation is better than

1/2-MMS.

Next, we state the main theorem of this section.165

Theorem 3.5. The fair allocation problem with XOS agents admits a 1/5-MMS

allocation.

Our approach for proving Theorem 3.5 is similar to the proof of Theorem 3.2.

Again, we scale the valuations to make sure MMSi = 1 for all the agents and

define the notion of bounded welfare, but this time as
∑
v
{2/5}
i (Ai). However,170

as XOS functions do not adhere to the nice structure of submodular functions,

we use a different analysis to prove this theorem. Let A be an allocation with

the maximum bounded welfare. In case all agents receive a value of at least

1/5, the proof is complete. Otherwise, let ai be an agent that receives a set

of items whose value to him is less than 1/5. In contrast to the submodular175

setting, giving no item alone to ai can guarantee an increase in the bounded

welfare of the allocation. However, this time, we show there exists a set S of

items such that if we take them back from their recipients and instead allocate

them to agent ai, the bounded welfare of the allocation increases. The reason

this holds is the following: since MMSi = 1, agent ai can split the items into 2n180
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sets where every set is worth at least 2/5 to ai (see Lemma 6.2). Moreover, since

the valuation functions are XOS, we show that giving one of these 2n sets to ai

will increase the bounded welfare of the allocation. Therefore, if A is maximal,

then A is also 1/5-MMS.

Finally, we show that a 1/8-MMS allocation in the XOS setting can be found185

in polynomial time. Our algorithm only requires access to demand-query and

XOS oracles. Note that this bound is slightly worse than our existential proof

due to computational hardness. However, the blueprint of the algorithm is based

on the proof of Theorem 3.5.

Theorem 3.6. Given access to demand-query and XOS oracles, there exists a190

polynomial time algorithm that finds a 1/8-MMS allocation for agents with XOS

valuations.

We start with an arbitrary allocation and increase the bounded welfare until

the allocation becomes 1/8-MMS. The catch is that if the allocation is not 1/8-

MMS, then there exists an agent ai and a set S of items such that if we take195

back these items from their current recipients and allocate them to agent ai, the

bounded welfare of the allocation increases. To increase the bounded welfare,

two computational barriers need to be lifted. First, similar to the submodular

setting, we do not have any estimates for the MMS values. Analogously, we

resolve the first issue by iteratively guessing the MMS values. The second issue200

is that in every step of the algorithm, we have to find a set S of items to

allocate to an agent ai that increases the bounded welfare. Such a set S cannot

be trivially found in polynomial time. That is where the demand-query and XOS

oracles take part. In Section 6.2.1 we show how to find such a set in polynomial

time. The high-level idea is the following: first, by accessing the XOS oracles,205

we determine the contribution of every item to the bounded welfare of the

allocation. Next, we set the price of every element equal to three times the

contribution of that element to the bounded welfare and run the demand-query

oracle to find which subset has the highest profit for agent ai. We show this

subset has a value of at least 1/4 to ai. Next, we sort the elements of this set210
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based on the ratio of contribution to the overall value of the set over the price

of the item and select a prefix for them that has a value of at least 1/4 to ai.

Finally, we argue that allocating this set to ai increases the bounded welfare

of the allocation by at least some known lower bound. This, combined with

the combinatorial trick to guess the MMS values, gives us a polynomial time215

algorithm to find a 1/8-MMS allocation.

Note that, an immediate corollary of Theorems 3.3 and 3.6 is a polynomial

time algorithm for approximating the maximin-share value of an agent with a

submodular or XOS valuation function within factors 1/3 and 1/8, respectively.

Finally, we investigate the problem when the agents are subadditive and220

present an existential proof based on a well-known reduction to the XOS setting.

Theorem 3.7. Any fair allocation problem in which the agents have subadditive

valuations admits a 1/10dlogme-MMS allocation.

4. Upper-bounds

We begin by presenting our impossibility results for submodular and XOS225

valuations. First, we give an example that shows that the best guarantee that

we can achieve for submodular valuations is upper bounded by 3/4. Next, we

modify this example to prove that the best guarantee that we can achieve for

XOS valuations is upper bounded by 1/2. Our counterexample is generic; we

show this result for any number of agents.230

Theorem 3.1. For any n ≥ 2, there exists an instance of the fair allocation

problem with n agents with submodular valuations where no allocation is better

than 3/4-MMS.

Proof. We construct an instance of the problem that does not admit any 3/4 +

ε-MMS allocation. To this end, let n be the number of agents and M =235

{b1, b2, . . . , bm} where m = 2n. Furthermore, let f : 2M → R be as follows:
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f(S) =



0, if |S| = ∅

1, if |S| = 1

2, if |S| > 2

2, if S = {b2i, b2i−1} for some 1 ≤ i ≤ n

3/2, if |S| = 2 and S 6= {b2i, b2i−1} for any 1 ≤ i ≤ n.

In what follows we show that f is submodular. To this end, suppose for the

sake of contradiction that there exist sets S and S′ such that S ⊆ S′ and for

some element bi we have:

f(S′ ∪ {bi})− f(S′) > f(S ∪ {bi})− f(S). (1)

Since f is monotone and S′ 6= S, f(S′ ∪ {bi}) − f(S′) > 0 holds and thus S′

cannot have more than two items. Therefore, S′ contains at most two items

and thus S is either empty or contains a single element. If S is empty, then

adding every element to S has the highest increase in the value of S and thus240

Inequality (1) doesn’t hold. Therefore, S contains a single element and S′

contains exactly two elements. Thus, f(S) = 1 and f(S′) ≥ 3/2. Therefore, f(S

∪{bi})−f(S) ≥ 1/2 and f(S′∪{bi})−f(S′) ≤ 1/2 which contradicts Inequality

(1).

Now, for agents a1, a2, . . . , an−1 we set vi = f and for agent an we set245

vn = f(inc(S)) where bi is in inc(S) if and only if either i > 1 and bi−1 ∈ S or

i = 1 and bm ∈ S. Clearly, for every agent ai we have MMSi = 2.

The crux of the argument is that for any allocation of the items to the agents,

someone receives a value of at most 3/2. In case an agent receives fewer than

two items, his valuation for his items would be at most 1. Similarly, if an agent250

receives more than two items, someone has to receive fewer than 2 items and the

proof is complete. Therefore, the only case to investigate is where everybody

receives exactly two items. We show in such cases, min vi(Ai) = 3/2 for all

possible allocations. If all agents a1, a2, . . . , an−1 receive two items whose value

12



for them is exactly equal to 2, then by the construction of f , the value of the255

remaining items is also equal to 2 to them. Thus, an’s valuation for the items

he receives is equal to 3/2.

