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Abstract

We study fair allocation of indivisible goods to agents with unequal entitlements. Fair
allocation has been the subject of many studies in both divisible and indivisible settings. Our
emphasis is on the case where the goods are indivisible and agents have unequal entitlements.
This problem is a generalization of the work by Procaccia and Wang (Procaccia & Wang,
2014) wherein the agents are assumed to be symmetric with respect to their entitlements.
Although Procaccia and Wang show an almost fair (constant approximation) allocation
exists in their setting, our main result is in sharp contrast to their observation. We show that,
in some cases with n agents, no allocation can guarantee better than 1/n approximation of
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a fair allocation when the entitlements are not necessarily equal. Furthermore, we devise a
simple algorithm that ensures a 1/n approximation guarantee.

Our second result is for a restricted version of the problem where the valuation of every
agent for each good is bounded by the total value he wishes to receive in a fair allocation.
Although this assumption might seem without loss of generality, we show it enables us
to find a 1/2 approximation fair allocation via a greedy algorithm. Finally, we run some
experiments on real-world data and show that, in practice, a fair allocation is likely to exist.
We also support our experiments by showing positive results for two stochastic variants of
the problem, namely stochastic agents and stochastic items.

1. Introduction

In this work, we conduct a study of fairly allocating indivisible goods among n agents with
unequal claims on the goods. Fair allocation is a very fundamental problem that has received
attention in both Computer Science and Economics. In the last decade this subject has
attracted the attention of the researchers in Artificial Intelligence, Multiagent Systems, and
Computational Social Choice (Caragiannis, Lai, & Procaccia, 2011; Cohler, Lai, Parkes,
& Procaccia, 2011; Dickerson, Goldman, Karp, Procaccia, & Sandholm, 2014; Kurokawa,
Procaccia, & Wang, 2016; Alijani, Farhadi, Ghodsi, Seddighin, & Tajik, 2017; Chen, Lai,
Parkes, & Procaccia, 2013; Kash, Procaccia, & Shah, 2014).

This problem dates back to 1948 when Steinhaus (1948) introduced the cake cutting
problem as follows: given n agents with different valuation functions for a cake, is it possible
to divide the cake between them in such a way that every agent receives a piece whose value
to him is at least 1/n of the whole cake? Steinhaus answered this question in the affirmative
by proposing a simple and elegant algorithm which is called moving knife. Although this
problem admits a straightforward solution, several versions of the cake cutting problem
have been studied since then, many of which have not been settled after decades (Brams
& Taylor, 1996; Robertson & Webb, 1998; Chen et al., 2013; Procaccia, 2013; Edmonds &
Pruhs, 2006; Cohler et al., 2011; Woeginger & Sgall, 2007; Caragiannis et al., 2011; Alijani
et al., 2017). For instance, a natural generalization of the problem in which we discriminate
the agents based on their entitlements is still open. In this problem, every agent claims an
entitlement ei of the cake such that

∑
ei = 1, and the goal is to cut the cake into pieces

and allocate them to the agents such that every agent ai’s valuation for his piece is at least
ei fraction of his valuation for the entire cake. For two agents, Brams, Jones, and Klamler
(2008) showed that at least two cuts are necessary to divide the cake between the agents.
Furthermore, Robertson and Web (1997) proposed a modified version of cut and choose
method to divide the cake between two agents with portions e1, e2, where e1 and e2 are real
numbers. McAvaney, Robertson, and Web (1992) considered the case when the entitlements
are rational numbers. They used Ramsey partitions to show that when the entitlements are
rational, one can make a proper division via O(n3) cuts.

Recently, a new line of research is focused on the fair allocation of indivisible goods. In
contrast to the conventional cake cutting problem, in this problem instead of a heterogeneous
cake, we have a set M of indivisible goods and we wish to distribute them among n agents.
Indeed, due to trivial counterexamples in this setting1, the previous guarantee, that is every
agent should obtain 1/n of his valuation for all items from his allocated set, is impossible

1. For instance if there is only one item, at most one agent has a non-zero profit in any allocation.
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to deliver. To alleviate this problem, Budish (2011) proposed a concept of fairness for
the allocation of indivisible goods namely the maxmin share. Suppose we ask an agent ai
to divide the items between the agents in a way that he thinks is fair to everybody. Of
course, agent ai does not take into account other agents’ valuations and only incorporates his
valuation function in the allocation. Based on this, we define MMSi equal to the minimum
profit that any agent receives in this allocation, according to agent ai’s valuation function.
Obviously, in order to maximize MMSi, agent ai chooses an allocation that maximizes the
minimum profit of the agents. We call an allocation fair (approximately fair), if every agent
ai receives a set of items that is worth at least MMSi (a fraction of MMSi) to him.

It is easy to see that MMSi is the best possible guarantee that one can hope to obtain in
this setting. If all agents have the same valuation function, then at least one of the agents
receives a collection of items that are worth no more than MMSi to him. A natural question
that emerges here is whether a fair allocation with respect to MMSi’s is always possible.
Although the experiments are in favor of this conjecture, Procaccia and Wang (2014) refuted
this by an elegant and delicate counterexample. They show such a fair allocation is impossible
in some cases, even when the number of agents is limited to 3. On the positive side however,
they show an approximately fair allocation can be guaranteed. More precisely, they show that
there always exists an allocation in which every agent’s profit is at least (2/3)MMSi. Such an
allocation is called a 2/3-MMS allocation. Amanitidis, Markakis, Nikzad, and Saberi (2015)
later provided a proof for the existence of an MMS allocation for the case, when there are
large enough items and the value of each agent for every item is drawn independently from
a uniform distribution. A generalized form of this result was later proposed by Kurokawa et
al. (2016) for arbitrary distributions. In a recent work, Caragiannis et al. (2016) proved that
the maximum Nash welfare (MNW) solution, which selects an allocation that maximizes
the product of utilities, for each agent guarantees a 2/(1 +

√
4n− 3) fraction of her MMS.

