
GPU-Based Parallel Algorithm for Computing Point Visibility Inside Simple Polygons

Ehsan Shojaa,∗, Mohammad Ghodsia,b,∗∗

aDepartment of Computer Engineering, Sharif University of Technology, Tehran, Iran
bInstitute for Research in Fundamental Sciences (IPM), Tehran, Iran

Abstract

Given a simple polygon P in the plane, we present a parallel algorithm for computing the visibility polygon of an observer point
q inside P. We use chain visibility concept and a bottom-up merge method for constructing the visibility polygon of point q. The
algorithm is simple and mainly designed for GPU architectures, where it runs in O(log n) time using O(n) processors. This is the
first work on designing a GPU-based parallel algorithm for the visibility problem. To the best of our knowledge, the presented
algorithm is also the first suboptimal parallel algorithm for the visibility problem, that can be implemented on existing parallel
architectures. We evaluated a sample implementation of the algorithm on several large polygons. The Experiments indicate that
our algorithm can compute the visibility of a polygon having over 4M points in tenth of a second on an NVIDIA GTX 780 Ti GPU.

Keywords: Visibility Polygon, Visibility Chain, Parallel Processing, GPU Processing, CUDA

1. Introduction

Finding visibility region of an observer is one of the old and
well-known problems in computational geometry and computer
science [1, 2]. The visibility problem has many subproblems
according to the type of the polygon, observer, and observation.
In this paper, we will mainly focus on the visibility of a point
inside simple polygons. Although there are practical optimal
solutions for this problem that have linear bounds on a single
processor [3, 4, 5], unfortunately there are just a few parallel al-
gorithms for this problem [6, 7, 8] which are either impractical
or not good enough for new architectures.

From beginning of the 21st century, due to energy-consumption
and heat-dissipation issues, the increase of clock frequency was
no longer a good option. At 2003, parallel architectures made
their ways into our personal computers, as multicore CPUs and
manycore GPUs. Since then, the race of floating point perfor-
mance has been led by manycore GPUs, and year by year the
performance gap between these two architectures has been in-
creased in the favor of manycore GPUs. This large performance
gap has motivated developers to move the computationally in-
tensive part of their program to GPUs for execution, and thus
exploit the parallel computing capabilities of them. Until 2006,
using graphic chips for parallel computing was very difficult
and required special techniques called general purpose comput-
ing on graphics processing units (GPGPU). With the advent of
CUDA in 2007 by NVIDIA [9] GPU programming becomes
more popular.

Today, many programs in different fields, including com-
putational chemistry, molecular dynamics, computational fluid

∗Corresponding author
∗∗Principal corresponding author

Email addresses: shoja@ce.sharif.edu (Ehsan Shoja),
ghodsi@sharif.edu (Mohammad Ghodsi)

dynamics, computational finance, etc. have been implemented
on GPU. The field of computational geometry, is not an ex-
ception. Several parallel algorithms have been proposed for
computing convex hull [10, 11, 12], Voronoi diagram [13, 14,
15], and Delaunay triangulation [16, 17] of a set of points on
GPU. In this paper, we are going to address another important
problem in this field: The visibility problem. This problem is
also used in many other fields of computer science, including
robotics, computer vision and graphics.

The present work is mainly inspired by the one in [6], where
Atallah et al. give an elegant parallel algorithm for the point
visibility problem on the EREW-PRAM computational model.
Although the algorithm presented by Atallah et al. [6] is a the-
oretically optimal solution on PRAM models, it is not suitable
for real parallel systems. The reason is that, the algorithm itself
is very complicated and also makes use of some other involved
algorithms such as parallel merge sort [18] and linear visibil-
ity [3, 4, 5]. Therefore, in order to be able to apply a similar
algorithm on real parallel architectures especially on restricted
ones like GPUs, we have to make some core modifications to
the algorithm.

The rest of the paper is organized as follows. We first give
the notations, preliminaries and also our core visibility defini-
tion in section 2. An overview of the approach, is sketched in
section 3. Section 4 gives some insights to the chain visibility
concept and the related possible cases that could occur during
the algorithm. Section 5 proposes the algorithm itself, gives
further solutions for the special cases left behind and analyses
the complexity of the resulted algorithm. In section 6, the ex-
perimental results are presented and discussed, and finally in
section 7, conclusions and future work are presented.

Preprint submitted to Computers & Graphics February 28, 2015

qq

s

w

r

tu

v

x

θ(r) θ(x)

y

k

(a)

q

s

w

r

tu

v

x

θ(u)
θ(x)

y

k l

j

(b)

Figure 1: Visibility Chain Vis(C) from point q, (a) The new definition used in this paper, and (b) The definition from [6] by Atallah et al.

2. Preliminaries

Let P = (v0, v1, ..., vn) denote a simple polygon in the plane,
where v0, v1, ..., vn are a consecutive list of vertices in counter-
clockwise order (otherwise we can easily convert it to a coun-
terclockwise order list), and v0 = vn. Each vertex has two fields
representing the x and y coordinates of it in the plane. The edge
connecting vi to vi+1, will be denoted by ei or vivi+1. For any
two points u and w in the plane, we will show the line segment
connecting these two points with uw or wu. A polygonal chain
C, is a connected series of edges or line segments. Each chain
C, has a length denoted by |C| that is the number of edges it con-
tains. Our definitions and assumptions are mainly based on the
one’s defined at the work of Atallah et al. [6]. However, in con-
trast to the Algorithm of Atallah et al. that only works on open
chains our algorithm only works on closed chains (polygons).

