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Abstract: In this paper, we present a new algorithm for vertex guarding of a triangulated surface, which takes into account the heights of the 
vertices and considers the global visibility of the guards. In this algorithm, the initial surface is reduced to a collection of simple polygons and 
trivial triangulated surfaces. This is done by assigning guards to some vertices and removing the faces covered by these guards. The 
remaining simple regions are then guarded properly. The running time of our algorithm is linear in terms of n, the number of vertices. The 
upper bound of the assigned guards is ⎣ ⎦3/2n , and its expected number is ⎣ ⎦2/n , which is  the same as the worst case lower bound for the 

problem. The running time of the best known algorithm for this problem is  which selects at most  guards. We expect a 
better performance of our algorithm on the average in practice. This has been verified by experimentation. 
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1 Introduction 
In 1973, Victor Klee asked this question ``How many 

guards are required to guard an art gallery?" This was named 
as the art gallery problem and many of its different versions 
have been considered by researchers [1]. We focus on 
solving this problem in 3-dimensional surfaces. To make the 
problem easier, we assume that each vertical line intersects 
the surface in at most one point. Such surfaces are known as 
2.5-dimensional surfaces. There are several computational 
models for such regions. One, that is used often, is to 
approximate the region by a collection of joint triangular 
faces. This model, known as TIN (Triangulated Irregular 
Networks), is used in this paper. 

Vertex guarding on TINs is defined as selecting the 
minimum number of vertices (or guards), such that each 
point of the surface is visible from at least one of the guards. 
Two points on a TIN are visible to each other if their 

connecting segment does not intersect any other point of the 
surface and their connecting segment lies above the TIN. 

This problem is known to be NP-hard [2]. Therefore, 
attempts have been focused on finding reasonable 
approximations [3, 4]. Nevertheless, a wide range of these 
problems are not approximable within a constant factor [5]. 
So, the main contribution is to come up with an efficient 
approximation that guarantees the worst case bound. 

Moreover, visibility processing in 2.5-dimensional 
surfaces is still complicated. Therefore, a simpler version has 
been considered in most solutions in which the heights of the 
points are all ignored. In such simplification, a vertex can 
only cover its adjacent faces. This reduces the problem to a 
2-dimensional version and the TIN can be represented by a 
planner graph with triangular faces. 

 



 
Fig. 1: A TIN which requires at least  vertex guards. ⎣ ⎦2/n
 
According to the four-color theorem,  guards are 

always sufficient to guard a TIN with n vertices and as 
shown in Fig. 1, this number of guards is sometimes 
necessary [6]. Based on this idea, an  time algorithm 
have been presented which uses at most  guards [7]. 
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Another approach is based on finding the maximum 

matching in the dual graph of a planar graph which leads to 
an  time algorithm to assign at most  guards 
[7]. There are faster and easier algorithms at expense of more 
guards; an example is a linear time algorithm that selects at 
most  guards [6]. In this algorithm, the corresponding 
planar graph is colored by five colors and then the vertices 
colored by one of the least used three colors are selected as 
guards. 

)( 2/3nO ⎣ 2/n

⎣ 5/3n

In this paper, a new approximation algorithm is presented 
that runs in linear time and selects at most  guards in 
the worst case. The expected number of the guards is 

⎣ 3/2n

⎣ ⎦2/n , 
which is the same as the lower bound of this problem. 

Despite its predecessors, our algorithm takes the global 
visibility of vertices into account. In our proposed algorithm 
the heights of the vertices are considered to determine 
whether a vertex can see its non-adjacent faces. We do this 
during the incremental process of guard assignment without 
increasing the order of the algorithm. This height 
consideration reduces the upper bound of the average number 
of the assigned guards to ⎣ . Moreover, if we pay more 
costs to prepare the faces visible from each vertex, which 
requires  of preprocessing time, the number of the 
assigned guards is significantly reduced. This has been 
verified by experimentation. On the other hand, the optimal 
number of the guards is usually less than . Therefore, 
our algorithm can produce better results on real surfaces. 
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In the rest of this paper and in Section 2, guarding 
problem for a collection of simple polygons is considered. In 
Section 3, we present a method by which a TIN is reduced to 
a set of such polygons or trivial TINs. In Section 4, the new 
algorithm is proposed and its average case analysis is 
described in Section 5. Finally, the materials are summarized 
and concluded in Section 6. 
 