Although it is natural to assume the agents have equal entitlements on the items, in
most real-world applications, agents have unequal entitlements on the goods. For instance,
in various religions, cultures, and regulations, the distribution of the inherited wealth is
often unequal. Furthermore, the division of mineral resources of a land or international
waters between the neighboring countries is often made unequally based on the geographic,
economic, and political status of the countries. Another example is the allocation of resources
(e.g., CPU, memory, and network bandwidth) in data centers, clusters, and cloud computing
to the agents with heterogeneous demand profiles (Wang, Liang, & Li, 2015; Kash et al.,
2014).

For fairly allocating indivisible items to agents with different entitlements, two procedures
are proposed by Brams and Taylor (1996). The first one is based on Knaster’s procedure of
sealed bids. In this method, we have an auction for selling each item. Therefore, for using
it all the agents should have an adequate reserve of money which is the main issue of the
procedure. The second procedure is based on the method of markers developed by William
F. Lucas which is similar in spirit to the moving knife procedure. In this method, first we
line up the items, and then the agents place some markers for dividing the items. This
method suffers from high dependency of its final allocation to the order of the items in the
line.

Agent duplication is another idea to deal with unequal entitlements. More precisely,
when all of the entitlements are fractional numbers, we can duplicate each agent ai to some
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agents with similar valuation functions to ai. The goal of this duplication is to reduce the
problem to the case of equal entitlements. After the allocation, every agent ai owns all
of the allocated items to her duplicated agents. For instance, assume that we have three
agents with entitlements 1/2, 2/5, and 1/10, respectively. In this case, we duplicate the first
agent to five agents and the second agent to four agents each having an entitlement of 1/10.
This way, we can reduce our problem to the case of equal entitlements. Although agent
duplication may be practical when the items are divisible, this method does not apply to
the indivisible setting. For instance, if the number of the agents is higher than the number
of available items, we cannot allocate anything to some agents. Another issue with this
method is that it works only for fractional entitlements.

In this paper, we study fair allocation of indivisible items with different entitlements
using a model which resolves the mentioned issues. Our fairness criterion mimics the general
idea of Budish for defining maxmin shares. Similar to Budish’s proposal, in order to define
a maxmin share for an agent ai, we ask the following question: how much benefit does agent
ai expect to receive from a fair allocation, if we were to divide the goods only based on his
valuation function? If agent ai expects to receive a profit of p from the allocation, then he
should also recognize a minimum profit of p · ej/ei (ei is the entitlement of agent ai) for
any other agent aj , so that his own profit per entitlement is a lower bound for all agents.
Therefore, one answer to this question would be the maximum value of p for which there
exists an allocation such that agent ai’s profit-per-entitlement can be guaranteed to all other
agents (according to his own valuation function). We define the maxmin shares of the agents
based on this intuition.

Recall that we denote the number of agents with n and the entitlement of every agent ai
with ei. We assume the entitlements always add up to 1. For every agent ai, we define the
weighted maxmin share denote by WMMSi, to be the highest value of p for which there exists
an allocation of the goods to the agents in which every agent aj receives a profit of at least
p · ej/ei based on agent ai’s valuation function. Similarly, we call an allocation α-WMMS, if
every agent ai obtains an α fraction of WMMSi from his allocated goods. Notice that in case
ei = 1/n for all agents, this definition is identical to Budish’s definition. Since our model is
a generalization of Budish’s model, it is known that a fair allocation is not guaranteed to
exist for every scenario. However, whether a 2/3 approximation or in general a constant
approximation WMMS allocation exists remains an open question.

Our first result is in contrast to that of Procaccia and Wang. We settle the above
question by giving a 1/n hardness of approximation result for this problem. In other words,
we show no algorithm can guarantee any allocation which is better than 1/n-WMMS in
general. We further complement this result by providing a simple algorithm that guarantees
a 1/n-WMMS allocation to all agents. As we show in Section 2, this hardness is a direct
consequence of unreasonably high valuation of agents with low entitlements for some items.
Moreover, in Section 3 we discuss that not only are such valuation functions unrealistic, but
also an agent with such a valuation function has an incentive to misrepresent his valuations
(Observation 1). Therefore, a natural limitation that one can add to the setting is to assume
no item is worth more than WMMSi for any agent ai. We also study the problem in this
mildly restricted setting and show in this case a 1/2-WMMS guarantee can be delivered via
a greedy algorithm.
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In contrast to our theoretical results, we show in practice a fair allocation is likely to exist
by providing experimental results on real-world data. The source of our experiments is a
publicly available collection of bids for eBay goods and services (Medina, 2014). More details
about the experiments can be found in Section 4. We also support our claim by presenting
theoretical analysis for the stochastic variants of the problem in which the valuation of every
agent for a good is drawn from a given distribution.

1.1 Our Model

Let N be a set of n agents, and M be a set of m items. Each agent ai has an additive
valuation function Vi for the items. In addition, every agent ai has an entitlement to the
items, namely ei. The entitlements add up to 1, i.e.,

∑
ei = 1.

Since our model is a generalization of maxmin share, we begin with a formal definition
of the maxmin shares for equal entitlements, proposed by Budish (2011). In this case, we
assume all of the entitlements are equal to 1/n. Let Π(M) be the set of n-partitionings of
the items. Define the maxmin share of agent ai (MMSi) of player i as

MMSi = max
〈A1,A2,...,An〉∈Π(M)

min
j∈[n]

Vi(Aj). (1)

One can interpret the maxmin share of an agent as his worst case outcome as a divider in a
divide-and-choose procedure against adversaries. Consider a situation that a cautious agent
knows his own valuation on the items, but the valuations of other agents are unknown to
him. If we ask the agent to run a divide-and-choose procedure, he tries to split the items in
a way that the least valuable bundle is as attractive as possible.