Definition 1. Visibility Chain We define the visibility chain of
C from q, as the portion of the chain C that is visible from point
q, with respect to the existing counterclockwise edges to block
its visibility. In other words we assume that only counterclock-
wise edges of the polygon are opaque objects. We denote the
visibility chain of C by Vis(C).

This definition is different from the definition given in [6].
Figure 1 shows the difference between these two definitions.
The purpose of this definition is to simplify the visibility chain
concept required to be handled at each merge operation. In-
deed, using this definition, has two major advantages: First, the
resulted visibility portion at each stage would respect the exist-
ing order of the corresponding chain in polygon (compare fig-
ures 1a and 1b). Second, the merging chains would only block
each other at their merging point (except for the case that the
chains have two common intervals like the one represented in
figure 12). As a result of the first advantage, we can handle
merge operations more easily because visibility chains can be
expressed by an ordered range from a starting visible point to an
ending visible point, and if one chain blocks a portion of other
chain, that portion would be ordered too (e.g. we can say all
vertices and edges having greater or lower index than an iden-
tified boundary index is not visible anymore). Because of the
second advantage, we do not need to consider the other ends of
each chain when merging (even for the special case mentioned).

Assuming that, clockwise edges are not visible, would also
have the same effect but, considering them as not opaque has
other advantages too. It will reduce the number of possible
cases that may occur during merge operations (These cases will

be discussed in section 4). In definition 1, we consider clock-
wise edges from the beginning as invisible and transparent edges,
this is because of the monotonicity of the visibility polygon.

The Visibility chain Vis(C) is a monotone chain with re-
spect to point q, that is, any rays emitting from q, would inter-
sect Vis(C) in at most one point or would be tangent to a line
segment on it. An edge of Vis(C) that is not contained in an
edge of C is called an extra segment of Vis(C) or window of
point q. Every window of point q are collinear with it. The
closest point of the window to point q, is called the base of
the window and is a vertex of the polygon. The other vertex
is called the end of the window and necessarily is not a vertex
of the polygon. Every window will be denoted by w(base, end).
Each window separates the polygon into two regions, the visible
and invisible regions with respect to that window. The invisible
region of the window is called a pocket and will be shown by
pocket(base, end). A window is called a left (right) window if
the corresponding pocket lies to the left (right) of it. We would
call the base vertex of a window the blocking vertex of the ver-
tices and edges inside its pocket.

3. An Overview of the Approach

We assign each edge of the polygon to a thread, so each
thread at first has a chain of length one. Each thread can tell
whether its edge is visible or not, according to the direction of
its edge with respect to point q. After this, at each stage threads
would double the length of their chain (but still working on the
same edge as before) by merging and cooperating with other
threads. This would continue until we compute the visibility of
the whole polygon.

As mentioned, each thread has been given an edge with its
two endpoints. So, thread with index i holds the edge ei (vivi+1).
In order to represent all edges of the polygon we would need
n threads, from index 0 to n − 1. The chain index, for each
thread can be evaluated by (thread index)/|C|. At each stage of
the algorithm, we merge two consecutive chains (the chain with
the even index and the odd chain next to it). While merging two
consecutive chains, each thread related to these chains would
update the visibility state of their edges and vertices.

The length of chains, double at each stage, so we need
dlog ne stages to compute Vis(P). Another stage is also needed
to merge the last chain with itself at vertex v0. (This is not nec-
essary if v0 is both visible and convex.)

2

C ′′ C ′

q

(a)

q

C ′

C ′′

(b)

Figure 2: Visibility chains according to the new definition that also have two intersections

4. Visibility Chains and Their Intersections

In the previous section, we gave an overall description of
merging chains and computing their visibilities. In this section
and the next one, we will study the merging operation in more
details.

According to the assumption, polygon P is simple and thus
sub-chains of P do not cross each other. But this is not neces-
sarily true for visibility chains. The fact that, visibility chains
could cross each other, makes the merging operation even harder.
Therefore, it is necessary to consider the number of possible in-
tersections and the way they happen between the two merging
chains.

Atallah et al.’s Lemma 4.1. If C′ and C′′ are two subchains
of C that are disjoint except that they may share one endpoint,
then there are at most two intersections between Vis(C′) and
Vis(C′′). Furthermore, if Vis(C′) and Vis(C′′) have two inter-
sections and I(C′) ∩ I(C′′) consists of two disjoint intervals,
then there is exactly one intersection in each such interval. If
Vis(C′) and Vis(C′′) have two intersections and I(C′) ∩ I(C′′)
consist of one interval, then one of I(C′) or I(C′′) contains the
other.

Proof. Although, definition 1 for visibility chain is different
from the one given by Atallah et al. [6], but the windows oc-
curring in the new definition are just a subset of all windows
occurring in the original definition. This is due the fact that,
only the windows made by clockwise edges, are not considered
in the new definition. Hence, the proof of this lemma is given
at [6]. Figure 2 shows that, the visibility chains of the same
two cases at [6] also have two intersections in the new defini-
tion.