Remark that one could replace function f with an XOS function

g(S) =



0, if |S| = ∅

1, if |S| = 1

2, if |S| > 2

2, if S = {b2i, b2i−1} for some 1 ≤ i ≤ n

1, if |S| = 2 and S 6= {b2i, b2i−1} for any 1 ≤ i ≤ n.

and make the same argument to achieve a 1/2-MMS upper bound for XOS and

subadditive agents.

Theorem 3.4. For any n > 1, there exists an instance of the fair allocation260

problem with n agents with XOS valuations where no allocation is better than

1/2-MMS.

5. Submodular Valuations

Most of the studies on maximin-share are limited to the agents with additive

valuations [15, 16, 9]. In the real world, however, valuation functions are usually265

more complex than additive ones. As an example, imagine an agent is interested

in at most k items. More precisely, he is indifferent between receiving k items or

more than k items. Such a valuation function is called k-demand and cannot be

modeled by additive functions. k-demand functions are a subclass of submodular

set functions which have been extensively studied in the literature of different270

contexts, e.g., optimization, mechanism design, and game theory [31, 32, 33, 34,

35, 36, 37, 30]. To the best of our knowledge, the only result for the maximin-

share notion beyond additive valuations is the work of Barman and Krishna
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Murthy [17] wherein the authors prove the existence of 1/10-MMS allocation

for agents with submodular valuations 4.275

In this section we provide an existential proof to a 1/3-MMS allocation when

the valuations are submodular. Due to the algorithmic nature of the proof, we

show in Section 5.1 that such an allocation can be computed in time poly(n,m).

We emphasize that we scale the valuation functions to ensure MMSi = 1 for

every agent ai.280

We begin by introducing the ceiling functions.

Definition 5.1. Given a set function f : ground(f) → R+, we define f{x}(·)

as follows:

f{x}(S) =

f(S), if f(S) ≤ x

x, if f(S) > x.

Observation 5.1. f{x}(S) ≤ x for every given S.

Observation 5.2. f{x}(S) ≤ f(S) for every given S.285

An important property of the ceiling functions is that they preserve sub-

modularity, fractionally subadditivity, and subadditivity as we show in Lemma

5.2.

Lemma 5.2. For any real number x ≥ 0, we have:

1. Given a submodular set function f(·), f{x}(·) is submodular.290

2. Given an XOS set function f(·), f{x}(·) is XOS.

3. Given an subadditive set function f(·), f{x}(·) is also subadditive.

Proof. First Claim: By definition of submodular functions, for given sets A

and B we have:

f(A ∪B) ≤ f(A) + f(B)− f(A ∩B).

4In the journal version of this paper, this factor is improved to 0.21.
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We prove that f{x}(·) is a submodular function in three different cases:

First Case: let both f(A) and f(B) be at least x. According to Observation

5.1, f{x}(A∪B) and f{x}(A∩B) are bounded by x. Therefore, f{x}(A∪B) +

f{x}(A ∩B) ≤ 2x, which yields:

f{x}(A ∪B) + f{x}(A ∩B) ≤ f{x}(A) + f{x}(B).

Second Case: in this case one of f(A) and f(B) is at least x. We have

f(A ∪ B) ≥ x and f(A ∩ B) is no more than max {f(A), f(B)}. As a result

f{x}(A ∪B) and one of f{x}(A) or f{x}(B) are equal to x which yields:

f{x}(A ∪B) + f{x}(A ∩B) ≤ f{x}(A) + f{x}(B)

Third Case: in this case both f(A) and f(B) are less than x, and f(A∩B) is

less than x too. Since f{x}(A) = f(A), f{x}(B) = f(B), f{x}(A∩B) = f(A∩B),

according to Observation 5.2, f{x}(A ∪ B) ≤ f(A ∪ B) holds. Since f(·) is a

submodular function, we conclude that:

f{x}(A ∪B) ≤ f{x}(A) + f{x}(B)− f{x}(A ∩B).

Second Claim: Since f(·) is an XOS set function, by definition, there exists a

finite set of additive functions {f1, f2, . . . , fα} such that

f(S) =
α

max
i=1

fi(S)

for any set S ⊆ ground(f). With that in hand, for a given real number x, we295

define an XOS set function g(·), and show g(·) is equal to f{x}(·).

We define g(·) on the same domain as f(·). Moreover, based on {f1, f2, . . . , fα},

we define a finite set of additive functions {g1, g2, . . . , gβ} that describe g. More

precisely, for each set S in domain of f(·) we define a new additive function like

gγ in g(·) as follows: Without loss of generality let fδ be the function which300

maximizes f(S). For each bi /∈ S let gγ(bi) = 0. Furthermore, for each bi ∈ S if

f(S) ≤ x let gγ(bi) = fδ(bi), and otherwise let gγ(bi) = x
f(S)fδ(bi).
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We claim that g(·) is equivalent to f{x}(·), which implies f{x}(·) is an XOS

function. g(·) and f{x}(·) are two functions which have equal domains. First,

we prove that g(S) ≤ f(S) for any given set S. According to construction of

g(·), for each additive function in g(·) such gγ , there is at least one additive

function in f(·) such fδ where gγ(bi) ≤ fδ(bi) for each bi ∈ M. Therefore, for

any given set S we have:

g(S) ≤ f(S) (2)

Now, according to the construction of g(·), for any given set S where f(S) ≤ x,

we have a function gγ(S) = f(S), and where f(S) > x, we have a function

gγ(S) = x. Therefore, we can conclude that:

g(S) ≥ f{x}(S) (3)

For any given set S where f(S) ≤ x, according to the definition of f{x}(·),

f(S) = f{x}(S), and using Inequalities (2) and (3) we argue that f{x}(S) =

g(S). Moreover, according to the construction of g(·), g(S) ≤ x for any given

set S. Therefore, for any given set S where f(S) > x, according to the definition

of f{x}(·) and Inequality (3), f{x}(S) = g(S) = x. As a result, by considering

these two cases we argue that f{x}(·) and g(·) are equivalent, which shows

f{x}(·) is an XOS function.

