
A New Algorithm for Guarding Triangulated Irregular Networks*

Alireza Zarei
zarei@mehr.sharif.edu

Mohammad Ghodsi
ghodsi@sharif.edu

Computer Engineering Department, Sharif University of Technology

P.O. Box 11365-9517, Tehran, IRAN
IPM School of Computer Science, P.O. Box 19395-5746, Tehran, IRAN

Abstract: In this paper, we present a new algorithm for vertex guarding of a triangulated surface, which takes into account the heights of the
vertices and considers the global visibility of the guards. In this algorithm, the initial surface is reduced to a collection of simple polygons and
trivial triangulated surfaces. This is done by assigning guards to some vertices and removing the faces covered by these guards. The
remaining simple regions are then guarded properly. The running time of our algorithm is linear in terms of n, the number of vertices. The
upper bound of the assigned guards is ⎣ ⎦3/2n , and its expected number is ⎣ ⎦2/n , which is the same as the worst case lower bound for the

problem. The running time of the best known algorithm for this problem is which selects at most guards. We expect a
better performance of our algorithm on the average in practice. This has been verified by experimentation.

)(2/3nO ⎣ 2/n ⎦

Keywords: NP-completeness, art gallery problem, guard set, triangulated irregular networks, approximation algorithms

* This work has been supported by a grant from IPM school of CS (No. CS1384-2-01).

1 Introduction
In 1973, Victor Klee asked this question ``How many

guards are required to guard an art gallery?" This was named
as the art gallery problem and many of its different versions
have been considered by researchers [1]. We focus on
solving this problem in 3-dimensional surfaces. To make the
problem easier, we assume that each vertical line intersects
the surface in at most one point. Such surfaces are known as
2.5-dimensional surfaces. There are several computational
models for such regions. One, that is used often, is to
approximate the region by a collection of joint triangular
faces. This model, known as TIN (Triangulated Irregular
Networks), is used in this paper.

Vertex guarding on TINs is defined as selecting the
minimum number of vertices (or guards), such that each
point of the surface is visible from at least one of the guards.
Two points on a TIN are visible to each other if their

connecting segment does not intersect any other point of the
surface and their connecting segment lies above the TIN.

This problem is known to be NP-hard [2]. Therefore,
attempts have been focused on finding reasonable
approximations [3, 4]. Nevertheless, a wide range of these
problems are not approximable within a constant factor [5].
So, the main contribution is to come up with an efficient
approximation that guarantees the worst case bound.

Moreover, visibility processing in 2.5-dimensional
surfaces is still complicated. Therefore, a simpler version has
been considered in most solutions in which the heights of the
points are all ignored. In such simplification, a vertex can
only cover its adjacent faces. This reduces the problem to a
2-dimensional version and the TIN can be represented by a
planner graph with triangular faces.

Fig. 1: A TIN which requires at least vertex guards. ⎣ ⎦2/n

According to the four-color theorem, guards are

always sufficient to guard a TIN with n vertices and as
shown in Fig. 1, this number of guards is sometimes
necessary [6]. Based on this idea, an time algorithm
have been presented which uses at most guards [7].

⎣ 2/n ⎦

⎦

⎦

⎦

⎦

)(2nO

⎣ 2/n
Another approach is based on finding the maximum

matching in the dual graph of a planar graph which leads to
an time algorithm to assign at most guards
[7]. There are faster and easier algorithms at expense of more
guards; an example is a linear time algorithm that selects at
most guards [6]. In this algorithm, the corresponding
planar graph is colored by five colors and then the vertices
colored by one of the least used three colors are selected as
guards.

)(2/3nO ⎣ 2/n

⎣ 5/3n

In this paper, a new approximation algorithm is presented
that runs in linear time and selects at most guards in
the worst case. The expected number of the guards is

⎣ 3/2n

⎣ ⎦2/n ,
which is the same as the lower bound of this problem.

Despite its predecessors, our algorithm takes the global
visibility of vertices into account. In our proposed algorithm
the heights of the vertices are considered to determine
whether a vertex can see its non-adjacent faces. We do this
during the incremental process of guard assignment without
increasing the order of the algorithm. This height
consideration reduces the upper bound of the average number
of the assigned guards to ⎣ . Moreover, if we pay more
costs to prepare the faces visible from each vertex, which
requires of preprocessing time, the number of the
assigned guards is significantly reduced. This has been
verified by experimentation. On the other hand, the optimal
number of the guards is usually less than . Therefore,
our algorithm can produce better results on real surfaces.