Theorem 4.2. Assume C1 and C2 are two consecutive sub-
chains of chain C that, except a common endpoint they share
(vx), are disjoint. The visibility chains Vis(C1) and Vis(C2) can
have at most one visible intersection per each common interval.

Proof. According to lemma 4.1, if we have two subchains of
a simple chain that at most share a common endpoint, then the
visibility chain of these two subchains could not have more than

C2 C1

q

s t
z1 z2

vx

Figure 3: The case where Vis(C1) and Vis(C2) have two intersections in a
common interval

two intersections. Now if the visibility chains cross each other
only at one point, then the theorem holds.

For the case where subchains have two intersections, ac-
cording to lemma 4.1 one of the situations depicted in figure 2a
or figure 2b could occur. In figure 2b, Vis(C′) and Vis(C′′) have
only one intersection per each common interval. Therefore, fig-
ure 2a, is the only case where Vis(C′) and Vis(C′′) have two
intersections inside a common interval. So, in order to prove
the correctness of the theorem it is sufficient to show that cases
like figure 2a would never occur.

We assume that Vis(C1) and Vis(C2) have two intersections
like the way shown in figure 3. (Vis(C2) crosses two extra seg-
ments of Vis(C1) at points z1 and z2.) We know that C1 and C2
are connected at vertex vx. Hence, we should connect this ver-
tex to one of the vertices s or t using a chain of line segments.

It is much easier to prove this theorem according to chain
visibility definition of Atallah et al. Figure 4 shows the cases
where the common vertex vx is connected to vertex s or vertex
t. In figure 4a, vx is connected to s, so the subchain of C2 from s
to t is no longer visible. Hence, Vis(C1) and Vis(C2) cross each
other just at point z′. In figure 4b, vx is connected to t, but this
makes an outer window w(e, f) which blocks the subchain of
C2 from f to t. So again, Vis(C1) and Vis(C2) cross each other
only at one point (this time at z1).

In the same way, we can prove the theorem considering the
new definition for visibility chains. Figure 5 shows the cases
where the common vertex vx is connected to either vertex s or
vertex t.

3

C2 C1

q

z1 z2
s t

vx

z′

(a)

C2 C1

q

s t

f
z1 z2

vx

e

(b)

Figure 4: Considering the definition of Atallah et al. for visibility chains, two consecutive visibility chains could not have more than one intersection in a common
interval

C2 C1

q

z1 z2
s t

vx

(a)

C2 C1

q

s t

vx

e

z2

z1
r

(b)

Figure 5: Considering definition 1 for visibility chains, two consecutive visibility chains could not have more than one visible intersection in a common interval

In figure 5a, vx is connected to s. In this case, the subchain
from vx to s is transparent (because it is clockwise) and the sub-
chain from s to t is visible. Therefore, visibility chains Vis(C1)
and Vis(C2) cross each other at points z1 and z2, but none of
these points are visible from q. So, we can easily ignore them.
In figure 5b, vx is connected to t. In this case, the subchains
from e to t and from s to r are visible. Therefore, visibility
chains Vis(C1) and Vis(C2) cross each other at points z1 and z2
as shown in the figure. But, from these two intersection points,
only z2 is visible to q. Thus, the theorem holds.

Let I(C1) and I(C2) be the angular interval of chains C1 and
C2. Clearly, I(C1)∩ I(C2) consists of no more than two disjoint
intervals. Moreover, due to chain’s connectivity, the endpoints
of intervals are the endpoints of chains. So, C1 and C2 and
therefore Vis(C1) and Vis(C2) would have at most two com-
mon intervals, and these two intervals occur at the endpoints of
chains.

Two chains could block or cross each other at their common
interval(s). Thus, in order to find out whether two chains block
each other or not, it is sufficient to check the visibility state of
their endpoints. This is much easier for two consecutive chains
with a common endpoint. From now on, we assume that the
chains C1 and C2 could only block each other at their merging
interval. This seems to be sufficient because the other endpoints
will finally meet each other. But unfortunately this is not true
for the case where two chains intersect at different intervals (e.g.
figure 2b). We will consider this case separately in section 5.1.

As stated earlier, two consecutive chains C1 and C2 would
block each other only if they have a common angular interval
other than θ(vx). If two chains, have an empty common interval
(just the angle θ(vx)), then necessarily θ(vx) is one of the two
endpoints of I(C1) and I(C2). Figure 6 illustrates two possi-
ble cases, where I(C1) and I(C2) have empty common interval.
For the case displayed in figure 6a, vertex vx is visible before
merging and would remain visible afterwards, and for the case

vx
C1 C2

q

(a)

vx
C2 C1

q

(b)

Figure 6: Two possible cases, for consecutive chains C1 and C2 with an empty common interval

4

vx

C2

q

C1

(a)

vx

C2

C1

q

(b)

vx

q

C1

C2

(c)

vx

q

C1

C2

(d)

vx

C1

q

C2

(e)

vx

C1

C2

q

(f)

vx

q

C1

C2

(g)

vx

q

C2

C1

(h)

Figure 7: Illustrating case 1 and its subcases

vx

C1 C2

q

α

bvx
vz

(a)

vx
C2

C1

q

bvx

(b)

C2
C1

q

vx

bvx

(c)

C2

C1

vx

bvx

q

vz

(d)

Figure 8: Illustrating case 2 and its subcases

displayed in figure 6b, vertex vx is not visible before merging
(because it is on a clockwise edge) and would remain the same
afterwards. Therefore, this case does not have any effects on
the visibility state of the merging chains. As a result, we can as-
sume that the chains are merged, and just do double the length
of chains.