When the agents have different entitlements, the above interpretation is no longer valid.
The problem is that the agents have different entitlements and this discrepancy must somehow
be considered in the divide-and-choose procedure. Thus, we need an interpretation of the
maxmin share that takes the entitlements into account.

Let us get back to the case with the equal entitlements. Another way to interpret maxmin
share is this: suppose that we ask agent ai to fairly distribute the items in M between n
agents of N , based on his own valuation function. In an ideal situation (e.g., if the goods are
completely divisible), we expect ai to allocate a share with value Vi(M)/n to every agent.
However, since the goods are indivisible, some sort of unfairness is inevitable. For this case,
we wish that ai does his best to retain fairness. MMSi is in fact, a parameter that reveals
how much fairness ai can guarantee, regarding his valuation function.

Formally, to measure the fairness of an allocation by ai, define a value F iA for any
allocation A = 〈A1, A2, . . . , An〉 as

F iA =
minj Vi(Aj)

Vi(M)/n
.

In fact, we wish to make sure ai reports an allocation A∗ such that F iA∗ is as close to 1 as
possible. The maxmin share of ai is therefore defined as

MMSi = F iA∗(Vi(M)/n). (2)

It is easy to observe that Equations (1) and (2) are equivalent, since the fairest allocation in
the absence of different entitlements is an allocation that maximizes value of the minimum
bundle:
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MMSi = F iA∗(Vi(M)/n)

=
minj Vi(A

∗
j )

Vi(M)/n
(Vi(M)/n) = min

j
Vi(A

∗
j ).

Now, consider the case with different entitlements. Let ei be the entitlement of agent
ai. Similar to the second interpretation for MMSi, ask agent ai to fairly distribute the
items between the agents, but this time, considers the entitlements. In an ideal situation
(e.g., a completely divisible resource), we expect the allocation to be proportional to the
entitlements, i.e. ai allocates a share to agent aj with value exactly Vi(M)ej (note that
when the entitlements are equal, this value equals to Vi(M)/n for every agent). But again,
such an ideal situation is very rare to happen and thus we allow some unfairness. In the
same way, define the fairness of an allocation A = 〈A1, A2, . . . , An〉 as

F iA = min
j

Vi(Aj)

Vi(M)ej
. (3)

Let A∗ = 〈A∗1, A∗2, . . . , A∗n〉 be an allocation by ai that maximizes F iA∗ . The weighted
maxmin share of agent ai is defined in the same way as MMSi, that is:

WMMSi = F iA∗Vi(M)ei = ei min
j

Vi(A
∗
j )

ej
.

In summary, the value WMMSi for every agent ai is defined as follows:

WMMSi = max
〈A1,A2,...,An〉∈Π(M)

min
j∈[n]

Vi(Aj)
ei
ej
.

For more intuition, consider the following example:

Example 1. Assume that we have two agents a1, a2 with e1 = 1/3 and e2 = 2/3. Fur-
thermore, suppose that there are 5 items b1, b2, b3, b4, b5 with the following valuations for
a1: V1({b1}) = V1({b2}) = V1({b3}) = 4, V1({b4}) = 3 and V1({b5}) = 9. For the allocation
A = 〈{b5}, {b1, b2, b3, b4}〉, we have F 1

A = min( 9
24·(1/3) ,

15
24·(2/3)) which means F 1

A = 15/16.

Moreover, for allocation A′ = 〈{b1, b2}, {b3, b4, b5}〉, we have F 1
A′ = min( 8

24·(1/3) ,
16

24·(2/3))

which means F 1
A′ = 1. Thus, A′ is a fairer allocation than A. In addition, A′ is the fairest

possible allocation and hence, WMMS1 = 1 · 24 · 1/3 = 8.

Example 1 also gives an insight about why agent duplication (as introduced in the
Introduction) is not a good idea. For this example, if we duplicate agent a2, we have three
agents with the same entitlements. But any partitioning of the items into three bundles,
results in a bundle with value at most 7 to a1.

Finally, an allocation of the items in M to the agents in N is said to be α-WMMS, if
the total value of the share allocated to each agent ai is worth at least αWMMSi to him.
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2. A Tight 1/n Bound on the Optimal Allocation

In spite of the fact that there exists a 2/3-WMMS guarantee when all the entitlements are
equal, in our general setting surprisingly we provide a counterexample which proves that
there is no guarantee better than 1/n-WMMS. We complement this result by showing that
a 1/n-WMMS always exists. Thus, these two theorems make a tight bound for the problem.

We provide a counterexample in Theorem 2.1 which shows no approximation better than
1/n-WMMS is possible. The main property of our counterexample is a large gap between
the value of items for different agents.

Theorem 2.1. There exists no guarantee better than 1/n-WMMS when the entitlements to
the items may differ.

Proof. We propose an example that admits no allocation better than 1/n-WMMS. To this
end, consider an instance with n agents and 2n− 1 items and let ei = ε for all i < n and
en = 1− (n− 1)ε. The valuation functions of the first n− 1 agents are the same. For every
agent ai with 1 ≤ i < n, Vi({bj}) is as follows:

Vi({bj}) =


ε if j ≤ n− 1

1− (n− 1)ε if j = n

0 if j > n.

Also, for agent an we have:

Vn({bj}) =

{
1−(n−1)ε

n if j ≤ n
ε if j > n.

First, note that WMMSi = ε for the first n− 1 agents and WMMSn = 1− (n− 1)ε. For the
first n− 1 agents, the optimal partitioning is to allocate bi to ai for all i ≤ n. Furthermore,
the optimal partitioning for an is to allocate items bn+1, bn+2, . . . , b2n−1 to the first n − 1
agents and keep the first n items for himself. In this case, Vn({b1, b2, ..., bn}) = 1− (n− 1)ε,
and Vn({bn+i}) = ε for 1 ≤ i < n. Therefore, WMMSn = 1− (n− 1)ε.