Third Claim: In this claim, we use a similar argument to the first claim. By

definition of subadditive functions for any given sets A and B, we have:

f(A ∪B) ≤ f(A) + f(B).

We prove that f{x}(·) meets the definition of subadditive functions by consid-

ering two different cases. In the first case at least one of f(A) and f(B) is at

least x, and in the second case both f(A) and f(B) is less than x.305

First Case: In this case f{x}(A) + f{x}(B) is at least x. Since f{x}(S) ≤ x

for any given set S, f{x}(A ∪B) ≤ x. Therefore,

f{x}(A ∪B) ≤ f{x}(A) + f{x}(B).
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Second Case: Since f{x}(A ∪ B) ≤ f(A ∪ B), f(A ∪ B) ≤ f(A) + f(B),

f(A) = f{x}(A), and f(B) = f{x}(B), we have:

f{x}(A ∪B) ≤ f{x}(A) + f{x}(B).

The idea behind the existence of a 1/3-MMS allocation is simple: let A =

〈A1, A2, . . . , An〉 be an allocation of items to the agents that maximizes the

following expression: ∑
ai∈N

v
{2/3}
i (Ai). (4)

We refer to Expression (4) by ex{2/3}(A). We prove vi(Ai) ≥ 1/3 for every

agent ai ∈ N . The main ingredients of the proof are Lemmas 2.1, 5.3 and 5.4.

Lemma 5.3. Let S1, S2, . . . , Sk be k disjoint sets and f1, f2, . . . , fk be k sub-

modular functions. We remove an element e from
⋃
Si uniformly at random to

obtain sets S∗1 = S1 \ {e}, S∗2 = S2 \ {e}, . . . , S∗k = Sk \ {e}. In this case we have

E[
∑

fi(S
∗
i )] ≥

∑
fi(Si)

|
⋃
Si| − 1

|
⋃
Si|

.

Proof. Since f(·) is submodular, according to the definition of submodular func-

tions, for every given sets X and Y in domain of f(·) with X ⊆ Y and every

x ∈M \ Y we have:

f(X ∪ {x})− f(X) ≥ f(Y ∪ {x})− f(Y ) (5)

Let Si = {e1, e2, . . . , eα}, T0 = ∅, and Tj = {e1, e2, . . . , ej}, for every 1 ≤

j ≤ α. Since Tj ⊆ Si for each 0 ≤ j ≤ α and fi is a submodular function,

according to Inequality (5) we have:∑
1≤j≤α

fi(Si \ Tj−1)− fi(Si \ Tj) ≥
∑

1≤j≤α

fi(Si)− fi(Si − ej). (6)

Since fi(Si) =
∑

1≤j≤α fi(Si \ Tj−1)− fi(Si \ Tj), we can rewrite Inequality

(6) for every 1 ≤ i ≤ k as follows:

fi(Si) ≥
∑
e∈Si

fi(Si)− fi(Si − e). (7)
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For every 1 ≤ i ≤ k we can rewrite Inequality (7) as follows:∑
e∈si

fi(Si − e) ≥ (|Si| − 1)fi(Si) (8)

By adding (|
⋃
Si|− |Si|)fi(Si) to the both sides of Inequality (8), we have:

(|
⋃
Si| − |Si|)fi(Si) +

∑
e∈Si

fi(Si − e) =
∑

e∈
⋃
Si

fi(Si \ {e})

≥ (|
⋃
Si| − 1)fi(Si)

(9)

Since Inequality (9) holds for every 1 ≤ i ≤ k, we can sum up both sides of310

Inequality (9) as follows:

∑
1≤i≤k

∑
e∈

⋃
Si

fi(Si − e) ≥
∑

1≤i≤k

(|
⋃
Si| − 1)fi(Si) (10)

By dividing both sides of Inequality (10) over 1/|
⋃
Si| we obtain:

1

|
⋃
Si|

(
∑

e∈
⋃
Si

∑
1≤i≤k

fi(Si − e)) = E[
∑

1≤i≤k

fi(S
∗
i )]

≥
∑

1≤i≤k

fi(Si)
|
⋃
Si| − 1

|
⋃
Si|

.

(11)

Lemma 5.4. Let f be a submodular function and S1, S2, . . . , Sk be k disjoint

sets such that f(Si) ≥ 1 for every set Si. Moreover, let S ⊆
⋃
Si be a set such

that f(S) < 1/3. If we pick an element {e} of
⋃
Si \ S uniformly at random,

we have:

E[f(S ∪ {e})− f(S)] ≥ 2k/3

|
⋃
Si \ S|

.

Proof. Similar to the proof of Lemma 5.3, we use Inequality (5) as a definition

of submodular functions. Let S′i = Si \ S = {e1, e2, . . . , eα}, T0 = S, and315

Tj = S∪{e1, e2, . . . , ej} for 1 ≤ j ≤ α. According to f(S) < 1/3, f(S∪S′i) ≥ 1,
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and Inequality (5) as a definition of submodular functions, we have:

2/3 < f(S ∪ S′)− f(S)

=
∑

1≤j≤α

f(Tj−1 ∪ {ej})− f(Tj−1)

≤
∑
e∈S′

i

f(S ∪ {e})− f(S).

(12)

Similar to Inequality (10), we can rewrite Inequality (12) with a summation,

since Inequality (12) holds for any 1 ≤ i ≤ k.

2k/3 <
∑

1≤i≤k

∑
e∈S′

i

f(S ∪ {e})− f(S) (13)

By dividing both sides of Inequality (13) over 1/|
⋃
Si \ S| we have:320

2k/3

|
⋃
Si \ S|

<
1

|
⋃
Si \ S|

(
∑

1≤i≤k

∑
e∈S′

i

f(S ∪ {e})− f(S))

= E[f(S ∪ {e})− f(S)]

(14)

Next, we show the fair allocation problem with submodular valuations ad-

mits a 1/3-MMS allocation.