If the common interval of C1 and C2 was not empty, then
one of the cases below has definitely occurred.

Case 1. Vertex vx is not covered in any of the chains C1 and C2,
but both chains partially or completely locate on the same side
of line qvx and thus share a common interval. Figure 7 shows
different subcases of this case.

Case 1.1. Chain C1 is counterclockwise and over chain C2
near merging vertex vx. Figures 7a and 7b represent this
subcase. In figure 7a, chain C1 blocks chain C2 partially,
and in figure 7b, chain C1 blocks chain C2 completely.

Case 1.2. This case is symmetric to case 1.1 with the roles
of C1 and C2 being interchanged. Figures 7c and 7d repre-
sent this subcase.

Case 1.3. Chain C2 is clockwise and over chain C1 near
merging vertex vx. In this case, C2 does not block C1. Fig-
ures 7e and 7f represent this subcase.

Case 1.4. This case is symmetric to case 1.3 with the roles
of C1 and C2 being interchanged. Figures 7g and 7h repre-
sent this subcase.

Case 2. Vertex vx is blocked by a subchain in C1 or C2, and the
chains Vis(C1) and Vis(C2) do not intersect. Figure 8 illustrates

the cases where vx is blocked by chain C1. The cases where vx

is blocked by C2 is symmetric.

Case 2.1. Blocker of vx (vertex bvx), is not covered by a
clockwise subchain (figures 8a and 8b). As described ear-
lier, bvx the blocker of vertex vx, is the base vertex of the
outermost window containing vx. In figure 8a, bvx blocks
the pocket according to window w(bvx , vz), and in figure 8b,
bvx blocks the chain C2 completely.

Case 2.2. Blocker of vx (vertex bvx), is covered by a clock-
wise subchain (figures 8c and 8d). In figure 8c, bvx blocks
the whole of C2, and in figure 8d, bvx just blocks the pocket
according to window w(bvx , vz). Note that the figure 8c is
the same as figure 8b, and the figure 8d is the same as figure
8a. From now on, we will only consider the cases that are
unique.

Case 3. In both chains C1 and C2, vx is blocked, besides Vis(C1)
and Vis(C2) do not intersect (figure 9). Figure 9 illustrates the
cases where C1 blocks C2. The cases where C2 blocks C1 is
symmetric. The blocker of vx in chain C1 is represented by b′vx

and in chain C2 is represented by b′′vx
.

Case 3.1. One of the blockers b′vx
or b′′vx

, is blocked by the
other chain (b′vx

by C2 and b′′vx
by C1). In this case, one of the

blockers is a true and the other is a false blocker. Figures 9a
and 9b represent the cases where b′′vx

is a false blocker. The
cases where b′vx is a false blocker is symmetric. Knowing
the coordinates of the true blocker we could easily compute
the coordinates of vertex vz and the respective window.

5

vx

C1 C2

q

α

b′vx
vzb′′vx

(a)

vx

C2

C1

q

b′vxb′′vx

(b)

vx

C2 C1

q

b′vxb′′vx

(c)

Figure 9: Illustrating case 3 and its subcases

vx

C1 C2

q

bvx

w

w′

vi
eu

ed

(a)

C1 C2

q

vx

w

w′

vi
eu

ed

(b)

Figure 10: Illustrating case 4

Case 3.2. None of the blockers b′vx
and b′′vx

, is blocked by
the chain. Figure 9c represents the only possible case. No-
tice that this case is just like the case of figure 9b, with the
difference that b′′vx

is not blocked anymore. Unfortunately,
in this case we could not recognize the true blocker. In sec-
tion 5.1 we will give more detail about this situation and
how to handle it.

Case 4. Vertex vx is blocked in one of the chains C1 or C2, and
the visibility chains Vis(C1) and Vis(C2) have an intersection.
Intersection occurs when bvx (or vx when it is not blocked) of
one chain crosses a window of another chain. This could not oc-
cur in cases where vx is not blocked and also it is not a blocking
vertex (1.3, 1.4). Note that a vertex could not cross a window
without blocking a subchain of it. It also could not occur in the
cases where bvx or vx, blocks the other chain completely (the
cases represented by figures 7b, 7d, 8b, 8c). Besides, when a
chain is completely blocked, no visible chain would be left to
cross. Thus, the only cases which could intersect are the ones
represented in figure 10.
Case 5. Vertex vx is blocked in both of the chains C1 and C2,
in addition the visibility chains Vis(C1) and Vis(C2) have an
intersection. As stated in case 4, an intersection could not occur
in a case where b′vx

or b′′vx
, blocks the other chain completely.

Thus, the cases illustrated as figures 9b and 9c could not cross
each other. Figure 11 represents the case where b′vx

crosses a
window of chain Vis(C2). The case where b′′vx

crosses a window
of Vis(C1) is similar.

5. The Proposed Algorithm

In the previous section we considered all the possible cases
where two merging chains could block each other. Now, in

vx

C1

C2

q

b′vx
vi

b′′vx

w

w′

eu

ed

Figure 11: Illustrating case 5

this section we will discuss the main algorithm and its stages.
Mainly, our algorithm consists of dlog ne merging stages. Each
stage itself consists of four steps. These steps are required for
threads to collaboratively compute the merged visibility chain.
The communication between threads are handled using the con-
secutive writes to and reads of the same global memory address.
The steps, are designed in a way to make sure the required com-
munication between threads is correctly handled.