On the other hand, in any allocation that guarantees a non-zero fraction of WMMS for
every agent, at most one of the items b1, b2, . . . , bn is allocated to an, since the rest of the
items have value 0 for the first n− 1 agents. Therefore, the items allocated to an are worth
at most

1− (n− 1)ε

n
+ (n− 1)ε = 1/n+ ε(n− 1− n− 1

n
) ≤ 1/n+ nε.

to him. Thus, the best fraction of WMMS that can be guaranteed is

1/n+ nε

1− (n− 1)ε
. (4)

Equation (4) can be made arbitrarily close to 1/n, by choosing sufficiently small ε. Thus,
no allocation can guarantee an approximation better than 1/n for this example.
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Algorithm 1: 1/n-WMMS allocation

Input: N , M, valuation functions V1, . . . , Vn, and entitlements e1, . . . , en (without
loss of generality, sorted in descending order).

Output: Allocation A = A1, . . . , An.
1

1: for i from one to |M| do
2: r ← (i mod |N |) + 1
3: bj = arg maxbk∈M Vr(bk)
4: assign item bj to ar and remove bj from M

Theorem 2.1 gives a 1/n-WMMS upper-bound. In Theorem 2.2, we show that the
provided upper-bound is tight. Algorithm 1 uses a simple greedy procedure, which is similar
in spirit to an algorithm of Amanatidis et al. (2015), guaranteeing 1/n-WMMS allocation as
follow: sort the agents in descending order of entitlements. Starting from the first agent, ask
every person to collect the most valuable item from the remaining set, one by one. Repeat
the process until no more item is left.

Theorem 2.2. Algorithm 1 guarantees a 1/n-WMMS allocation.

Proof. If the number of items is smaller than the number of agents then the proof is trivial.
Therefore, from this point on, we assume m ≥ n. Without loss of generality we assume
agents are sorted in descending order of their entitlements, that is e1 ≥ e2 . . . ≥ en. The
goal is to prove that for each agent ai he receives at least 1/n-WMMSi using Algorithm 1.
Suppose that B∗ = 〈B∗1 , . . . , B∗n〉 is the optimal allocation for ai (i.e., the allocation that
maximizes F iA∗). Without loss of generality suppose items are sorted according to their
value for ai in descending order that is:

Vi({b1}) ≥ Vi({b2}) ≥ . . . ≥ Vi({b|M|}).

We call items b1, b2, . . . , and bi−1 heavy items for ai. Let H be the set of heavy items for
ai. Since the entitlements of agents are sorted from a1 to an, for agents aj and aj′ when
ej > ej′ we have:

Vi(B
∗
j ) ≥ Vi(B∗j′). (5)

Now, the goal is to prove Vi(B
∗
i ) ≤ Vi(M\H) and use it to the guarantee of the algorithm.

Since B∗i ⊆ M, if B∗i ∩ H = ∅, clearly Vi(B
∗
i ) ≤ Vi(M \ H) holds. In case B∗i ∩ H 6= ∅,

consider agent ak′ where 1 ≤ k′ < i and B∗k′ ∩H = ∅. According to Inequality (5), ak′ has a
greater entitlement than ai. Therefore, we have: Vi(B

∗
k′) ≥ Vi(B∗i ) which yields that B∗k′ is

worth at least Vi({bk}) for ai where all the items of B∗k′ are in M−H. Therefore, we can
imply that Vi(B

∗
i ) ≤ Vi(M\H). The items are sorted in the descending order of their value

to ai from b1 to b|M| which implies

Vi({bi}) + Vi({bn+i}) + Vi({b2n+i}) + . . . ≥ Vi(M\H)/n.

The l-th assigned item to ai by the algorithm is not worth less than Vi({b(l−1)n+i}). Hence,
the assigned items to ai is worth at least Vi({bi}) + Vi({bn+i}) + Vi({b2n+i}) + . . . for him
which is not less than Vi(M\H)/n ≥ Vi(B∗i )/n ≥ 1/n-WMMSi.
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Algorithm 2: 1/2-WMMS allocation for the restricted case

Input: N , M, valuation functions V1, . . . , Vn, and entitlements e1, . . . , en (without
loss of generality, sorted in descending order).

Output: Allocation A = A1, . . . , An.
1

1: while M 6= ∅ and ∃Ai where Vi(Ai) < 1/2-WMMSi do
2: define candidate set Ci = ∅ for each agent ai.
3: for bj ∈M do
4: add bj to Ci where Vi({bj})/Vi(M)F iA∗ is maximum among all of

the unsatisfied agents.
5: Choose unsatisfied agent ai and item bj in its candidate set which

maximize Vi({bj})/Vi(M)F iA∗ among all of the unsatisfied agents
and items in their candidate sets.

6: Assign item bj to agent ai.

3. Allocation for the Restricted Case

In Section 2, we gave a tight 1/n-WMMS guarantee for the fair allocation problem with
unequal entitlements . In this section, we consider a reasonable restriction of the problem
which gives a 1/2-WMMS guarantee. In this restricted setting the value of each item bj to
each agent ai is no more than WMMSi. Observation 1 shows that how this assumption can
be invaluable.

Observation 1. If Vi(bj) ≥WMMSi, it is in the best interest of ai to report his valuation
for bj equal to infinity. Because his WMMS may increase in this way, and he achieves more
items after the allocation of the algorithm, because his WMMS may increase in this way,
and he will be satisfied even if he receives only this item.