Theorem 3.2. Every fair allocation problem in which the agents have submod-

ular valuations admits a 1/3-MMS allocation.325

Proof. Since our goal is to prove 1/3 approximation guarantee, by Lemma 2.1

we can assume that the value of each item for each agent is less than 1/3. Let A

be an allocation that maximizes ex{2/3}. Suppose for the sake of contradiction

that vi(Ai) < 1/3 for some agent ai. In this case we select an item br from

M\Ai uniformly at random to create a new allocation Ar as follows:330

Arj =

Aj \ {br}, if i 6= j

Aj ∪ {br} if i = j.
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In the rest we show E[ex{2/3}(Ar)] > ex{2/3}(A) which contradicts the max-

imality of A. Note that by Lemma 5.3 the following inequality holds:

E[
∑
j 6=i

v
{2/3}
j (Arj)] ≥

∑
j 6=i

v
{2/3}
j (Aj)

|M \Ai| − 1

|M \Ai|
. (15)

Moreover, by Lemma 5.4 we have

E[vi(A
r
i )− vi(Ai)] ≥

2n/3

|M \Ai|
. (16)

Inequality (15) along with Inequality (16) shows

E[ex{2/3}(Ar)] = E[
∑
j 6=i

v
{2/3}
j (Arj)] + E[vi(A

r
i )]

≥
∑
j 6=i

v
{2/3}
j (Aj)

|M \Ai| − 1

|M \Ai|
+ E[vi(A

r
i )]

≥
∑
j 6=i

v
{2/3}
j (Aj)

|M \Ai| − 1

|M \Ai|
+

2n/3

|M \Ai|
+ vi(Ai)

≥
∑
j 6=i

v
{2/3}
j (Aj)

|M \Ai| − 1

|M \Ai|
+

2n/3

|M \Ai|
+ v
{2/3}
i (Ai)

≥
∑
j 6=i

v
{2/3}
j (Aj)

|M \Ai| − 1

|M \Ai|
+

2n/3

|M \Ai|
+ v
{2/3}
i (Ai)

|M \Ai| − 1

|M \Ai|

= ex{2/3}(A)
|M \Ai| − 1

|M \Ai|
+

2n/3

|M \Ai|
.

(17)

Recall that by Lemma 2.1, the value of agent ai for any item alone is bounded

by 1/3 and thus E[vi(A
r
i )−vi(Ai)] = E[v

{2/3}
i (Ari )−v

{2/3}
i (Ai)]. Notice that by

the definition, v
{2/3}
j is always bounded by 2/3 and also vi(Ai) < 1/3, therefore,

ex{2/3}(A) ≤ 2n/3− 1/3 and thus

E[ex{2/3}(Ar)] ≥ ex{2/3}(A)
|M \Ai| − 1

|M \Ai|
+

2n/3

|M \Ai|

≥ ex{2/3}(A) +
1/3

|M \Ai|

≥ ex{2/3}(A) + 1/3m.

(18)

20



5.1. Algorithm

In this section we give an algorithm to find a 1/3-MMS allocation for sub-

modular valuations. We show our algorithm runs in time poly(n,m).

For simplicity, we assume for every agent ai, MMSi is given as input to the335

algorithm. However, computing MMSi alone is an NP-hard problem. That said,

we show in Section 6.2.2 that such a computational barrier can be lifted by a

combinatorial trick. We refer the reader to Section 6.2.2 for a more detailed

discussion. The procedure is illustrated in Algorithm 1.

Algorithm 1: Finding a 1/3-MMS allocation for submodular valuations

Data: N ,M, 〈v1, v2, . . . , vn〉, 〈MMS1,MMS2, . . . ,MMSn〉

1 For every aj , scale vj to ensure MMSj = 1;

2 while there exist an agent ai and an item bj such that vi({bj}) ≥ 1/3 do

3 Allocate {bj} to ai;

4 M =M\ bj ;

5 N = N \ ai;

6 A = an arbitrary allocation of the items to the agents;

7 while min v
{2/3}
j (Aj) < 1/3 do

8 i = the agent who receives the lowest value in allocation A;

9 Find an item be such that: ex(〈A1 \ {be}, A2 \ {be}, . . . , Ai−1 \

{be}, Ai ∪ {be}, Ai+1 \ {be}, . . . , An \ {be}〉) ≥ ex(A) + 1/3m;

10 A = 〈A1 \ {be}, A2 \ {be}, . . . , Ai−1 \ {be}, Ai ∪ {be}, Ai+1 \

{be}, . . . , An \ {be}〉;

11 For every ai ∈ N allocate Ai to ai;

Based on Theorem 3.2, one can show that in every iteration of the algorithm340

value of ex{2/3}(A) is increased by at least 1/3m. Moreover, such an element be

can be easily found by iterating over all items in time O(m). Furthermore, the

number of iterations of the algorithm is bounded by 2nm, since ex{2/3}(A) is

bounded by 2n/3. Therefore, Algorithm 1 finds a 1/3-MMS allocation in time

poly(n,m).345
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Theorem 3.3. Given access to value-query oracles, one can find a 1/3-MMS

allocation for agents with submodular valuations in polynomial time.

As a corollary of Theorem 3.3, one can show that the problem of finding the

maximin value of a submodular function admits a 3 approximation algorithm.

Corollary 5.5. For a given submodular valuation function vi, we can in poly-

nomial time split the elements of ground set into n disjoint sets S1, S2, . . . , Sn

such that

vi(Sj) ≥ MMSi/3

for every 1 ≤ j ≤ n.350

6. XOS Agents

The class of fractionally subadditive (XOS) set functions is a superclass of

submodular functions. These functions too, have been the subject of many

studies in recent years [38, 39, 23, 40, 41, 42, 43, 28, 44]. Similar to submod-

ular functions, in this section, we show a 1/5-MMS allocation is possible when355

all agents have XOS valuations. Furthermore, we complement our proof by

providing a polynomial algorithm to find a 1/8-MMS allocation in Section 6.2.

6.1. Existential Proof

In this section we show every instance of the fair allocation problem with

XOS agents admits a 1/5-MMS allocation. Without loss of generality, we assume360

MMSi = 1 for every agent ai. Recall the definition of ceiling functions. As stated

in Lemma 5.2, for every XOS function f and every real number x ≥ 0, fx is also

XOS. The proof of this section is similar to the result of Section 5. However, the

details are different since XOS functions do not adhere to the special structure of

submodular functions. For every allocation A, we define ex{2/5}(A) as follows:365

ex{2/5}(A) =
∑
ai∈N

v
{2/5}
i (Ai).
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Now let A = 〈A1, A2, . . . , An〉 be an allocation of items to the agents that

maximizes ex{2/5}. Provided that the problem is 1/5-irreducible, we show A is

a 1/5-MMS allocation. Before we proceed to the main proof, we state Lemmas

6.1, and 6.2 as auxiliary observations.