A Brief description of each step is as follows: In step one,
we will check the existence of an intersection or a false blocker.
In step two, we will find the base vertex of the window that is
intersected (if there is an intersection at all). In step three, we
will find the end vertex of the window (if intersected or blocked)
and we will denote it as boundary vertex. Finally, in step four,
according to the index of boundary vertex, we will decide about
the visibility state of each vertex and edge in the chain. In other
words, the first two steps of the algorithm are devoted to iden-
tifying the real blocker of the chain. And the second two is
devoted to computing the window (if existed) and the blocked

6

subchain.
Now, we will describe each step in more detail. Note that

at each stage, we denote the tail thread of even chain (the chain
with even index), and the head thread of odd chain as the can-
didate thread of the corresponding chains.

Step 1. Each thread of the current chain, identifies the blocker
of vx in the other chain (if there exist such blocker). This could
be done by checking the blocker of the head or the tail vertex
of that chain, depending whether its chain index is odd or even.
If vx is not blocked, we consider vx itself as the blocker. Hav-
ing the coordinates of the blocker (bvx), we check whether it is
a false blocker or not. According to definition, bvx is a false
blocker if it is covered by a counterclockwise edge. Thus, each
thread, checks whether its edge covers bvx or not. If such a thing
happens, the corresponding thread would set a flag of candidate
thread which indicates the occurrence of false blocker situation.
Likewise, in order to check whether bvx crosses a window, we
check the existence of two edges in a pocket that falls below
and over bvx . In order to do this in parallel, each thread checks
whether its blocked edge intersect the line qbvx . If such a case
happens, every counterclockwise edge below bvx set one of the
intersection detection flags of its blocker, and every clockwise
edge that covers bvx , also set the other intersection detection flag
of its blocker. These two edges are represented as eu and ed in
figures 10 and 11. Except a special case that will be discussed
in section 5.1, the blocker of these two edges (w in figures 10
and 11), is the base vertex of the window that has been crossed.

Step 2. Assume there is an intersection between two visibility
chains. Let w denote the base vertex of the window that has
been crossed. We know that both intersection detection flags of
w should have been set at step 1. Thus, at this step, each vertex
checks its both intersection detection flags. If both flags of a
vertex have been set, then that vertex is either the base vertex
of the intersected window (like the case in figures 10 and figure
11) or it is the blocker of the current chain (like the case in figure
9a with two blockers). If w is not the same vertex that blocks vx

in current chain, then definitely we have an intersection and w
is the base of the intersected window. Now we have to set w as
the new blocker, and we have to inform other threads too. We
do this by setting the intersection flag of the candidate thread.
On the other hand, if w is the current chain’s blocker, then it has
the other chain’s blocker in its pocket. Hence, in this case, we
should invalidate the blocker (bvx) of the other chain.

Step 3. At this step, threads in each chain could be in one of
these three cases:

Case 1. If the intersection flag of the current chain (whether
it is odd or even) has been set, then for odd (even) chains,
the vertices and edges before (after) w should be set as
blocked. (Note that w is now accessible as bvx .) For this, if
the current chain is even, then each thread in it compares its
index to that of vertex w, and if its index was greater, then it
resets the visibility flag of its vertex and edge to zero. Other-
wise, if the current chain is odd, each thread with smaller in-
dex compared to w’s, would reset its visibility flags to zero.

Case 2. If the intersection flag of other chain has been

set, then we have to locate the point vz, which is the in-
tersection point and also the boundary vertex of visible and
blocked regions. To do this, each visible edge ei checks to
see whether it has an intersection with the line qw or not.
Notice that there is only one such edge (actually if we have
|bvz| < |qvz|). After computing the intersection point vz and
updating the visibility state of its edge and vertices, the in-
tersected thread stores its index at the candidate thread to
inform others.

Case 3. If the intersection flag has not been set for both
chains (if the chains intersect), then we have to check if the
chains block each other. Like the way we described in step
1, we find the blocker of other chain (bvx for cases 2 and 3
and vx for blocking subcases of case 1). Now, in the same
way as the previous case, we find vz and store its index at
candidate thread’s address.

Step 4. In this step, we finally decide the visibility state of
the chains that were not determined yet (cases 2 and 3 of step
3). Threads with larger index than index(vz) (index of bound-
ary vertex) in even chains, and threads with smaller index than
index(vz) in odd chains, update the visibility state of their edges
and vertices to not visible. They also set bvx (vx in some cases)
as their blocker.

5.1. Dealing with Special Cases

In this subsection, we consider some of the cases and situa-
tions ignored in the previous sections for simplicity. Below we
describe each case and provide algorithmic solutions for each
of them.

• The case where we have two common intervals, each
with an intersection (figure 12): During considering
possible cases and also during the description of the algo-
rithm, we ignored this case. And we assumed that it does
not happen. Here in this section we will consider this
case thoroughly, and we will give possible solutions to
handle this case. The first solution is to consider two in-
tersections during the algorithm one occurring when bvx

is inside a pocket and the other when bve is inside a pocket
(ve is the first vertex of even chain or the last vertex of
the odd chain). This solution is not good enough and will
double the work of the algorithm and it also may cause
some unconsidered situations. The other simple solution
is to make sure that either this case would not happen or
it would not affect the final visibility polygon.