2 Guarding Simple Polygons 

There is a linear time algorithm that selects at most 
 vertex guards covering any n vertex triangulated 

simple polygon (without holes) [8]. 
⎣ 3/n

 
Fig. 2: The connected polygons  and  can be 

extended to a single one by adding the edge uu' and 
removing the edges uv and u'v.  

1P 2P

 
Trivially, this algorithm is applicable on a collection of 

triangulated disjoint polygons , , …, . We show that 
this result can also be applied to a set of polygons that may 
have common vertices but in such a way that their exterior 
region remains connected. 

1P 2P kP

According to Fig. 2, it is possible to combine two joint 
polygons and produce a single simple polygon. This is done 
by adding the edge uu' that connects two adjacent vertices of 
the common vertex v, one from each polygon, and then 
removing the edges uv and u'v from the resulting polygon. 
Trivially, this conversion does not change the number of the 
vertices. Doing this conversion iteratively, any collection of 
simple polygons S={ , , …, } whose exterior region 
is connected can be converted to a collection S' of disjoint 
simple polygons. The number of vertices of polygons in S' is 
equal to the number of the vertices of polygons in S and any 
set of guards that covers the interior of S' is also sufficient to 
cover the interior of S. Consequently, 

1P 2P kP

 
Theorem 1. A set , , …,  of simple polygons, 

whose exterior region is connected (has no hole), can be 
guarded by at most 

1P 2P kP

⎣ ⎦3/n  vertex guards in  time in 
which n is the number of the vertices of all 's (common 
vertices of polygons are enumerated only once). 

)(nO
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3 Reducing a TIN to a Set of Simple 
Polygons and Trivial TINs  

The main idea of our algorithm is to make the initial TIN 
simpler by incrementally selecting a set of vertices (as 
guards) and removing those faces that are visible to these 
guards. In this section, we present this reduction process that 
reduces the TIN to a set of simple polygons and trivial TINs. 
We will use the result of the previous section to guard the 
remaining faces. Therefore, this reduction process must be 
done in such a way that the exterior region of the remaining 
faces remains connected. 

To achieve this goal and to assign the guards efficiently, 
two properties must exist: 

1. Removing a vertex and its dominated faces must not 
create any hole inside the remaining TIN. 

2. Any removed vertex (which is a guard) must have at 
least four adjacent triangles. 

The first property is satisfied by using the following 
strategy during the reduction process; when a guard is 
assigned to a vertex, only that connected set of the visible 
faces around the guards are removed from the TIN.  



 
Fig. 3: Trivial TINs do not have a vertex with more than 

three adjacent faces. 

 
Fig. 4: Different possibilities of an internal vertex i and its 

boundary vertex j depending on the degree of j: I) j has at 
least four adjacent faces, II) j has three adjacent faces, and 
III) j has two adjacent faces. 

 
In addition, a guard is only assigned to a vertex that its 

covered region is adjacent to the exterior one in at least one 
edge. Hence, this type of vertex and face deletion does not 
create any hole inside the TIN. None of the TIN's shown in 
Fig. 3 has a vertex that supports the latter property. We call 
these TINs trivial and are referred to as 3-TIN and 4-TIN in 
the rest of paper. We show that any non-trivial TIN is either a 
simple polygon or has a vertex with at least four adjacent 
triangles and its removal satisfies both of the properties. 

In any TIN which is not a simple polygon, there is at least 
one none boundary vertex i. If j is a boundary vertex adjacent 
to i, depending on the degree of j, there are three possibilities 
shown in Fig. 4: 

I) The boundary vertex j has at least four adjacent 
triangles that are removed from the TIN by removing j, 
and this does not create any hole inside the TIN. 
Therefore, both of the properties are satisfied here. 

II) j has three adjacent faces. If one of the i or k vertices 
has more than three adjacent triangles, removing it will 
satisfy the second property and because of the removal 
of the jn or jm edges it does not create any hole inside 
the TIN. Hence, it satisfies the first property, too. 