⎦

⎦

⎦

2/n

)(3nO

⎣ 2/n

In the rest of this paper and in Section 2, guarding
problem for a collection of simple polygons is considered. In
Section 3, we present a method by which a TIN is reduced to
a set of such polygons or trivial TINs. In Section 4, the new
algorithm is proposed and its average case analysis is
described in Section 5. Finally, the materials are summarized
and concluded in Section 6.

2 Guarding Simple Polygons

There is a linear time algorithm that selects at most
 vertex guards covering any n vertex triangulated

simple polygon (without holes) [8].
⎣ 3/n

Fig. 2: The connected polygons and can be

extended to a single one by adding the edge uu' and
removing the edges uv and u'v.

1P 2P

Trivially, this algorithm is applicable on a collection of

triangulated disjoint polygons , , …, . We show that
this result can also be applied to a set of polygons that may
have common vertices but in such a way that their exterior
region remains connected.

1P 2P kP

According to Fig. 2, it is possible to combine two joint
polygons and produce a single simple polygon. This is done
by adding the edge uu' that connects two adjacent vertices of
the common vertex v, one from each polygon, and then
removing the edges uv and u'v from the resulting polygon.
Trivially, this conversion does not change the number of the
vertices. Doing this conversion iteratively, any collection of
simple polygons S={ , , …, } whose exterior region
is connected can be converted to a collection S' of disjoint
simple polygons. The number of vertices of polygons in S' is
equal to the number of the vertices of polygons in S and any
set of guards that covers the interior of S' is also sufficient to
cover the interior of S. Consequently,

1P 2P kP

Theorem 1. A set , , …, of simple polygons,

whose exterior region is connected (has no hole), can be
guarded by at most

1P 2P kP

⎣ ⎦3/n vertex guards in time in
which n is the number of the vertices of all 's (common
vertices of polygons are enumerated only once).

)(nO

iP

3 Reducing a TIN to a Set of Simple
Polygons and Trivial TINs

The main idea of our algorithm is to make the initial TIN
simpler by incrementally selecting a set of vertices (as
guards) and removing those faces that are visible to these
guards. In this section, we present this reduction process that
reduces the TIN to a set of simple polygons and trivial TINs.
We will use the result of the previous section to guard the
remaining faces. Therefore, this reduction process must be
done in such a way that the exterior region of the remaining
faces remains connected.

To achieve this goal and to assign the guards efficiently,
two properties must exist:

1. Removing a vertex and its dominated faces must not
create any hole inside the remaining TIN.

2. Any removed vertex (which is a guard) must have at
least four adjacent triangles.

The first property is satisfied by using the following
strategy during the reduction process; when a guard is
assigned to a vertex, only that connected set of the visible
faces around the guards are removed from the TIN.

Fig. 3: Trivial TINs do not have a vertex with more than

three adjacent faces.

Fig. 4: Different possibilities of an internal vertex i and its

boundary vertex j depending on the degree of j: I) j has at
least four adjacent faces, II) j has three adjacent faces, and
III) j has two adjacent faces.

In addition, a guard is only assigned to a vertex that its

covered region is adjacent to the exterior one in at least one
edge. Hence, this type of vertex and face deletion does not
create any hole inside the TIN. None of the TIN's shown in
Fig. 3 has a vertex that supports the latter property. We call
these TINs trivial and are referred to as 3-TIN and 4-TIN in
the rest of paper. We show that any non-trivial TIN is either a
simple polygon or has a vertex with at least four adjacent
triangles and its removal satisfies both of the properties.

In any TIN which is not a simple polygon, there is at least
one none boundary vertex i. If j is a boundary vertex adjacent
to i, depending on the degree of j, there are three possibilities
shown in Fig. 4:

I) The boundary vertex j has at least four adjacent
triangles that are removed from the TIN by removing j,
and this does not create any hole inside the TIN.
Therefore, both of the properties are satisfied here.

II) j has three adjacent faces. If one of the i or k vertices
has more than three adjacent triangles, removing it will
satisfy the second property and because of the removal
of the jn or jm edges it does not create any hole inside
the TIN. Hence, it satisfies the first property, too.