In this section, we provide an algorithm with 1/2-WMMS guarantee for the restricted
case of the problem. For a case where the entitlements are equal, an algorithm, namely bag
filling guarantees 1/2-WMMS for all the agents. In the bag filling algorithm, we start with
an empty bag. In each step, we add a remaining item to the bag. After each addition, if the
total value of items in the bag becomes more than 1/2-WMMSi for an unsatisfied agent ai,
we allocate all the items in the bag to him and repeat the procedure with an empty bag.
After running this simple procedure, each agent ai receives at least 1/2-WMMSi.

Our algorithm allocates the items to agents in a more clever way. We allocate an item
to an agent in each step of the algorithm until each agent ai receives at least 1/2-WMMSi
by the allocation. To this end, in each step, first the algorithm for each agent ai creates
a candidate set of items where bj is in the candidate set of ai if Vi({bj})/Vi(M)F iA∗ be
the maximum number among all of the unsatisfied agents. Then, the algorithm chooses
unsatisfied agent ai and item bj in its candidate set which maximize Vi({bj})/Vi(M)F iA∗
among all of the unsatisfied agents and items in their candidate sets, and assigns this item
to the agent.

Before proving Algorithm 2 guarantees a 1/2-WMMS allocation, we prove an auxiliary
lemma which argues that using Algorithm 2 no agent receives more than his WMMS.
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Lemma 3.1. Algorithm 2 does not allocate more than WMMSi for any agent ai.

Proof. The algorithm does not assign any more items to a satisfied agent. Hence, any
satisfied agent ai has less than 1/2-WMMSi value of items in Ai before he receives the last
item. For the sake of contradiction, suppose that the algorithm allocates more than WMMSi
to ai. Without loss of generality, suppose that the last item allocated to ai is bj . Since
before allocating bj to ai he had less than 1/2-WMMSi value of items in Ai, the value of bj
to ai is more than 1/2-WMMSi. Since Vi(bj) ≤WMMSi, before allocating bj to ai we have
Ai 6= ∅. Since Vi(bj) is more than the value of all the other allocated items to ai, bj was not
in the candidate set of ai when we were assigning the other items to ai. Hence, bj was in the
candidate set of an other agent ai′ . Therefore, Vi′({bj})/Vi′(M)F i

′
A∗ ≥ Vi({bj})/Vi(M)F iA∗ .

Since this value is greater than the values of all other items in Ai, the algorithm first allocate
bj to unsatisfied agent ai′ .

Now, using Lemma 3.1, we prove the approximation guarantee of the algorithm.

Theorem 3.2. Algorithm 2 ensures a 1/2-WMMS guarantee when for each agent ai and
item bj, Vi(bj) ≤WMMSi.

Proof. It is clear that if the algorithm satisfies all the agents, it ensures the approximation
guarantee. Now, for the sake of contradiction assume that there exists an unsatisfied agent
ai at the end of the algorithm. For each item bj we define

v′bj = Vi′(bj)/Vi′(M)F i
′
A∗ ,

where ai′ is the recipient of bj in the allocation. Since v′bj is maximal according to the
algorithm, and ai is not a satisfied agent, we have:

Vi(bj)/Vi(M)F iA∗ ≤ Vi′(bj)/Vi′(M)F i
′
A∗ . (6)

Lemma 3.1 implies that
∑

bj
v′bj ≤ 1, and since we have at least one unsatisfied agent we

can write: ∑
bj

v′bj < 1. (7)

Inequality (6) along with Inequality (7) implies∑
bj

Vi(bj)/Vi(M)F iA∗ < 1. (8)

Finally Inequality (8) yields that
∑

bj
Vi(bj) < Vi(M)F iA∗ which is a contradiction.

4. Empirical Results

As we discussed in Section 2, in extreme cases, making a WMMS allocation or even an
approximately WMMS allocation is theoretically impossible. However, our counter-example
is extremely delicate and thus very unlikely to happen in real-world. Here, we show in
practice fair allocations w.h.p exist, especially when the number of items is large.
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Figure 1: The vertical line denotes the ratio of the valuation of the allocated set to the
maxmin guarantee of the agents. The horizontal line shows the number of items varying
from n to 2n. Blue, red, and yellow poly lines illustrate the performance of our algorithm
for n = 10, n = 50, and n = 200 respectively.

Figure 2: The vertical line denotes the ratio of the valuation of the allocated set to the
maxmin guarantee of the agents. The horizontal line shows the number of items varying
from n to n2. Blue, red, and yellow polylines illustrate the performance of our algorithm for
n = 10, n = 50, and n = 200 respectively.

We draw the valuation of the agents for the goods based on a collection of publicly
available bids for eBay items (Medina, 2014). More precisely, for m items, we randomly
choose m different categories of goods from the dataset. Moreover, for every agent ai and
item bj , we set Vi({bj}) to a submitted bid for the corresponding category of item bj chosen
uniformly at random.
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Despite many real-world examples of allocations with different entitlements, 2 we could
not find any appropriate publicly available data for our setting. 3 That’s why we ran the
experiments on randomly generated vectors for entitlements. In this sense, our data is not
exactly real-world, but a mix of real-world data and random entitlements. For an instance of
the problem with n agents and m items, we run the experiments with 1000 different vector
of entitlements drawn from the uniform distribution (and scaled up to satisfy

∑
ei = 1). For

every n and m, we take the minimum WMMS guarantee obtained by all 1000 runs,
and show it in Figures 1 and 2.

We used heuristic methods to compute the maxmin guarantees and estimate maximin-
share values. These heuristic methods include greedy algorithms such as local search and
Algorithm 2 as well as random allocations. In our local search approach, we start by an
arbitrary allocation and iteratively improve the guarantee by local exchanges of items.
Another greedy algorithm we use is as follows: let γi = Vi(Si)/WMMSi, where Si is the set
of currently allocated items to agent ai. At each step, we select an agent ai which minimizes
γi, and allocate him the most valuable remaining good.

Since the obtained allocations are not necessarily optimal, our results are only lower
bounds to the actual WMMS guarantees. Nonetheless, the optimal guarantees are very close
to the estimated ones.