If none of the i and k has more than three adjacent 
triangles, the TIN must be the same as a 4-TIN. The 
reason is that, as assumed, i is an internal vertex of the 
TIN and has at least three adjacent triangles. The 
triangles ∆ijk and ∆mji are already adjacent to i. So, the 
only remaining triangle that can be adjacent to i is ∆mik 
(see Fig. 5). This will also fix the state of k with three 
adjacent triangles (∆jkn, ∆ijk, ∆mik). Therefore, if the 
TIN has more vertices than a 4-TIN, it had to be 
extended from n or m as shown in Fig. 5. However, the 
middle TIN is a 4-TIN. 

III) j has only two adjacent faces. If any one of i, n or m 
vertices has more than three adjacent triangles, 
selecting it as guard will satisfy both of the properties. 
But if none of them has, the TIN must be the same as a 
3-TIN or a 4-TIN as shown in Fig. 6. 

 
Fig. 5: For the second possibility of Fig. 4, when none of i 

and k has more than three adjacent triangles, the TIN must be 
a 4-TIN. 

 
Fig. 6: For the third possibility of Fig. 4, when none of i, 

n and m has more than three adjacent triangles, the TIN must 
be a 3-TIN or a 4-TIN. 

 
Consequently, 
Theorem 2. Each TIN can be reduced to a collection of 

simple polygons and trivial TIN's by removing several of its 
vertices so that during the reduction process, the exterior 
region of the remaining faces remains connected and any one 
of the removed vertices (assigned by a guard) has at least 
four adjacent faces that will also be removed from the TIN. 

  
4 The Proposed Algorithm 

Our proposed algorithm has three phases: 
1) In the first phase, as described in Section 3, the initial 

TIN is converted to a collection (chain) of simple 
polygons and trivial TIN's. This is done by assigning 
guards to some vertices of the TIN and removing the 
faces covered by these guards. This phase is 
continued until there is no vertex with more than 
three adjacent faces. 

2) In the second phase, the internal vertex of each 3-TIN 
receives one guard. Also, one of the boundary 
vertices of each 4-TIN, which has three adjacent 
faces, receives one guard. 

After this phase, only a collection of simple 
polygons remains each of which Theorem 1 is 
applied. 

3) Finally, the remaining faces are covered with the 
method described in section two. 

 
In order to improve the efficiency of the algorithm, when 

a new guard is assigned and its covered faces are removed, 
the newly appeared faces on the boundary of the remaining 
TIN are checked against this guard. Any one of these faces 
that is visible from the new guard is also removed from the 
TIN. This process is continued until there was no such newly 
appeared face on the boundary of the TIN. Every face can be 
appeared on the boundary at most three times from any one 
of its edges. Therefore, this improvement takes linear time in 
terms of the number of the faces of the TIN. However, as 



shown in the next section, this strategy reduces the expected 
number of the guards to . ⎣ ⎦2/n

In the following subsections, the correctness of the 
algorithm is proved and its efficiency and running time 
complexities are analyzed. 

 
4.1 The algorithm correctness 

It is simple to prove that this algorithm covers all faces of 
the TIN: In each step of the first phase, only the faces that are 
visible to a vertex are removed and because a guard is 
assigned to that vertex the removed faces are guarded 
correctly. After reduction phase, a new guard is assigned to 
each 3-TIN which covers it completely. Also, a new guard is 
assigned to each 4-TIN which covers all faces of it, except 
one face which will be added to the collection of the 
remaining simple polygons. 

Finally, by using the method described in section two, the 
remaining simple polygons will be guarded. Therefore, 

Theorem 3. The set of the selected guards of the 
algorithm covers all faces of the TIN. 

 
4.2 Upper bound of the number of the guards 

We first introduce several basic lemmas: 
Lemma 1. After the reduction phase, there is no common 

vertex among 3-TINs. 
Proof. If there is such a vertex, it must have more than 

three adjacent faces. But, vertices with more than three 
adjacent faces are removed from the TIN by assigning a 
guard to them during the reduction phase. 