If none of the i and k has more than three adjacent
triangles, the TIN must be the same as a 4-TIN. The
reason is that, as assumed, i is an internal vertex of the
TIN and has at least three adjacent triangles. The
triangles ∆ijk and ∆mji are already adjacent to i. So, the
only remaining triangle that can be adjacent to i is ∆mik
(see Fig. 5). This will also fix the state of k with three
adjacent triangles (∆jkn, ∆ijk, ∆mik). Therefore, if the
TIN has more vertices than a 4-TIN, it had to be
extended from n or m as shown in Fig. 5. However, the
middle TIN is a 4-TIN.

III) j has only two adjacent faces. If any one of i, n or m
vertices has more than three adjacent triangles,
selecting it as guard will satisfy both of the properties.
But if none of them has, the TIN must be the same as a
3-TIN or a 4-TIN as shown in Fig. 6.

Fig. 5: For the second possibility of Fig. 4, when none of i

and k has more than three adjacent triangles, the TIN must be
a 4-TIN.

Fig. 6: For the third possibility of Fig. 4, when none of i,

n and m has more than three adjacent triangles, the TIN must
be a 3-TIN or a 4-TIN.

Consequently,
Theorem 2. Each TIN can be reduced to a collection of

simple polygons and trivial TIN's by removing several of its
vertices so that during the reduction process, the exterior
region of the remaining faces remains connected and any one
of the removed vertices (assigned by a guard) has at least
four adjacent faces that will also be removed from the TIN.

4 The Proposed Algorithm

Our proposed algorithm has three phases:
1) In the first phase, as described in Section 3, the initial

TIN is converted to a collection (chain) of simple
polygons and trivial TIN's. This is done by assigning
guards to some vertices of the TIN and removing the
faces covered by these guards. This phase is
continued until there is no vertex with more than
three adjacent faces.

2) In the second phase, the internal vertex of each 3-TIN
receives one guard. Also, one of the boundary
vertices of each 4-TIN, which has three adjacent
faces, receives one guard.

After this phase, only a collection of simple
polygons remains each of which Theorem 1 is
applied.

3) Finally, the remaining faces are covered with the
method described in section two.

In order to improve the efficiency of the algorithm, when

a new guard is assigned and its covered faces are removed,
the newly appeared faces on the boundary of the remaining
TIN are checked against this guard. Any one of these faces
that is visible from the new guard is also removed from the
TIN. This process is continued until there was no such newly
appeared face on the boundary of the TIN. Every face can be
appeared on the boundary at most three times from any one
of its edges. Therefore, this improvement takes linear time in
terms of the number of the faces of the TIN. However, as

shown in the next section, this strategy reduces the expected
number of the guards to . ⎣ ⎦2/n

In the following subsections, the correctness of the
algorithm is proved and its efficiency and running time
complexities are analyzed.

4.1 The algorithm correctness

It is simple to prove that this algorithm covers all faces of
the TIN: In each step of the first phase, only the faces that are
visible to a vertex are removed and because a guard is
assigned to that vertex the removed faces are guarded
correctly. After reduction phase, a new guard is assigned to
each 3-TIN which covers it completely. Also, a new guard is
assigned to each 4-TIN which covers all faces of it, except
one face which will be added to the collection of the
remaining simple polygons.

Finally, by using the method described in section two, the
remaining simple polygons will be guarded. Therefore,

Theorem 3. The set of the selected guards of the
algorithm covers all faces of the TIN.

4.2 Upper bound of the number of the guards

We first introduce several basic lemmas:
Lemma 1. After the reduction phase, there is no common

vertex among 3-TINs.
Proof. If there is such a vertex, it must have more than

three adjacent faces. But, vertices with more than three
adjacent faces are removed from the TIN by assigning a
guard to them during the reduction phase.

■
Lemma 2. After the reduction phase, if a 3-TIN and a 4-

TIN have a common vertex, all of the adjacent faces of that
common vertex are covered during the second phase of the
algorithm. Therefore, it will be removed from the TIN
automatically.

Proof. Such a vertex has two adjacent faces from the 3-
TIN and one from the 4-TIN. According to the method of
assigning guard to the trivial TINs, after the second phase of
the algorithm, all these faces are covered and removed from
the TIN. Therefore, after the second phase, that vertex has no
adjacent faces and will be removed from the TIN
automatically.

■
Assume that K is the set of the 3-TINs produced after the

first phase of the algorithm and k=|K|. Also denote by I the
set of the remaining faces of the TIN, after the second phase,
which at least one of the boundary vertices of any one of
them used to be a boundary vertex of a 3-TIN and i=|I|. If

 then the following lemma exists: ki ≤
Lemma 3. The number of the boundary vertices of the 3-

TINs which have no adjacent faces after the second phase of
the algorithm and will be removed from the initial TIN
automatically is greater than or equal to . ik 33 −

Proof. Each 3-TIN has three boundary vertices and no
one of them is common between two such TINs. Hence, there
are such vertices. On the other hand, any one of the faces
in I can be adjacent to at most three of these vertices.