Lemma 6.1. Let f(·) be an XOS set function and let S ⊆ ground(f). If we

divide S into k (possibly empty) sets S1, S2, . . . , Sk then

k∑
i=1

(
f(S)− f(S \ Si)

)
≤ f(S).

Proof. According to the definition of XOS function, f(·) is an XOS function with370

a finite set of additive functions {g1, g2, . . . , gα} where f(S) = maxαi=1 gi(S) for

any set S ∈ ground(f). Let gj(·) be the additive function which maximizes

S. Let gj(S1) = α1, gj(S2) = α2, . . . , gj(Sk) = αk, which yields f(S) =
∑
αi.

Since gj(Si) = αi, f(S \ Si) ≥ f(S)− αi. Therefore, we have:

∑
f(S)− f(S \ Si) ≤

∑
f(S)− (f(S)− αi)

= f(S).
(19)

375

By Lemma 2.1, to prove the approximation ratio of 1/5, we can assume

without loss of generality that the value of every item for an agent is bounded

by 1/5. For XOS functions, in Lemma 6.2 we prove another important property.

Lemma 6.2. Assume that the value of each item for each agent is less than 1/5.

Then, for a given agent ai we can divide the items into 2n sets S1, S2, . . . , S2n

such that

vi(Sj) ≥ 2/5

for every 1 ≤ j ≤ 2n.380

Proof. According to the definition of MMS, we know that ai can divide items

to n sets P = 〈P1, P2, . . . , Pn〉 such that Vi(Pj) ≥ 1 for any Pj . The catch is

23



that ai can divide each of these n sets to two disjoint sets such that the value

of each of these new sets be at least 2/5 to him. Let T = {b1, b2, . . . , bγ} be one

of these n sets, and gj(·) be an additive function which maximizes Vi(T ). Let385

Tk = {b1, b2, . . . , bk} for any 1 ≤ k ≤ γ. Since the value of any item is less than

1/5 to ai, there is a set Tk among T1 to Tγ where 2/5 ≤ gj(Tk) < 3/5. Since

gj(·) is one of additive functions of XOS function Vi, we have Vi(Tk) ≥ 2/5.

Moreover, since gj(Tk) < 3/5, gj(T \ Tk) ≥ 2/5, which yields Vi(T \ Tk) ≥ 2/5.

As a conclusion, we can divide each of n sets to two disjoint sets with at least390

2/5 value to ai.

Next we prove the main theorem of this section.

Theorem 3.5. The fair allocation problem with XOS agents admits a 1/5-MMS

allocation.

Proof. Consider an allocation A = 〈A1, A2, . . . , An〉 of items to the agents that

maximizes ex{2/5}. We show that such an allocation is 1/5-MMS. Suppose for

the sake of contradiction that there exists an agent ai who receives a set of items

which are together worth less than 1/5 to him. More precisely,

v
{2/5}
i (Ai) = vi(Ai) < 1/5.

Recall that by Lemma 2.1, the value of each items to each agent is less than 1/5,395

and therefore by Lemma 6.2, we can divide the items into 2n sets S1, S2, . . . , S2n

such that vi(Sj) ≥ 2/5 for every 1 ≤ j ≤ 2n. Note that in this case, v
{2/5}
i (Sj) =

2/5 follows from the definition. Moreover by monotonicity, v
{2/5}
i (Sj∪Ai) = 2/5

holds for every j.

Now consider 2n allocations A1,A2, . . . ,A2n such that

Aj = 〈Aj1, A
j
2 . . . , A

j
n〉

for every 1 ≤ j ≤ 2n where400

Ajk =

Ak ∪ Sj , if k = i

Ak \ Sj , if k 6= i.
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We show at least one of these allocations has a higher value for ex{2/5} than A.

Since v
{2/5}
i is XOS, by Lemma 6.1 we have

2n∑
j=1

(
v
{2/5}
k (Ak)− v{2/5}k (Ak \ Sj)

)
≤ v{2/5}k (Aj)

for every ak 6= ai and thus

2n∑
j=1

v
{2/5}
k (Ajk) =

2n∑
j=1

v
{2/5}
k (Aj \ Sj)

≥ 2nv
{2/5}
k (Ak)− v{2/5}k (Ak)

= (2n− 1)v
{2/5}
k (Ak).

(20)

Moreover, since v
{2/5}
i (Ai) < 1/5, we have∑
aj 6=ai

v
{2/5}
j (Aj) >

∑
aj∈N

v
{2/5}
j (Aj)− 1/5

= ex{2/5}(A)− 1/5.

(21)

Furthermore, since v
{2/5}
i (Sj ∪Ai) = 2/5 for every 1 ≤ j ≤ 2n, we have∑

ak 6=ai

v
{2/5}
k (Ajk) =

∑
ak∈N

v
{2/5}
k (Ajk)− 2/5

= ex{2/5}(Aj)− 2/5.

(22)

Finally, by combining Inequalities (20), (21), and (22) we have

2n∑
j=1

ex{2/5}(Aj) =

2n∑
j=1

(2/5 +
∑
ak 6=ai

v
{2/5}
k (Ajk))

= 4n/5 +

2n∑
j=1

∑
ak 6=ai

v
{2/5}
k (Ajk)

≥ 4n/5 +
∑
ak 6=ai

(2n− 1)v
{2/5}
k (Ak)

≥ 4n/5 + (2n− 1)(ex{2/5}(A)− 1/5)

≥ 2n · ex{2/5}(A) + (4n− 2n+ 1)/5− ex{2/5}(A)

≥ 2n · ex{2/5}(A) + (2n+ 1)/5− ex{2/5}(A).
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Now notice that since v
{2/5}
k (Ak) ≤ 2/5, we have

ex{2/5}(A) =

n∑
k=1

v
{2/5}
k (Ak)

≤
n∑
k=1

2/5

≤ 2n/5

and thus

2n∑
j=1

ex{2/5}(Aj) ≥ 2n · ex{2/5}(A) + (2n+ 1)/5− ex{2/5}(A)

≥ 2n · ex{2/5}(A) + (2n+ 1)/5− 2n/5

≥ 2n · ex{2/5}(A) + 1/5.

Therefore, ex{2/5}(Aj) > ex{2/5}(A) + 1/10n holds for at least one Aj which

contradicts the maximality of A.