■ 
Lemma 2. After the reduction phase, if a 3-TIN and a 4-

TIN have a common vertex, all of the adjacent faces of that 
common vertex are covered during the second phase of the 
algorithm. Therefore, it will be removed from the TIN 
automatically. 

Proof. Such a vertex has two adjacent faces from the 3-
TIN and one from the 4-TIN. According to the method of 
assigning guard to the trivial TINs, after the second phase of 
the algorithm, all these faces are covered and removed from 
the TIN. Therefore, after the second phase, that vertex has no 
adjacent faces and will be removed from the TIN 
automatically. 

■ 
Assume that K is the set of the 3-TINs produced after the 

first phase of the algorithm and k=|K|. Also denote by I the 
set of the remaining faces of the TIN, after the second phase, 
which at least one of the boundary vertices of any one of 
them used to be a boundary vertex of a 3-TIN and i=|I|. If 

 then the following lemma exists: ki ≤
Lemma 3. The number of the boundary vertices of the 3-

TINs which have no adjacent faces after the second phase of 
the algorithm and will be removed from the initial TIN 
automatically is greater than or equal to . ik 33 −

Proof. Each 3-TIN has three boundary vertices and no 
one of them is common between two such TINs. Hence, there 
are  such vertices. On the other hand, any one of the faces 
in I can be adjacent to at most three of these vertices. 

Therefore, at least 

k3

ik 33 −  vertices of them are not adjacent 
to any one of the remaining faces and can be removed 
without requiring any guard on them. 

■ 
These lemmas help us to prove the following theorem 

about the upper bound of the number of the guards selected 
by our algorithm: 

Theorem 4. The upper bound of the number of the 
selected guards of the algorithm, for a TIN of n vertices, is 
⎣ ⎦3/2n . 

Proof. Denote by m the number of the assigned guards 
during the reduction phase and by j the number of the 4-TINs 
after the reduction phase. 

Each TIN of n vertices and t boundary ones has 
22 −− tn  faces [9]. In the first phase of our algorithm, when 

a guard is assigned to a vertex, at least four faces of the TIN 
are removed from it. Each 3-TIN has three faces and each 4-
TIN has four faces and these faces are not common and are 
distinct from the faces in I. So the following inequality holds: 

)1(2344
22344
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We illustrate two possibilities: 
1) ki ≤ : In this case, according to lemma 3, at least 

ik 33 −  vertices will be removed from the TIN without 
assigning any guard to them. So, the number of the guards is 
obtained from the following relation(  is the number of 
the guards): 

)(GN

)2(
3

)33()()( ⎥⎦
⎥

⎢⎣
⎢ −−++−

+++≤
ikkjmnkjmGN  

Relation (1) leads to 
4
32 iknjm +−

≤+  and by 

substituting in relation (2) the following is resulted: 
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By the assumption that , for this case the upper bound of 
the number of the guards is 

ki ≤
⎣ ⎦3/2n . 

 
2) : We know that: ki >

)3(
3

)()( ⎥⎦
⎥

⎢⎣
⎢ ++−

+++≤
kjmnkjmGN  

Combining relation (1) and the ( ) assumption, leads 

to 

ki >

4
2nkjm ≤++  and by substituting in relation (3) the 

following is resulted: 
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So, the theorem holds in both cases. 
■ 

 
4.3 The running time analysis 

We assume that a DCEL(Doubly-Connected Edge List) 
structure is used to hold the TIN. In this data structure, 
navigating the boundary edges of a face and the adjacent 
faces of a vertex, edge or face can be done in linear time. 
Other specifications and properties of this data structure exist 
in [9]. 

During the reduction phase of the algorithm, each vertex 
is processed at most once and the running time of removing 
that vertex and reconstructing the DCEL is proportional to 
the number of the adjacent faces of it. Therefore, for all 
vertices of the TIN, the total cost of this process is linear in 
terms of the number of the vertices of the TIN. Also each 
face can appear on the boundary of the TIN at most three 
times from each edges of it. So, the whole running time 
required to check if a newly appeared face on the boundary 
of the TIN is visible from the last assigned guard, is linear in 
terms of the number of the faces of the TIN. On the other 
hand, depending on the Euler formula, the number of the 
faces and edges of a TIN is a linear function of the number of 
the vertices of it [9]. 