Therefore, at least

k3

ik 33 − vertices of them are not adjacent
to any one of the remaining faces and can be removed
without requiring any guard on them.

■
These lemmas help us to prove the following theorem

about the upper bound of the number of the guards selected
by our algorithm:

Theorem 4. The upper bound of the number of the
selected guards of the algorithm, for a TIN of n vertices, is
⎣ ⎦3/2n .

Proof. Denote by m the number of the assigned guards
during the reduction phase and by j the number of the 4-TINs
after the reduction phase.

Each TIN of n vertices and t boundary ones has
22 −− tn faces [9]. In the first phase of our algorithm, when

a guard is assigned to a vertex, at least four faces of the TIN
are removed from it. Each 3-TIN has three faces and each 4-
TIN has four faces and these faces are not common and are
distinct from the faces in I. So the following inequality holds:

)1(2344
22344

nikjm
tnikjm

≤+++⇒
−−≤+++

We illustrate two possibilities:
1) ki ≤ : In this case, according to lemma 3, at least

ik 33 − vertices will be removed from the TIN without
assigning any guard to them. So, the number of the guards is
obtained from the following relation(is the number of
the guards):

)(GN

)2(
3

)33()()(⎥⎦
⎥

⎢⎣
⎢ −−++−

+++≤
ikkjmnkjmGN

Relation (1) leads to
4
32 iknjm +−

≤+ and by

substituting in relation (2) the following is resulted:

)(
6
5

3
2

12
10108

12
121632412396

3

)33()
4
32(

4
32)(

kin

ikn

ikiknnkinn

ikkiknn
kiknGN

−+≤⇒

+−
≤⇒

+−++−++−−
≤⇒

⎥
⎥
⎥

⎦

⎥

⎢
⎢
⎢

⎣

⎢ −−+
−−

−
++

−−
≤

By the assumption that , for this case the upper bound of
the number of the guards is

ki ≤
⎣ ⎦3/2n .

2) : We know that: ki >

)3(
3

)()(⎥⎦
⎥

⎢⎣
⎢ ++−

+++≤
kjmnkjmGN

Combining relation (1) and the () assumption, leads

to

ki >

4
2nkjm ≤++ and by substituting in relation (3) the

following is resulted:

3
2

12
246

3
)4/2(

4
2)(

n

nnn

nnnGN

≤⇒

−+
≤⇒

⎥⎦
⎥

⎢⎣
⎢ −

+≤

So, the theorem holds in both cases.
■

4.3 The running time analysis

We assume that a DCEL(Doubly-Connected Edge List)
structure is used to hold the TIN. In this data structure,
navigating the boundary edges of a face and the adjacent
faces of a vertex, edge or face can be done in linear time.
Other specifications and properties of this data structure exist
in [9].

During the reduction phase of the algorithm, each vertex
is processed at most once and the running time of removing
that vertex and reconstructing the DCEL is proportional to
the number of the adjacent faces of it. Therefore, for all
vertices of the TIN, the total cost of this process is linear in
terms of the number of the vertices of the TIN. Also each
face can appear on the boundary of the TIN at most three
times from each edges of it. So, the whole running time
required to check if a newly appeared face on the boundary
of the TIN is visible from the last assigned guard, is linear in
terms of the number of the faces of the TIN. On the other
hand, depending on the Euler formula, the number of the
faces and edges of a TIN is a linear function of the number of
the vertices of it [9].

Consequently, the running time of the first phase of the
algorithm is in which n is the number of the vertices of
the TIN.

)(nO

Using the DCEL structure, identifying and guarding the
trivial TINs, in the second phase of the algorithm, can be
done in linear time. Also, the last phase of the algorithm as
said in Theorem 1, is done in linear time.

Theorem 5. The running time of the algorithm is linear in
terms of the number of the vertices of the TIN.

5 Average Case Analysis

The average case lower bound of the number of the
guards is derived from the following two claims:

1) During the first phase of the algorithm, the expected
number of the covered faces by any guard is 6.

2) After the first phase of the algorithm, the expected
number of the guards for covering the remaining
faces is at most in which k is the number of
the vertices of these faces.