Notice that this condition could only happen when bvx

and bve are inside a pocket. Thus, neither the blockers
(bvx and bve) and nor their corresponding vertices (vx and
ve) are visible. To handle this case, we choose to make
sure that this case does not happen unless it does not af-
fect Vis(P). We do this by choosing a visible point over
polygon as the point v0. (This requires rotating the poly-
gon to make this point as the new v0.) Let Lq be a half-
line from q to its right that crosses the polygon at points
(c0, c1, . . . , ck). We compute the new v0 by doing a mini-
mum reduction on x-coordinates of cis. After doing this,

7

q

C2

C1

vx

bvx

ve

bve

Figure 12: The case with two common intervals

the special case mentioned, could never happen for the
last two chains (because v0 the starting point of the first
chain will be visible). In other words, after finding a vis-
ible v0, ignoring this case would never cause a problem.

• The case where we have two true blockers (figure 9c):
Unfortunately in this case we could not precisely find
out which one of the blockers is true and which one is
false. In order to handle this we assume that we have
two kinds of blockers: temporary and permanent block-
ers. Permanent blockers are the base vertex of the win-
dows whose their end vertex has been found (when bvx

blocks the other chain partially). Temporary blockers are
those which their window has not been find or in other
words those who blocks the chain completely. We have
two kinds of temporary blockers the left and right tem-
porary blockers. A temporary blocker is considered left
blocker if it blocks the odd chain completely. In the same
way, a temporary blocker is considered right blocker if it
blocks the even chain completely. Thus, a vertex could
have both left and right blockers (like vertex vx in figure
9c). This goes on until finally we could recognize which
one is the true blocker and which one is the false blocker.
Figure 13 shows the cases where b′vx

becomes the true
blocker. (The cases where b′′vx

becomes the true blocker
is similar.)

vx

C2

C1

q

b′vxb′′vx

(a)

vx

C2 C1

q

b′vx
b′′vx

(b)

Figure 13: Illustrating the situation where we can finally detect the true blocker
(here b′vx)

Unfortunately, we are not done yet. Consider a case where
we have two true blockers like before (now we can call
them temporary blockers), but this time one or both of
the ending vertices (ve) are also temporarily blocked in
their own chains (see figure 14 where ve is temporarily
blocked by b′ve

).

Now, merging the chains would result in two temporary

vx
C2 C1

q

b′vxb′′vx ve

b′ve

Figure 14: The case where we have two temporary blockers for vertex ve

blockers for vertex ve. Normally we replace the old tem-
porary blocker with the new one, but in this case we do
not for sure know whether the new temporary blocker (b′′vx

for figure 14) is a true blocker or not. For example in fig-
ure 14, if we set b′′vx

as the temporary blocker of vertex ve,
we may not be able to find the window resulted by ver-
tex b′ve

. On the other hand, if we set b′ve
as the temporary

blocker of ve, we would find the window, but we will lose
the information about vertex b′′vx

which might be impor-
tant. In order to solve this problem, we will use two tem-
porary blockers for each chain (it is easy to show that this
is sufficient). So, in case of figure 14, we will have both
b′′vx

and b′ve
as temporary blockers. (b′′vx

blocks the sub-
chain starting right after b′′vx

and ending at the vertex b′ve
,

similarly b′ve
blocks the subchain starting right after b′ve

and ending at the vertex ve). Now we are able to find the
window and also remember the old temporary blocker.
Although adding another temporary blocker would make
the implementation a little bit more intricate, but it would
solve this special case completely.

• The case where we could not detect the intersection
point correctly: In section 4 when considering possible
cases, we assumed that w = bed = beu in cases 4 and
5 (see figures 10 and 11). Unfortunately, this does not
hold for the case when both chains have a sawtooth-like
shape given at figure 15a. According to the algorithm, we
would consider this situation as case 5. Thus, b′′vx

will be
chosen as the true blocker, but there would be no visible
edge to be intersected by qb′′vx

and also covered by b′′vx
.

Figure 15b shows the subchain that will be computed as
the visibility chain. Because of these wrongly computed
chains we may later have two intersections for a window.
However, we could have at most two intersections and
both in the same direction, so we can easily handle this
with choosing the one with minimum distance. (We have
used a modification of atomicMin to do this, but it can
be done without it too.) Thus, we can say these wrongly
computed visibility chains do not affect other chains and
their visibility state. Therefore, we ignore this case dur-
ing merging stages, and we left them to be handled at a
refinement phase at the end of the algorithm. To be more
specific, after doing a compaction of visible vertices, we
have to do a refinement on them and remove those that
are not visible.

After doing the first compaction, we check whether this

8

vx

q
b′′vx

b′vx

vz

v′z

C1

C2

(a)

vx

q
v′z

C1

C2

ew

(b)

Figure 15: The case where we could not detect the intersection point correctly

case has happened or not. Notice that, edge e in figure
15b is a clockwise edge. Thus, in order to find out if this
case has occurred or not it is sufficient for each edge to
check the direction of its edge according to point q. If we
have such an edge, then we have to refine the polygon.
To do so we do another compaction over window edges
plus clockwise edges. This is so that we could reduce
the number of active threads. Now again we assign each
edge to a thread.