Figures 1 and 2 illustrate the result of the runs for n = 10, n = 50, and n = 200
respectively. Figure 1 only depicts the WMMS guarantees for m ∈ [n, 2n] whereas in Figure
2 the number of items varies from n to n2.

As shown in Figures 1 and 2, the approximation guarantee improves as we increase the
number of items. Moreover, unless m is very close to n, a WMMS allocation exists in our
experiments (notice that the guarantee is above 1 when m is considerably larger that n).

5. Stochastic Setting

In Section 2 we presented a counterexample to show that no allocation better than 1/n-
WMMS can be guaranteed. However, the construction described in the counterexample is
very unlikely to happen in the real settings. Here, we show that WMMS allocation exists
with high probability when a small randomness is allowed in the setting.

Considering stochastic settings is common in the fair allocation problems since many
real-world instances can be modeled with random distributions (Budish, 2011; Kurokawa
et al., 2016; Amanatidis et al., 2015; Dickerson et al., 2014). The general probabilistic
model used in previous works is as follows: every agent ai has a probability distribution
Di over [0, 1] and for every item bj , the value for Vi({bj}) is randomly sampled from Di.
Amanatidis et al. (2015) proved the existence of an MMS allocation for the special case
of Di = U(0, 1), where U(0, 1) is the standard uniform distribution with minimum 0 and
maximum 1. Kurokawa et al. (2016) considered the problem for arbitrary random distribution
Di with the condition that V[Di] ≥ c for a positive constant c.4 A considerable part of
their proof for the existence of an MMS allocation is referred to the work of Dickerson et

2. We mentioned some of these scenarios in the Introduction
3. There are some online services such as “Assign Credit” (Procaccia & Goldman, 2014), where their data

can help generate entitlement vectors. However, their data are not publicly available.
4. V[Di] is the variance of Di.
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al. (2014), where the authors prove the existence of an envy-free allocation in the stochastic
settings with arbitrary random distributions.

In this section, we consider two different probabilistic models. Our first model is the
same as the model of Krukawa et al. (2016), with the exception that we omit the restriction
V[Di] ≥ c. We name this model as Stochastic Agents model. In the second model, every item
bi has a probability distribution Di and for every agent aj , value of Vj({bi}) is randomly
drawn from Di. We choose the name Stochastic Items for the second model. We believe that
Stochastic Items model is more realistic since the first model does not make any distinguish
between the items. None of the previous works mentioned above considered this model.

We leverage Hoeffding ’s inequality to prove the existence of WMMS allocation. Theorem
5.1 states the general form of this inequality (Hoeffding, 1963).

Theorem 5.1 (General Form of Hoeffding (1963)). Let X1, X2, . . . , Xn be random variables
bounded by the interval [0, 1] : 0 ≤ Xi ≤ 1. We define the empirical mean of these variables
by X̄ = 1

n(X1 +X2 + . . .+Xn). Then, the following inequality holds:

P(|X̄ − E(X̄)| ≥ t) ≤ 2e−2nt2 . (9)

Regarding Theorem 5.1, let X = n · X̄ =
∑

iXi and let µ = n · E(X̄). By Inequality (9),
we have:

P(|X − µ| ≥ nt) ≤ 2e−2nt2 . (10)

By setting nt = δµ, we rewrite Equation (10) as:

P(|X − µ| ≥ δµ) ≤ 2e
−2(δµ)2

n . (11)

5.1 Model I: Stochastic Agents

As mentioned before, in the first model we assume that every agent has a probability
distribution Di and for every item bj , the value of Vi({bj}) is randomly sampled from Di.
Furthermore, we suppose µi = E(Di). Throughout this section, we assume that m ≥ n. This
is without loss of generality, because for the case m < n, WMMSi for every agent ai equals
to zero. For the Stochastic Agents model, we state Theorem 5.2.

Theorem 5.2. Consider an instance of the fair allocation problem with unequal entitlements,
such that the value of every item for every agent ai is randomly drawn from distribution
Di. Furthermore, let s = mini si and µ = mini µi. Then, for every 0 < ε < 1, there exists a
value m′ = m′(1

e ,
1
µ ,

1
ε ) (which means m′ is a function of 1

e ,
1
µ ,

1
ε ) such that if m ≥ m′, then

almost surely a (1− ε)-WMMS allocation exists.

In the rest of this section, we prove Theorem 5.2. Consider the algorithm that allocates
ti = bmeic items to every agent ai. We know that the value of item bi for agent aj is
randomly sampled from Di. From the point of view of the algorithm, it trivially does not
matter whether the value of items are sampled after the allocation or before the allocation.
Thus, we can suppose that the value of every item is sampled after the allocation of items.

For now, we know that ti = bmeic number of items are assigned to ai. Argue that for
every ε > 0, there exists a value m′, such that for every m ≥ m′, ti ≥ mei(1− ε). In Lemma
5.3 we bound the value of m′ in terms of ei and ε.

13
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Lemma 5.3. For every m > 1
εei

, bmeic ≥ mei(1− ε).

Proof. We know bmeic ≥ mei−1 = mei(1− 1
mei

). If m > 1
εei

, then bmeic ≥ mei(1− 1
1
εei
ei

) =

mei(1− ε). This, completes the proof.

For the rest of the proof, suppose that m > 1
εei

. Let Xi be the variable indicating total
value of items allocated to ai. Note that E(Xi) = tiµi. Regarding Equation (11), we have:

P(|Xi − tiµi| ≥ δtiµi) ≤ 2e
−2(δtiµi)

2

ti .

We want to choose δ such that P(|Xi − tiµi| ≥ δtiµi) ≤ 1
2mn . We have:

2e
−2(δtiµi)

2

ti ≤ 1

2mn
⇒ −2(δtiµi)

2 ≤ ti ln
1

4mn
⇒ δ ≥

√
ti ln 4mn

2(tiµi)2
.