⎣ 3/k ⎦

A face A is called a second-order neighbor of a vertex v if
A is not adjacent to v but has some common edges with at
least one of the adjacent faces of v. In the following average
case analysis, the two probabilities; A is visible to v or not;
are assumed to be equal. In fact, these probabilities depend
on the heights of v, its adjacent vertices, and vertices of A.

Fig. 7: The expected number of the adjacent faces of a

vertex i in a plane graph is 6.

These heights determine the angle between two adjacent

faces which may be either less than or greater than
which A will then be visible or invisible from v, respectively.
This will help us to prove the claims.

o180

According to the Euler formula, the average degree of a
vertex in a plane graph is 6 (see Fig. 7). During the first
phase of the algorithm, when a guard is assigned to a vertex i,
it will cover 4 or 6 faces of the TIN. This depends on whether
another guard has been assigned to any one of its neighbor
vertices, like j, before assigning a guard on i.

Also, a vertex can cover some of its non-adjacent faces.
There are many different situations for a vertex i with respect
to its adjacent and non-adjacent faces that must be
considered. However, to prove our claim it is sufficient to
show that the expected number of the second-order neighbor
faces that will be covered by the newly selected guard is at
least one. This is proved by comparing the different
situations of vertex i and its neighbors: Only in one state i has
no second-order neighbor face and in contrast, there is a state
in which i has four such faces as shown in part Ι of Fig. 8.
Also, for any one of the states in which i has only one
second-order neighbor face, there is a distinct state that i has
three such faces as shown in part ΙΙ and of Fig. 8. ΙΙΙ

Therefore, each vertex i has at least two second-order
neighbor faces on the average. According to our assumption,
by which a vertex can see its second-order neighbor with

probability of
2
1 , the expected number of such faces that will

be covered by i is one.
Depending on the existence or absence of the vertex j, on

which a guard has been assigned before assigning on i, the
expected number of the covered faces is at least 5 or 7,
respectively. Therefore, during the first phase of the
algorithm, the expected number of the covered faces by any
selected guard is at least 6 and this is our first claim.

After the first phase of the algorithm, the remaining
unguarded faces of the initial TIN compose a collection of
simple polygons and trivial TINs. In section two, we showed
the second claim for simple polygons. So, its correctness
must be shown only for trivial TINs.

When a guard is assigned to the internal vertex of a 3-
TIN, according to part Ι of Fig. 9, all of its faces will be
covered. In addition, anyone of its boundary vertices which is
not common with another remaining region will be removed
from the TIN without requiring another guard on it.
Moreover, assume that such a region, like face D adjacent to
vertex d as shown in part Ι of Fig. 9 exists. If d is visible to
the internal vertex a, which currently has a guard, the
corresponding boundary vertex (d) does not require any

guard on it and will be removed from the TIN automatically.
Therefore, the expected number of the vertices that will be
removed from a 3-TIN, when a guard is assigned to its

internal vertex, equals 1)
4
1

2
1(3 ++ which is greater than 3.

Fig. 8: Correspondence between the different situations of

a vertex i with respect to the number of its second-order
neighbors: I) The corresponding states in which i has none
and 4 second-order neighbors, II, III) The corresponding
states in which i has one and 3 second-order neighbors.

On the other hand, when a guard is assigned to a

boundary vertex of a 4-TIN, according to part ΙΙ of Fig. 9, if
this guard (a) sees the only remaining triangle of the TIN (A),
b and c vertices can be removed without requiring any more
guards. Also, if the faces E and F do not exist or they are
visible from a, the other two vertices, d and f, will also be
removable. There can be two faces like the face F adjacent to
vertex f. So, the expected number of the vertices that will be
removed from a 4-TIN, when a guard is assigned to a
boundary vertex of it, equals

 which is greater
than 3.

1)2/1(2)2/)4/12/1(()4/12/1(+++++

Consequently, after the first phase of the algorithm, the
expected number of the guards required to cover the
remaining regions of the initial TIN is in which k is
the number of the vertices of these regions. So, our second
claim is also true for all kind of the remaining regions.

⎣ 3/k ⎦

Now, we combine the two results obtained so far. Denote
by m the number of the guards selected in the first phase of
the algorithm and by t the number of the remaining faces
after this phase for an initial TIN of n vertices. We have:

)5(0

)4(
6

226

mnt

tnmntm

−≤≤

−
≤⇒≤+

Fig. 9: I) When a guard is assigned to a, if the face D

does not exist or it is visible from a, the vertex d will be
removed from the TIN automatically. This is also true for (b,
B) and (c, C) pairs. II) When a guard is assigned to a, if the
face A is visible from a, the vertices b and c will be removed
from the TIN automatically. Also, depending on the visibility
of E and F from a, the vertices b and c can be removed.