6.2. Algorithm

In this section, we provide a polynomial time algorithm for finding a 1/8-

MMS allocation for the fair allocation problem with XOS agents. The algorithm405

is based on a similar idea that we argued for the proof of Theorem 3.5. Remark

that our algorithm only requires access to demand-query and XOS oracles. It

does not have any additional information about the maximin values. This makes

the problem computationally harder since computing the maximin values is NP-

hard [45]. We begin by giving a high-level intuition of the algorithm and show410

that we can overcome computational obstacles by combinatorial tricks. Consider

the pseudo-code described in Algorithm 2.

As we show in Section 6.2.1, Command 9 of the algorithm is always doable.

More precisely, there always exists a set S that holds in the condition of Com-

mand 9. Notice that in every step of the algorithm, ex{1/4}(A) is increased415

by at least 1/12n and this value is bounded by 1/4 · n = n/4. Therefore the

algorithm terminates after at most 3n2 steps and the allocation is guaranteed

to be 1/8-MMS.
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Algorithm 2: Algorithm for finding a 1/8-MMS allocation

Data: N ,M, 〈v1, v2, . . . , vn〉

1 For every aj , scale vj to ensure MMSj = 1;

2 while there exist an agent ai and an item bj such that vi({bj}) ≥ 1/8 do

3 Allocate {bj} to ai;

4 M =M\ bj ;

5 N = N \ ai;

6 A = an arbitrary allocation of the items to the agents;

7 while min v
{1/4}
j (Aj) < 1/8 do

8 i = the agent who receives the lowest value in allocation A;

9 Find a set S such that:

ex{1/4}(〈A1 \ S,A2 \ S, . . . , Ai−1 \ S,Ai ∪ S,Ai+1 \ S, . . . , An \ S〉) ≥

ex{1/4}(A) + 1/12n;

10 A = 〈A1 \ S,A2 \ S, . . . , Ai−1 \ S,Ai ∪ S,Ai+1 \ S, . . . , An \ S〉;

11 For every ai ∈ N allocate Ai to ai;
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That said, there are two major computational obstacles in the way of running

Algorithm 2. Firstly, finding a set S that satisfies the condition of Command420

9 can not be trivially done in polynomial time. Second, scaling the valuation

functions to ensure MMSi = 1 for all agents is NP-hard and cannot be done in

polynomial time unless P=NP. To overcome the former, in Section 6.2.1 we pro-

vide an algorithm for finding such a set S in polynomial time. Next, in Section

6.2.2, we present a combinatorial trick to run the algorithm in polynomial time425

without having to deal with NP-hardness of scaling the valuation functions.

6.2.1. Executing Command 9 in Polynomial Time

In this section we present an algorithm to execute Command 9 of Algo-

rithm 2. We show that such a procedure can be implemented via demand-query

oracles.430

Let for every bj /∈ Ai, cj be the amount of contribution that bj makes to

ex{1/4}(A). We set pe = 3(n/(n− 1))ce and ask the demand-query oracle of vi

to find a set S that maximizes vi(S)−
∑
bj∈S pj . Via a trivial calculation, one

can show that vi(S) −
∑
bj∈S pj ≥ 1/4 holds for at least one set of items. The

reason this is correct is that one can divide the items into n partitions where435

each is worth at least 1 to ai. Moreover, the summation of prices for the items

is bounded by 3n/(n − 1) · (
∑
j 6=i v

{1/4}
j (Aj)) ≤ 3n/4. Therefore, for at least

one of those partitions vi(S)−
∑
bj∈S pj is at least 1/4. Thus, the set that the

oracle reports is worth at least 1/4 to ai.

Now, let S∗ be the set that the oracle reports and for every bj ∈ S∗, c∗j440

be the contribution of bj to vi(S
∗). We sort the items of S∗ based on c∗j − pj

in non-increasing order. Next, we start with an empty bag and add the items

in their order to the bag until the total value of the items in the bag to ai

reaches 1/4. Since the value of every item alone is bounded by 1/8, the total

value of the items in the bag to ai is bounded by 3/8. Thus the contribution445

of those items to ex{1/4}(A) is at most (3/8)/(3n/(n − 1)) ≤ 1/8 − 1/(10n).

Therefore, removing items of the bag from other allocations and adding them

to Ai, increases ex{1/4}(A) by at least 1/10n.
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We remark that one can use the same argument to prove this even if MMSi ≥

1/(1 + 1/10n).450

6.2.2. Running Algorithm 2 in Polynomial Time

As mentioned above, scaling valuation functions to ensure MMSi = 1 for

every agent ai is an NP-hard problem since determining the maximin values is

hard even for additive agents [9]. Therefore, unlike Section 6.2.1, in this section

we massage the algorithm to make it executable in polynomial time.455

Suppose an oracle gives us the maximin values of the agents. Provided that

we can run Command 9 of Algorithm 2 in polynomial time, we can find a 1/8-

MMS allocation in polynomial time. Therefore, in case the oracle reports the

actual maximin values, the solution is trivial. However, what if the oracle has an

error in its calculations? There are two possibilities: (i) Algorithm 2 terminates460

and finds an allocation which is 1/8-MMS with respect to the reported maximin

values. (ii) The algorithm fails to execute Command 9, since no such set S holds

in the condition of Command 9. The intellectual merit of this section boils down

to investigation of the case when algorithm fails to execute Command 9. We

show that this only happens due to an overly high misrepresentation of the465

maximin value for agent ai. Note that ai is the agent who receives the lowest

value in the last cycle of the execution.

Observation 6.1. Given 〈d1, d2, . . . , dn〉 as an estimate for the maximin values,

if Algorithm 2 fails to execute Command 9 for an agent ai, then we have

di ≥ (1 + 1/10n)MMSi.