Regarding the facts that ti ≥ mei(1− ε) and m ≥ n, we have:√
ti ln 4mn

2(tiµi)2
≤

√
ln 2 + lnm

eimµi2(1− ε)
.

Therefore, it’s enough to choose δ such that

δ ≥

√
ln 2 + lnm

eimµi2(1− ε)
. (12)

Now, let t′i be the number of items that are not assigned to ai. Since ti+t
′
i = m, regarding

the fact that ti ≥ mei(1− ε), we have t′i ≤ m−mei(1− ε), which means t′i ≤ m+mei(ε− 1).
On the other hand, t′i ≥ m(1− ei). Also, let X ′i be the variable indicating total value of the
items that are not allocated to ai. By the same deduction as ti for t′i we have:

P(|X ′i − t′iµi| ≥ δ′t′iµi) ≤ 2e
−2(δ′t′iµi)

2

t′
i .

Let δ′ be the value that P(|Xi − t′iµi| ≥ δt′iµi) < 1
2mn . We have:

2e
−2(δ′t′iµi)

2

t′
i ≤ 1

2mn
⇒ (δ′t′iµi)

2 ≥ t′i ln 4mn

2

δ′ ≥

√
ln 4mn

2t′iµ
2
i

. (13)

Thus, it’s enough to choose δ in a way that Inequality (13) holds. Regarding the facts
that m > n and t′i ≥ m(1− ei),√

ln 4mn

2t′iµ
2
i

≤

√
ln 2 + lnm

m(1− ei)µi2
.
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Therefore, it’s enough to choose δ′ in a way that

δ′ ≥

√
ln 2 + lnm

m(1− ei)µi2
. (14)

Now, suppose that both Inequalities (12) and (14) are held. Considering Si as the set of
items assigned to ai, with the probability of at least 1− ( 1

2mn + 1
2mn) = 1− 1

mn we have:

Vi(Si)

Vi(M)
=

(1− δ)tiµi
(1 + δ)tiµi + (1 + δ′)t′iµi

.

It is easy to show that, there always exist an m′i such that for all m ≥ m′i both Inequalities
(12) and (14) hold for δ = ε and δ′ = ε. Regarding this, we have:

Vi(Si)

Vi(M)
≥ (1− ε)tiµi

(1 + ε)tiµi + (1 + ε)t′iµi

=
(1− ε)ti
(1 + ε)m

≥ (1− ε)mei(1− ε)
(1 + ε)m

=
(1− ε)2

1 + ε
ei =

(1 + ε)2 − 4ε

1 + ε
ei

= (1 + ε)ei −
4ε

(1 + ε)
ei

≥ (1 + ε)ei − 4εei = (1− 3ε)ei.

Therefore, with the probability at least 1− 1
mn we have:

∀ai∈N
Vi(Si)

Vi(M)
≥ (1− 3ε)ei. (15)

Now, suppose that the Inequality 15 holds for every agent ai, with probability at least 1− 1
mn .

Considering all the agents, with the probability at least (1− 1
mn)n ≥ 1− n

nm = 1− 1
m , value

of Vi(Si)
Vi(M) for every agent ai is at least ei(1−3ε). Regarding the fact that WMMSi ≤ eiVi(M),

we have
∀ai∈N Vi(Si) ≥WMMSi(1− 3ε).

This completes the proof.

5.2 Model II: Stochastic Items

As mentioned, in the Stochastic Items model, every item bi has a probability distribution
Di and the value of every agent aj for item bi is randomly chosen from Di. For this model,
we prove Theorem 5.4. The theorem states that for large enough m, almost surely a
(1− ε)-WMMS allocation exists.

Theorem 5.4. Suppose that for every agent ai, E(Di) > c for a non-negative constant c.
Then for all 0 < ε < 1, there exists m′ = m′(c, ε, n, e1, ..., en) such that if m ≥ m′, then,
almost surely, (1− ε)-WMMS allocation exists.
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In the rest of the section, we prove Theorem 5.4. First, in Lemma 5.6 we prove the
existence of an allocation that assigns to every agent ai, a set of items with value at least
WMMSi − Mi, where Mi = maxj(Vi({bj})). The idea to prove this fact is inspired by
Bezakova and Dani (2005). Argue that we can formulate the allocation problem with
unequal entitlements as the following integer program:∑

bj∈M
Vi({bj}) · fi,j ≥ V (M) · ei ∀ai∈N∑

ai∈N
fi,j = 1 ∀bj∈M

fi,j ∈ {0, 1}

(16)

In IP(16), variable fi,j determines whether bj is assigned to agent ai or not. Considering the
fact that Vi(M) · ei is a trivial upper bound on WMMSi, any solution to IP16 is a feasible
solution to the assignment problem with unequal entitlements. By relaxing the second and
the third condition, we can convert IP16 to LP17:∑

bj∈M
Vi({bj}) · fi,j ≥ V (M) · ei ∀ai∈N∑

ai∈N
fi,j ≤ 1 ∀bj∈M

fi,j ≥ 0

(17)

For every feasible solution A to LP17, we construct the bipartite graph GA〈I, J, E〉 where
I = {1, 2, ..., n} and J = {1, 2, ..,m} correspond to the set of players and items, respectively.
An edge i, j is included if fi,j > 0. Then by the same way used by Bezakova and Dani, we
will prove the following theorem.

Lemma 5.5. There exists a solution A′ to LP17, such that GA is a pseudoforest. (each
component of the graph is either a tree or a tree with an extra edge)

Proof. We have mn + m + n inequalities defining the polytope of feasible solutions of
LP17. We have mn variables fi,j , therefore every solution which is located in the corner
of polytope satisfies at least mn inequalities as equalities and there will be at most m+ n
non-zero variables in these solutions. By the same method used by Bezakova and Dani, it
is clear to show that if A′ is corresponding solution to a corner of polytope, then GA′ is a
pseudoforest.