By combining these equations, the upper bound of m for

the minimum and maximum values of t is:

)7(
56

)(2:

)6(
6

2:0

nmmnnmmnt

nmt

≤⇒
−−

≤−=

≤=

In the first case, ⎣ ⎦3/n guards cover the TIN and in the
second case the upper bound of the number of the guards is
derived from the following equation:

3
)(mnmGN −

+≤

By substituting m in the above equation with its upper
bound from equation (7), the upper bound of the guards will
be ⎣ ⎦15/7n which is smaller than . So, the expected
number of the guards equals the lower bound of the required
guards.

⎣ 2/n ⎦

It is important to note that in this analysis, we have
considered only the second-order neighbors and by
considering other levels of non-adjacent neighbors it is
possible to obtain better results.

Also, we can use the following preprocess to improve the
efficiency of the algorithm and reduce the number of the
selected guards. Before starting the algorithm and as
preprocess, the list of all visible faces for each vertex is
prepared and during the execution of the algorithm, when a
vertex is selected as a guard, all of the visible faces from its
list will be marked as covered. Then, as the algorithm
proceeds, when a new face appears at the boundary of the
TIN, it will be checked to see if it has been marked before. If
so, it does not require any more guard and it will be removed
from the TIN. To use this improvement it should be paid
more preprocessing costs that will increase the running time
of the algorithm by to produce the list of the visible
faces of each vertex.

)(3nO

4 Concluding Remarks

In this paper we presented a new algorithm for guarding
TINs which includes two phases: first, the initial TIN is
reduced to a collection of simple polygons. This is done by
removing some vertices of the TIN and assigning a guard to

any one of them. Then, by using an existing algorithm the
resulting polygons are covered.

The running time of the presented algorithm is in
which n is the number of the vertices of the TIN. The upper
bound of the number of the assigned guards is

)(nO

⎣ ⎦3/2n in
worst case and in average. In addition, a method was
proposed to improve the efficiency of the algorithm by
paying more costs as preprocess.

⎣ 2/n ⎦

One of the positive aspects of this algorithm is that,
during the process of guard assignment, instead of just
considering the local visibility, it is possible to use the global
visibility of the previously selected guards to cover some
non-adjacent faces. This will reduce the number of the guards
especially on real surfaces as verified by experimentation.

References:
[1] J. Urrutia, Art gallery and illumination problems, in: J.-

R. Sack, J. Urrutia (Eds.), Handbook on Computational
Geometry, Elsevier Science, Amsterdam, 2000.

[2] R. Cole, M. Sharir, Visibility Problems for Polyhedral
Terrains, Journal of Symbolic Computation Vol. 7, pp.
11-10, 1981.

[3] S. Eidenbenz, Approximation algorithms for Terrain
Guarding, Information Processing Letters (IPL), Vol.
82, pp. 99-105, 2002.

[4] Ana Paula Tomas, Antonio Leslie Bajuelos, Fabio
Marques, Approximation Algorithms to Minimum
Vertex Cover Problems on Polygons and Terrains, In
P.M.A Sloot et al. (eds.), Proceedings of the
International Conference on Computational Science
(ICCS 2003), Lecture Notes in Computer Science 2657,
Springer-Verlag, pp. 869-878, 2003.

[5] S. Eidenbenz, (In-)Approximability of visibility
problems on polygons and terrains, PhD thesis, Diss.
ETH No. 13683, ETH, Zurich, 2000.

[6] P. Bose, T. Shermer, G. Toussaint, B. Zhu, Guarding
polyhedral terrains, Computational Geometry-Theory
and Applications, Vol. 7:3:, pp. 173-185, 1997.

[7] P. Bose, D. Kirkpatrick, Z. Li, Efficient algorithms for
guarding or illuminating the surface of a polyhedral
terrain, Proc. of the Eight Canadian Conference on
Computational Geometry, 1996.

[8] B. Chazelle, Triangulating a simple polygon in linear
time, Discrete and Computational Geometry, Vol. 6,
pp. 485-524, 1991.

[9] M. de Berg, M. van Kreveld, M. Overmars, O.
Schwarzkopf, Computational Geometry Algorithms and
Applications, Springer, pp. 45-60, 1997.