Proof of Observation 6.1 follows from the argument of Section 6.2.1. More

precisely, as mentioned in Section 6.2.1, such a set S exists, if MMSi ≥ 1/(1 +

1/10n). Thus, given that the procedure explained in Section 6.2.1 fails to find470

such a set, one can conclude that the reported value for MMSi is at least (1/(1+

1/10n)) times its actual value. Based on Observation 6.1, we propose Algorithm

3 for implementing a maximin oracle.
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Algorithm 3: Implementing a maximin oracle

Data: N ,M, 〈v1, v2, . . . , vn〉

1 for every ai ∈ N do

2 di ← vi(M);

3 while true do

4 Run Algorithm 2 assuming maximin values are d1, d2, . . . , dn;

5 if the Algorithm fails to run Command 9 for an agent ai then

6 di ← di/(1 + 1/10n);

7 else

8 Report the allocation and terminate the algorithm;

Note that in the beginning of the algorithm, we set di = vi(M) which is

indeed greater than or equal to MMSi. By Lemma 6.1, every time we decrease475

the value of di for an agent ai, we preserve the condition di ≥ MMSi for that

agent. Therefore, in every step of the algorithm, we have di ≥ MMSi and thus

the reported allocation which is 1/8-MMS with respect to di’s is also 1/8-MMS

with respect to true maximin values. Thus, the algorithm provides a correct

1/8-MMS allocation in the end. All that remains is to show the running time480

of the algorithm is polynomial.

Notice that every time we decrease di for an agent ai, we multiply this value

by 1/(1+1/10n), hence the number of such iterations is polynomial in n, unless

the valuations are super-exponential in n. Since we always assume the input

numbers are represented by poly(n) bits, the number of iterations is bounded485

by poly(n) and hence the algorithm terminates after a polynomial number of

steps.

Theorem 3.6. Given access to demand-query and XOS oracles, there exists a

polynomial time algorithm that finds a 1/8-MMS allocation for agents with XOS

valuations.490

A consequence of Theorem 3.6 is an 8-approximation algorithm for deter-
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mining the maximin value of an agent with XOS valuation.

Corollary 6.3. For a given XOS valuation function vi, we can in polynomial

time split the elements of ground set into n disjoint sets S1, S2, . . . , Sn such that

vi(Sj) ≥ MMSi/8

Proof. We construct an instance of the fair allocation problem with n agents,

all of whom have a valuation function equal to f . We find a 1/8-MMS allocation

of the items to the agents in polynomial time and report the minimum value495

that an agent receives as output.

The 1/8 guarantee follows from the fact that every agent receives a subset

of values that are worth 1/8-MMSi to him.

Remark 6.4. A similar procedure can also be used to overcome the challenge

of computing the maximin values for the algorithm described in Section 5.1.500

7. Subadditive Agents

In this section, we present an existential proof based on a well-known reduc-

tion from subadditive setting to the XOS setting (see [39] for example). More

precisely, we show for every subadditive set function f(·), there exists an XOS

function g(·), where g is dominated by f but the maximin value of g is within

a logarithmic factor of the maximin value of f . We begin with an observation.

Suppose we are given a subadditive function f on set ground(f), and we wish to

approximate f with an additive function g which is dominated by f . In other

words, we wish to find an additive function g such that

∀S ⊆ ground(f) g(S) ≤ f(S)

and g(ground(f)) is maximized. One way to formulate g is via a linear program.

Suppose ground(f) = {b1, b2, . . . , bm} and let g1, g2, . . . , gm be m variables that

describe g in the following way:

∀S ⊆ ground(f) g(S) =
∑
bi∈S

gi.
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Based on this formulation, we can find the optimal additive function g by LP

23.

maximize:
∑

bi∈ground(f)

gi (23)

subject to:
∑
bi∈S

gi ≤ f(S) ∀S ⊆ ground(f)

gi ≥ 0 ∀bi ∈ ground(f)

We show the objective function of LP 23 is lower bounded by f(ground(f))/ logm.

The basic idea is to first write the dual program and then based on a probabilistic

method, lower bound the optimal value of the dual program by f(ground(f))/ logm.

505

Lemma 7.1. The optimal solution of LP 23 is at least f(ground(f))/ logm.

Proof. To prove the lemma, we write the dual of LP 23 as follows:

minimize:
∑

S⊆ground(f)

αSf(S) (24)

subject to:
∑
S3bi

αS ≥ 1 ∀bi ∈ ground(f)

αS ≥ 0 ∀S ⊆ ground(f)

By the strong duality theorem, the optimal solutions of LP 23 and LP 24 are

equal. Next, based on the optimal solution of LP 24, we define a randomized

procedure to draw a set of elements: We start with an empty set S∗ and for

every set S ⊆ ground(f) we add all elements of S to S∗ with probability αS .

Since f is subadditive, the marginal increase of f(S∗) by adding elements of a

set S to S∗ is bounded by f(S) and thus the expected value of f(S∗) is bounded

by the objective of LP 24. In other words:

E[f(S∗)] ≤
∑

S⊆ground(f)

αSf(S) (25)

We remark that we repeat this procedure for all subsets of ground(S) indepen-

dently and thus for every bi ∈ ground(f),
∑
S3bi αS ≥ 1 holds, we have

PR[bi ∈ S∗] ≥ 1− 1/e ' 0.632121 > 1/2 (26)
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for every element bi ∈ ground(S). Now, with the same procedure, we draw

dlogme + 2 sets S∗1 , S
∗
2 , . . . , S

∗
dlogme+2 independently. We define Ŝ =

⋃
S∗i . By

Inequality (26) and the union bound we show

PR[Ŝ = ground(f)] ≥ 1−
∑

bi∈ground(i)

PR[bi /∈ Ŝ]

= 1−
∑

bi∈ground(i)

PR[bi /∈ S∗1 and bi /∈ S∗1 and . . . and bi /∈ S∗dlogme+2]

= 1−
∑

bi∈ground(i)

dlogme+2∏
j=1

PR[bi /∈ S∗j ]

≥ 1−
∑

bi∈ground(i)

dlogme+2∏
j=1

1/2

= 1−
∑

bi∈ground(i)

dlogme+2∏
j=1

PR[bi /∈ S∗j ]

≥ 1−
∑

bi∈ground(i)

1/4m

= 1− 1/4

= 3/4

and thus E[f(Ŝ)] ≥ 3/4f(ground(f)). On the other hand, by the linearity of

expectation and the fact that f is subadditive we have:

E[f(Ŝ)] = E[f(
⋃
S∗i )]

≤ E[
∑

f(S∗i )]

≤ (dlogme+ 2)(
∑

S⊆ground(f)

αSf(S)).

Therefore
∑
S⊆ground(f) αSf(S) ≥ 3/4f(ground(f))/(dlogme+ 2), which means∑

S⊆ground(f)

αSf(S) ≥ f(ground(f))/(2dlogme)

for a big enough m. This shows the optimal solution of LP 23 is lower bounded

by f(ground(f))/(2dlogme) and the proof is complete.