Consequently, the running time of the first phase of the 
algorithm is  in which n is the number of the vertices of 
the TIN. 

)(nO

Using the DCEL structure, identifying and guarding the 
trivial TINs, in the second phase of the algorithm, can be 
done in linear time. Also, the last phase of the algorithm as 
said in Theorem 1, is done in linear time. 

Theorem 5. The running time of the algorithm is linear in 
terms of the number of the vertices of the TIN. 
 
5 Average Case Analysis 

The average case lower bound of the number of the 
guards is derived from the following two claims: 

1) During the first phase of the algorithm, the expected 
number of the covered faces by any guard is 6. 

2) After the first phase of the algorithm, the expected 
number of the guards for covering the remaining 
faces is at most  in which k is the number of 
the vertices of these faces. 

⎣ 3/k ⎦

A face A is called a second-order neighbor of a vertex v if 
A is not adjacent to v but has some common edges with at 
least one of the adjacent faces of v. In the following average 
case analysis, the two probabilities; A is visible to v or not; 
are assumed to be equal. In fact, these probabilities depend 
on the heights of v, its adjacent vertices, and vertices of A.  

 

 
Fig. 7: The expected number of the adjacent faces of a 

vertex i in a plane graph is 6. 
 
These heights determine the angle between two adjacent 

faces which may be either less than or greater than  
which A will then be visible or invisible from v, respectively. 
This will help us to prove the claims. 

o180

According to the Euler formula, the average degree of a 
vertex in a plane graph is 6 (see Fig. 7). During the first 
phase of the algorithm, when a guard is assigned to a vertex i, 
it will cover 4 or 6 faces of the TIN. This depends on whether 
another guard has been assigned to any one of its neighbor 
vertices, like j, before assigning a guard on i. 

Also, a vertex can cover some of its non-adjacent faces. 
There are many different situations for a vertex i with respect 
to its adjacent and non-adjacent faces that must be 
considered. However, to prove our claim it is sufficient to 
show that the expected number of the second-order neighbor 
faces that will be covered by the newly selected guard is at 
least one. This is proved by comparing the different 
situations of vertex i and its neighbors: Only in one state i has 
no second-order neighbor face and in contrast, there is a state 
in which i has four such faces as shown in part Ι  of Fig. 8. 
Also, for any one of the states in which i has only one 
second-order neighbor face, there is a distinct state that i has 
three such faces as shown in part ΙΙ  and  of Fig. 8. ΙΙΙ

Therefore, each vertex i has at least two second-order 
neighbor faces on the average. According to our assumption, 
by which a vertex can see its second-order neighbor with 

probability of 
2
1 , the expected number of such faces that will 

be covered by i is one. 
Depending on the existence or absence of the vertex j, on 

which a guard has been assigned before assigning on i, the 
expected number of the covered faces is at least 5 or 7, 
respectively. Therefore, during the first phase of the 
algorithm, the expected number of the covered faces by any 
selected guard is at least 6 and this is our first claim. 

After the first phase of the algorithm, the remaining 
unguarded faces of the initial TIN compose a collection of 
simple polygons and trivial TINs. In section two, we showed 
the second claim for simple polygons. So, its correctness 
must be shown only for trivial TINs. 

When a guard is assigned to the internal vertex of a 3-
TIN, according to part Ι  of Fig. 9, all of its faces will be 
covered. In addition, anyone of its boundary vertices which is 
not common with another remaining region will be removed 
from the TIN without requiring another guard on it. 
Moreover, assume that such a region, like face D adjacent to 
vertex d as shown in part Ι  of Fig. 9 exists. If d is visible to 
the internal vertex a, which currently has a guard, the 
corresponding boundary vertex (d) does not require any 



guard on it and will be removed from the TIN automatically. 
Therefore, the expected number of the vertices that will be 
removed from a 3-TIN, when a guard is assigned to its 

internal vertex, equals 1)
4
1

2
1(3 ++  which is greater than 3. 