As shown in figure 15b, the window relating to vertex w
is the only window that crosses a counterclockwise edge.
Thus, the thread of vertex w could find the real end vertex
vz, by searching through a monotone chain from e to w.
Actually, this requires that each window knows its prede-
cessor and successor clockwise edges (which can be done
easily by broadcasting each e to all the windows on its
both sides until reaching another clockwise edge). After
finding vz, we could either compact the polygon again or
just use a jumping parameter to jump from w to vz when
outputting the polygon.

5.2. Algorithm Complexity
The presented algorithm mainly consists of five phases. This

indicates that analyzing the complexity of each phase is a pre-
requisite for computing the complexity of whole algorithm.

1. Finding v0: As stated earlier, we can find a visible v0 by
doing a minimum reduction on the x-coordinates of cis
(intersection points between the boundary of polygon and
half-line Lq). Parallel reduction can be done in O(log n)
time using O(n/ log n) processors on GPUs [19].

2. Rotation: Having the index of v0, each thread could com-
pute its new index in O(1) time. Thus, the work of this
phase is also O(n).

3. Visibility Computation: As described, this phase of the
algorithm consists of O(log n) iterations, where each it-
eration itself consists of four constant time steps. This
phase is executed by O(n) threads and thus the work done
during its execution is of order of O(n log n).

4. Compaction: Same as phase 1, we could compact the vis-
ible vertices of the polygon in O(log n) time with O(n/logn)
processors using available algorithms for compaction on
GPU [20, 21, 22].

5. Refinement: The refinement phase consists of another
compaction, which can be united with previous phase’s

compaction. Let nw and nc respectively indicate the num-
ber of window edges and clockwise edges of the latest
visibility chain computed. Using O(nw) processors (note
that nc = O(nw)), the rest of the phase, including the
broadcasting and searching steps, would take O(log n)
time.

Let us assume p is the number of cores in the device. The
complexity of the algorithm follows from phase 3 (visibility
computation phase) which with O(n log n) computational work
dominates all other phases. Thus, the overall complexity of the
whole algorithm is O((n/p) log n).

6. Experimental Results

For the sake of evaluation, we implemented the algorithm
using the CUDA programming model on two different NVIDIA
devices with technical specifications given in tables 1 and 2. In
order to check and prove the correctness of the algorithm, we
have executed the algorithm on 5000 instances distributed over
a hundred random polygon with the size of 16384 (50 query
points for each polygon), generated by the RPG package1 [23].
On the other hand, to evaluate the performance of the algorithm,
we also generated and used some random polygons with differ-
ent sizes of power two. More precisely for each size class, we
have taken the average of at least 10 executions on 10 different
instances of polygons and points. Better yet, for the sake of
comparison, we implemented the serial algorithm provided by
Joe and Simpson [5]. (We did this because we could not find a
performance-wise implementation of point visibility algorithm
for simple polygons.)

Table 1: Technical Specifications of Geforce GTX 480

Number of CUDA Cores 448
Frequency of CUDA Cores 1401 MHz

Single Precision Floating Point Performance 1345 GFLOPS
Total Dedicated Memory 1536 MB GDDR5

Memory Speed 3696 MT/s
Memory Bandwidth 177.4 GB/sec

Figure 16a compares the running time of our parallel algo-
rithm on NVIDIA GTX 480 with the implemented serial al-
gorithm on the CPU on hand. Note that the running time of

1http://www.cosy.sbg.ac.at/~held/projects/rpg/rpg.html

9

http://www.cosy.sbg.ac.at/~held/projects/rpg/rpg.html

1000

2000

3000

4000

5000

500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000

T
im

e
(m

s)

Polygon Size

Intel 4702MQ

Geforce GTX 480

Execution Time

(a)

50

100

150

200

250

500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000

T
im

e
(m

s)

Polygon Size

Execution Time

intel 4702MQ - Min

Geforce GTX 480

Geforce GTX 780 Ti

(b)

Figure 16: Performance results

Table 2: Technical Specifications of Geforce GTX 780 Ti

Number of CUDA Cores 2880
Frequency of CUDA Cores 876 MHz

Single Precision Floating Point Performance 5046 GFLOPS
Total Dedicated Memory 3072 MB GDDR5

Memory Speed 7000 MT/s
Memory Bandwidth 336 GB/sec

the serial algorithm is closely relevant to the size of output, so
instead of a simple line we have a range corresponding to ex-
ecution time. Finally, to show the scalability and advantage of
the proposed algorithm, we evaluated the performance of the al-
gorithm this time on a better and more recent device (NVIDIA
GTX 780 Ti). Figure 16b compares the running time of our
parallel algorithm with the minimum execution time we have
recorded for CPU (on polygons where almost whole polygon

is blocked by some few edges). Figure 17 also represents the
visibility polygons of some points computed inside a sample
polygon with 2048 vertices.