We call the solution with the property defined in Lemma 5.5 as constrained solution. It
is shown that every constrained solution for LP17, can be converted to a solution for IP16,
such that every agent ai loses at most one item bj where fi,j > 0 (Bezakova & Dani, 2005).

Lemma 5.6. There exists an allocation in which every agent ai gets at least WMMSi −
maxj Vi({bj}).

Proof. The polytope of of feasible solutions of LP17 is non-empty, because it has at least

one solution which is, fi,j =
1

ei
for every agent ai and item bj . Therefore there exists a
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constrained solution for LP17, and using the same method of Bezakova and Dani, this
solution can be converted to a solution for IP16, such that every agent loses at most one
item.

Proofs of Lemmas 5.5 and 5.6 are omitted and included in the full version.

Now we show that there exists m′i = m′i(c, ε, n, e1, ..., en), such that if m ≥ m′i, then,

WMMSi ≥
1

ε
with the probability at least 1− 1

mn
. Therefore, wheneverm ≥ max(m′1,m

′
2, ...,m

′
n),

with the probability at least (1− 1

mn
)n ≥ 1− n

nm
= 1− 1

m
, for every agent ai, WMMSi ≥

1

ε
.

According to Lemma 5.6, there is an allocation in which every agent gets at least

WMMSi −max
j
Vj({bj}) ≥WMMSi − 1

≥WMMSi(1−
1

WMMSi
)

≥WMMSi(1− ε).

Therefore, a (1− ε)-WMMS allocation is guaranteed to exist with the probability at least

1− 1

m
.

Lemma 5.7. Suppose that for every agent aj, E(Dj) > c for a non-negative constant
c. Then for all 0 < ε < 1, there exists m′i = m′i(c, ε, n, e1, ..., en) such that if m ≥ m′i,

WMMSi ≥
1

ε
with the probability at least 1− 1

mn
.

Proof. If there exists a partition of M, π = B1, B2, ..., Bn in which Vi(Bj) ≥
1

εei
for every

agent aj , then:

WMMSi ≥ ei ·min(
1

εeie1
, ...,

1

εeien
) ≥ min(

1

εe1
, ...,

1

εen
) ≥ 1

ε
. (18)

Suppose that m =
α

ε
, then for every item bk and every agent aj , we assign this item to this

agent with the probability ej . Let Xj,k be a random variable that takes the value Vi({bk})
with the probability ej and 0 otherwise. We have E[Xj,k] >

c

ej
. Let Xj =

∑m
k=1Xj,k. By

setting nt = γ, we rewrite Equation (10) as:

P(|X − µ| ≥ γ) ≤ 2e
−2γ2

n . (19)

E(Xj) will be at least
αc

εej
. Regarding Equation (19), we have:

P (|Xj − E(Xj)| ≥
αc

εej
− 1

εei
) ≤ 2e

−2ε

α
(
αc

εej
−

1

εei
)2

⇒ P (|Xj − E(Xj)| ≥
αc

εej
− 1

εei
) ≤ 2e

−2

εα
(
αc

ej
−

1

ei
)2

.
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Let αj be the value that P (|Xj − E(Xj)| ≥
αjc

εej
− 1

εei
) ≤ 1

mn2
, then:

2e

−2

εαj
(
αjc

ej
−

1

ei
)2

≤ 1

mn2

⇒ 2e

−2

εαj
(
αjc

ej
−

1

ei
)2

≤ ε

αjn2

⇒ 2

εαj
(
αjc

ej
− 1

ei
)2 ≥ ln(

2αjn
2

ε
)

⇒ 2αjc
2

εe2
j

+
2

εαje2
i

− 4c

εeiej
≥ ln(

2αjn
2

ε
)

⇒ 2αjc
2

εe2
j

+
2

εαje2
i

− ln(αj) ≥
4c

εeiej
+ ln(

2n2

ε
).

Since the right hand side of the inequality is a constant, and the left hand side is an increasing
function on its domain, we can find an α′j such that whenever αj ≥ α′j , this inequality holds.

Therefore, Vi(Bj) ≥
1

εei
with the probability at least 1− 1

mn2
whenever αj ≥ α′j . Thus, by

choosing proper α such that for all aj ∈ N , α ≥ α′j , WMMSi would not be less than
1

ε
with

the probability at least (1− 1

mn2
)n ≥ 1− 1

mn
.

6. Discussion

In this work we conduct a study of fair allocation when the agents have different entitlements.
The original notion of maxmin share is proposed for the case where all agents are the same
in terms of the entitlements. We extend this notion to the case of different entitlement and
show that unlike the symmetric case, when the entitlements are different, finding an almost
WMMS allocation is not always possible. More precisely, we show that the best allocation
that one can hope for is a 1/n-WMMS allocation and that such an allocation can be obtained
via a somewhat round-robin procedure.

Our experimental results suggest that in reality WMMS allocation is very likely to exists.
Of course this is in contrast to our theoretical results. Therefore, it is important to study
the problem under reasonable restrictions that rule out the unlikely worst-case scenarios.
We initiate this study by considering two limitations to the problem and show substantially
better results for these restricted cases. First, we show that if the valuations of the agents for
the items are limited by their maxmin share, one can devise a greedy algorithm to achieve a
1/2-WMMS allocation. We then proceed by studying the case where the valuations of the
agents for the items are drawn from known distributions. We show that in these cases, a
WMMS allocation exists with high probability.

Although these observations partially justify our empirical results, it seems that the
problem is not yet well understood when it comes to real-world settings. Therefore, we
believe that future work can investigate this problem under other reasonable and realistic
assumptions and further explain why almost fair allocations can be guaranteed in practice.
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