 
Fig. 8: Correspondence between the different situations of 

a vertex i with respect to the number of its second-order 
neighbors: I) The corresponding states in which i has none 
and 4 second-order neighbors, II, III) The corresponding 
states in which i has one and 3 second-order neighbors.  

 
On the other hand, when a guard is assigned to a 

boundary vertex of a 4-TIN, according to part ΙΙ  of Fig. 9, if 
this guard (a) sees the only remaining triangle of the TIN (A), 
b and c vertices can be removed without requiring any more 
guards. Also, if the faces E and F do not exist or they are 
visible from a, the other two vertices, d and f, will also be 
removable. There can be two faces like the face F adjacent to 
vertex f. So, the expected number of the vertices that will be 
removed from a 4-TIN, when a guard is assigned to a 
boundary vertex of it, equals 

 which is greater 
than 3. 

1)2/1(2)2/)4/12/1(()4/12/1( +++++

Consequently, after the first phase of the algorithm, the 
expected number of the guards required to cover the 
remaining regions of the initial TIN is  in which k is 
the number of the vertices of these regions. So, our second 
claim is also true for all kind of the remaining regions. 

⎣ 3/k ⎦

Now, we combine the two results obtained so far. Denote 
by m the number of the guards selected in the first phase of 
the algorithm and by t the number of the remaining faces 
after this phase for an initial TIN of n vertices. We have: 
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Fig. 9: I) When a guard is assigned to a, if the face D 

does not exist or it is visible from a, the vertex d will be 
removed from the TIN automatically. This is also true for (b, 
B) and (c, C) pairs.  II) When a guard is assigned to a, if the 
face A is visible from a, the vertices b and c will be removed 
from the TIN automatically. Also, depending on the visibility 
of E and F from a, the vertices b and c can be removed. 

 
By combining these equations, the upper bound of m for 

the minimum and maximum values of t is: 
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In the first case, ⎣ ⎦3/n  guards cover the TIN and in the 
second case the upper bound of the number of the guards is 
derived from the following equation: 

3
)( mnmGN −

+≤  

By substituting m in the above equation with its upper 
bound from equation (7), the upper bound of the guards will 
be ⎣ ⎦15/7n  which is smaller than . So, the expected 
number of the guards equals the lower bound of the required 
guards. 

⎣ 2/n ⎦

It is important to note that in this analysis, we have 
considered only the second-order neighbors and by 
considering other levels of non-adjacent neighbors it is 
possible to obtain better results. 

Also, we can use the following preprocess to improve the 
efficiency of the algorithm and reduce the number of the 
selected guards. Before starting the algorithm and as 
preprocess, the list of all visible faces for each vertex is 
prepared and during the execution of the algorithm, when a 
vertex is selected as a guard, all of the visible faces from its 
list will be marked as covered. Then, as the algorithm 
proceeds, when a new face appears at the boundary of the 
TIN, it will be checked to see if it has been marked before. If 
so, it does not require any more guard and it will be removed 
from the TIN. To use this improvement it should be paid 
more preprocessing costs that will increase the running time 
of the algorithm by  to produce the list of the visible 
faces of each vertex. 

)( 3nO

 
4 Concluding Remarks 

In this paper we presented a new algorithm for guarding 
TINs which includes two phases: first, the initial TIN is 
reduced to a collection of simple polygons. This is done by 
removing some vertices of the TIN and assigning a guard to 



any one of them. Then, by using an existing algorithm the 
resulting polygons are covered. 

The running time of the presented algorithm is  in 
which n is the number of the vertices of the TIN. The upper 
bound of the number of the assigned guards is 

)(nO

⎣ ⎦3/2n  in 
worst case and  in average. In addition, a method was 
proposed to improve the efficiency of the algorithm by 
paying more costs as preprocess. 

⎣ 2/n ⎦

One of the positive aspects of this algorithm is that, 
during the process of guard assignment, instead of just 
considering the local visibility, it is possible to use the global 
visibility of the previously selected guards to cover some 
non-adjacent faces. This will reduce the number of the guards 
especially on real surfaces as verified by experimentation. 
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