7. Conclusion and Future Works

We have presented a GPU-based parallel algorithm for com-
puting the visibility of a point inside simple polygons, which
is the first algorithm for computing the visibility problem on
manycore architectures. Similar to the algorithm of Atallah
et al. [6] we used the chain visibility concept and their merg-
ing to compute the visibility polygon. However, these concepts
have been used in a different way and with different definitions.
The proposed algorithm has p

log n speedup over corresponding
sequential algorithms. Although the algorithm is not theoreti-
cally optimal, yet unlike the previous works, it is quite simple
and fitting for implementation purposes especially on manycore

Figure 17: Visibility polygons of some sample points inside a polygon with 2048 vertices

10

architectures with lightweight threads.
For more coarse-grained architectures (like multicore sys-

tems) we could assign each thread a chain of size O(n/p), in-
stead of an edge. As a result, we could compute the visibility
polygon in O(n/p + log p log n) time using p processors.

We believe the algorithm presented in this section could be
easily extended to other related problems. We are currently in-
vestigating the weak visibility and more generally x-ratio visi-
bility variant of the problem, which we believe could be com-
puted in the same bounds. The other extensions could be con-
sidering the problem on higher dimensions (e.g. assigning each
thread a face instead of an edge) or investigating other related
problems and applications.

References

[1] Asano T, Ghosh SK, Shermer TC. Visibility in the plane. Handbook of
computational geometry 2000;:829–76.

[2] Ghosh SK. Visibility algorithms in the plane. New York, NY, USA:
Cambridge University Press; 2007.

[3] ElGindy H, Avis D. A linear algorithm for computing the visibility poly-
gon from a point. Journal of Algorithms 1981;2(2):186–97.

[4] Lee DT. Visibility of a simple polygon. Computer Vision, Graphics, and
Image Processing 1983;22(2):207–21.

[5] Joe B, Simpson RB. Corrections to Lee’s visibility polygon algorithm.
BIT Numerical Mathematics 1987;27(4):458–73.

[6] Atallah MJ, Wagener H, Chen DZ. An optimal parallel algorithm for the
visibility of a simple polygon from a point. J ACM 1991;38(3):515–32.

[7] Atallah MJ, Chen DZ. Optimal parallel hypercube algorithms for polygon
problems. IEEE Transactions on Computers 1995;44(7):914–22.

[8] Guha S. Optimal mesh algorithms for proximity and visibility problems in
simple polygons*. Parallel Algorithms and Applications 1998;13(2):167–
85.

[9] NVIDIA C. NVIDIA CUDA programming guide (version 1.0). NVIDIA:
Santa Clara, CA 2007;.

[10] Tang M, Zhao J, Tong R, Manocha D. Gpu accelerated convex hull com-
putation. Computers & Graphics 2012;36(5):498–506.

[11] Srungarapu S, Reddy DP, Kothapalli K, Narayanan PJ. Fast two dimen-
sional convex hull on the GPU. 2011.

[12] Stein A, Geva E, El-Sana J. Cudahull: Fast parallel 3D convex hull on the
GPU. Computers & Graphics 2012;36(4):265–71.

[13] Rong G, Tan T. Jump flooding in GPU with applications to Voronoi dia-
gram and distance transform. In: Proceedings of the 2006 symposium on
Interactive 3D graphics and games. I3D ’06; New York, NY, USA: ACM;
2006, p. 109–16.

[14] Fischer I, Gotsman C. Fast approximation of high-order Voronoi dia-
grams and distance transforms on the GPU. Journal of Graphics, GPU,
and Game Tools 2006;11(4):39–60.

[15] Yuan Z, Rong G, Guo X, Wang W. Generalized voronoi diagram compu-
tation on gpu. In: Voronoi Diagrams in Science and Engineering (ISVD),
2011 Eighth International Symposium on. IEEE; 2011, p. 75–82.

[16] Rong G, Tan T, Cao T, Stephanus . Computing two-dimensional Delau-
nay triangulation using graphics hardware. In: Proceedings of the 2008
symposium on Interactive 3D graphics and games. I3D ’08; New York,
NY, USA: ACM; 2008, p. 89–97.

[17] Qi M, Cao T, Tan T. Computing 2D constrained Delaunay triangulation
using the GPU. In: Proceedings of the ACM SIGGRAPH Symposium
on Interactive 3D Graphics and Games. I3D ’12; New York, NY, USA:
ACM; 2012, p. 39–46.

[18] Cole R. Parallel merge sort. SIAM Journal on Computing
1988;17(4):770–85.

[19] Harris M. Optimizing parallel reduction in cuda.
http://docsnvidiacom/cuda/samples/6 Advanced/reduction/doc/reductionpdf
2007;.

[20] Harris M, Sengupta S, Owens JD. Parallel prefix sum (scan) with cuda.
GPU Gems 2007;3(39):851–76.

[21] Sengupta S, Harris M, Garland M. Efficient parallel scan algorithms for
gpus. NVIDIA, Santa Clara, CA, Tech Rep NVR-2008-003 2008;(1):1–
17.

[22] Merrill D, Grimshaw A. Parallel scan for stream architectures. University
of Virginia, Department of Computer Science, Charlottesville, VA, USA,
Technical Report CS2009-14 2009;.

[23] Auer T, Held M. Heuristics for the generation of random polygons. In:
Proceedings of the 8th Canadian Conference on Computational Geome-
try. Carleton University Press. ISBN 0-88629-307-3; 1996, p. 38–43.

11

	Introduction
	Preliminaries
	An Overview of the Approach
	Visibility Chains and Their Intersections
	The Proposed Algorithm
	Dealing with Special Cases
	Algorithm Complexity

	Experimental Results
	Conclusion and Future Works