In what follows, based on Lemma 7.1, we provide a reduction from sub-

additive agents to XOS agents. An immediate corollary of Lemma 7.1 is the510
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following:

Corollary 7.2 (of Lemma 7.1). For any subadditive valuation function Vi and

integer number n, there exists an XOS function V ′i such that

V ′i (S) ≤ Vi(S) ∀S ⊆M

and

MMS′i ≥ MMSi/2dlogme

Based on Theorem 3.5 and Corollary 7.2 one can show that a 1/10dlogme-

MMS allocation is always possible for subadditive agents.

Theorem 3.7. Any fair allocation problem in which the agents have subadditive

valuations admits a 1/10dlogme-MMS allocation.515

8. Related Work

As mentinoed, maximin-share was introduced by Budish [1] and since then

has been the subject of many studies [2, 46, 47, 48, 49, 50, 51, 52, 16, 9]. Other

than the results we mentioned in the introduction, there are results that consider

maximin-share for different allocation scenarios. For example, Kurokawa et al.520

[48] show that when the valuations are drawn at random, an allocation with

maximin-share guarantee exists with a high probability, and it can be found in

polynomial time. Bouveret and Lemâıtre in [53] show that for the restricted

cases when the valuations of the agents come from {0, 1}, or when the number

of items is smaller than n + 3, an MMS allocation is guaranteed to exist. For525

the case of 3 agents, the approximation factor is improved from 2/3 in series of

work to 3/4 [9], 7/8 [16], and 8/9 [47].

There are other studies that extend maximin-share to more general settings.

Similar to classic fairness notions, the weighted version of MMS (WMMS) is also

considered [49]. The current best approximation guarantee for WMMS is 1/2530

by Farhadi et. al [49]. Gourvès and Monnot [47] also extend the maximin share

problem to the case that the goods collectively received by the agents satisfy a
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matroidal constraint. They prove that for this case, a 1/2-MMS allocation is

always possible.

It is worth mentioning that other than maximin share, there are other fair-535

ness criteria that attracted considerable attention, especially in recent years:

envy-free up to one good (EF1) and envy-free up to any good (EFX). In these

settings, we seek to find allocations with limited (but not necessarily zero) envy

between the agents [54, 55, 14]. Also, recent studies have established a con-

nection between Nash Social Welfare (NSW) and these fairness criteria [55, 14].540

NSW is defined as the geometric mean of the agents’ utilities. Maximizing NSW

has been the subject of many recent studies [55, 56, 57, 58].

Subsequent Work

To the best of our knowledge, all the results in this paper are currently the

best approximation guarantees for MMS beyond the additive setting. For a545

special case of XOS setting where the valuations form hereditary (or downward

closed) set system, Li and Vetta improved the approximation factor to 11/30.

For additive setting, the recently best approximation guarantee is the work of

Garg and Taki [18] that prove the approximation guarantee of 3/4 + o(1) for

the additive setting.550
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[38] G. Christodoulou, A. Kovács, M. Schapira, Bayesian combinatorial auc-

tions, in: International Colloquium on Automata, Languages, and Pro-

gramming, Springer, 2008, pp. 820–832.

[39] K. Bhawalkar, T. Roughgarden, Welfare guarantees for combinatorial auc-655

tions with item bidding, in: Proceedings of the twenty-second annual ACM-

SIAM symposium on Discrete Algorithms, Society for Industrial and Ap-

plied Mathematics, 2011, pp. 700–709.

[40] L. Blumrosen, S. Dobzinski, Welfare maximization in congestion games, in:

Proceedings of the 7th ACM conference on Electronic commerce, ACM,660

2006, pp. 52–61.

[41] V. Syrgkanis, Bayesian games and the smoothness framework, arXiv

preprint arXiv:1203.5155.

[42] M. Feldman, H. Fu, N. Gravin, B. Lucier, Simultaneous auctions are (al-

most) efficient, in: Proceedings of the forty-fifth annual ACM symposium665

on Theory of computing, 2013, pp. 201–210.

39



[43] H. Fu, R. Kleinberg, R. Lavi, Conditional equilibrium outcomes via ascend-

ing price processes with applications to combinatorial auctions with item

bidding., in: ACM EC, 2012.

[44] I. Milchtaich, Congestion games with player-specific payoff functions,670

Games and economic behavior 13 (1) (1996) 111–124.

[45] L. Epstein, A. Levin, An efficient polynomial time approximation scheme

for load balancing on uniformly related machines, Mathematical Program-

ming 147 (1-2) (2014) 1–23.

[46] T. Heinen, N.-T. Nguyen, T. T. Nguyen, J. Rothe, Approximation and675

complexity of the optimization and existence problems for maximin share,

proportional share, and minimax share allocation of indivisible goods, Au-

tonomous Agents and Multi-Agent Systems 32 (6) (2018) 741–778.

[47] L. Gourvès, J. Monnot, Approximate maximin share allocations in ma-

troids, in: International Conference on Algorithms and Complexity,680

Springer, 2017, pp. 310–321.

[48] D. Kurokawa, A. D. Procaccia, J. Wang, Fair enough: Guaranteeing ap-

proximate maximin shares, Journal of the ACM (JACM) 65 (2) (2018)

8.

[49] A. Farhadi, M. Hajiaghayi, M. Ghodsi, S. Lahaie, D. Pennock, M. Sed-685

dighin, S. Seddighin, H. Yami, Fair allocation of indivisible goods to asym-

metric agents, in: Proceedings of the 16th Conference on Autonomous

Agents and MultiAgent Systems, International Foundation for Autonomous

Agents and Multiagent Systems, 2017, pp. 1535–1537.

[50] H. Aziz, G. Rauchecker, G. Schryen, T. Walsh, Algorithms for max-min690

share fair allocation of indivisible chores, in: Proceedings of the AAAI

Conference on Artificial Intelligence, Vol. 31, 2017.

[51] G. Amanatidis, G. Birmpas, G. Christodoulou, E. Markakis, Truthful allo-

cation mechanisms without payments: Characterization and implications

40



on fairness, in: Proceedings of the 2017 ACM Conference on Economics695

and Computation, ACM, 2017, pp. 545–562.

[52] G. Amanatidis, G. Birmpas, E. Markakis, On truthful mechanisms for max-

imin share allocations, in: Proceedings of the Twenty-Fifth International

Joint Conference on Artificial Intelligence, AAAI Press, 2016, pp. 31–37.
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