
Geometric Spanners in the MapReduce
Model

Sepideh Aghamolaei1(B), Fatemeh Baharifard2, and Mohammad Ghodsi1,2

1 Department of Computer Engineering,
Sharif University of Technology, Tehran, Iran

aghamolaei@ce.sharif.edu, ghodsi@sharif.edu
2 School of Computer Science, Institute for Research in Fundamental Sciences (IPM),

Tehran, Iran
f.baharifard@ipm.ir

Abstract. A geometric spanner on a point set is a sparse graph that
approximates the Euclidean distances between all pairs of points in the
point set. Here, we intend to construct a geometric spanner for a massive
point set, using a distributed algorithm on parallel machines. In particu-
lar, we use the MapReduce model of computation to construct spanners
in several rounds with inter-communications in between. An algorithm in
this model is called efficient if it uses a sublinear number of machines and
runs in a polylogarithmic number of rounds. In this paper, we propose
an efficient MapReduce algorithm for constructing a geometric spanner
in a constant number of rounds, using linear amount of communication.
The stretch factors of our spanner is 1 + ε, for any ε > 0.

Keywords: Computational geometry · Parallel computation
Geometric spanners · MapReduce

1 Introduction

Space limitations are the main challenge in processing massive data i.e. data that
do not fit inside the memory of a single machine. Given a bounded memory, an
efficient algorithm has a low time complexity. Some space-bounded models allow
a type of secondary slower memory or communication between multiple fast
memories to reduce the running time of the algorithm. Allowing two types of
memory, shifts the challenge in the algorithm design to data communication.

MapReduce is a framework for processing data in large scales in which a set of
machines, each have a part of the input, run an algorithm in simultaneous rounds
and after each round, they can communicate their data to each other. Efficient
MapReduce algorithms have sublinear machines each with sublinear memory
that run for polylogarithmic number of rounds and the number of machines
used in the algorithm must be asymptotically as many as the input size.

An example of problems that has been discussed in MapReduce framework
is Euclidean minimum spanning tree problem, which was studied by Andoni
c© Springer International Publishing AG, part of Springer Nature 2018
L. Wang and D. Zhu (Eds.): COCOON 2018, LNCS 10976, pp. 675–687, 2018.
https://doi.org/10.1007/978-3-319-94776-1_56

676 S. Aghamolaei et al.

et al. [3] who presented an algorithm with O(1) round complexity and superlinear
memory. Later, Yaroslavtsev and Vadapalli [23] proved lower bounds for this
problem and proposed an algorithm for approximating each edge of the minimum
spanning tree. Another example is computing the core-set for convex hull using
the method proposed in [2], which also works in MapReduce model. Moreover,
fixed-dimensional linear programming, 1-dimensional all nearest neighbors, 2-
dimensional and 3-dimensional convex hull algorithms were solved in memory-
bound MapReduce model [13] and practically proven algorithms for sky-line
computation, merging two polygons, diameter and closest pair problems have
been discussed in MapReduce model [8,10].

A network is called a t-spanner, if there is a short path between any pairs
of nodes, within a guaranteed ratio t to the shortest paths between those nodes
in an underlying base graph. Most of the time and in this paper, the complete
graph which has θ(n2) edges is considered as the underlying base graph.

Most efficient spanner construction algorithms are geometric and they find
practical applications in areas such as terrain construction [12,21], metric space
searching [19], broadcasting in communication networks [11] and solving approx-
imately geometric problems like traveling salesman problem [20].

Recently, a divide and conquer algorithm for constructing geometric spanners
has been studied as spanners merging problem in [4]. The size of the spanner
created using this method is O(n log n), which requires O(log n) times more
memory than the input. However, the proposed algorithm uses linear memory
in its final merging steps, which is infeasible for MapReduce model. Moreover,
in [6,14] the problems of well-separated pair decomposition on PRAM and 3D
covex hull in MapReduce model were considered. Using the lifting transforma-
tion, 3D convex hull solves planar Delaunay triangulation. Using simulation of
PRAM algorithms in MapReduce as discussed in [14] gives algorithms for the two
spanners of [4,6]. Direct algorithms for Delaunay triangulation in MapReduce
[5,18] are randomized and require a super-linear number of machines unlike the
PRAM simulation. A summary of results on geometric spanners in MapReduce
is shown in Table 1.

Contributions. Table 1 compares the previous results for geometric spanners
with the one given in this paper.

Table 1. A summary of results on geometric spanners in MapReduce. 1
δ

= logn
m, where

m is the memory of each machine.

Spanner |E| Stretch factor Rounds Communication Reference

WSPD O(n) 1 + ε O(log n
δ

) O(n
δ log n

) Simulation [14], PRAM [6]

DT O(n) 1.998 O(1
δ
) O(n

δ
) 3D convex hull [14,22]

- O(n
ε
) 1 + ε O(1

δ
) O(n

δ
) this paper (Algorithm 4)

Geometric Spanners in the MapReduce Model 677

In this paper, we propose efficient algorithms for constructing a geometric
spanner similar to Yao-graph and a special case of dynamic programming in the
MapReduce model. Our algorithms run for a constant number of rounds and use
linear memory.

2 Preliminaries

In this section we review basic knowledge required to understand the rest of the
paper.

2.1 MapReduce Model

Different theoretical models for MapReduce has been introduced over the years
[9,14,16]. In MapReduce class (MRC) model, for an input of size n, the following
three conditions must be satisfied:

– the number of machines is sublinear: L = o(n)
– the memory of each machine is sublinear: m = o(n)
– the number of rounds is polylogarithmic: O(polylog(n)).

In MRC model, the input of each round is distributed among machines. Let Si

be the part of the input assigned to machine i in each round. Data in MapReduce
are stored as (key, value) pairs. A MapReduce algorithm consists of three steps:
map, shuffle and reduce:

– map: processes data into a set of (key, value) pairs.
– shuffle: sends data with the same key to the same machine.
– reduce: aggregates data with the same key.

Operations map and reduce are local, while shuffle distributes data between
machines.

Two main parallel algorithms operations are semi-group and prefix sum:

– Semi-group: x1 ⊕ x2 ⊕ · · · ⊕ xn, i.e. for a set S and a binary operation ⊕ :
S×S → S, the associative property holds: ∀a, b, c ∈ S, (a⊕b)⊕c = a⊕(b⊕c).

– Prefix sum: x1 ⊕ x2 ⊕ · · · ⊕ xi, i = 1, . . . , n
– Diminished prefix sum: x1 ⊕ x2 ⊕ · · · ⊕ xi−1, i = 1, . . . , n

Both of these operations also take O(logn
m) rounds and O(n logn

m) computation in
MapReduce [14]. Parallel algorithms in CRCW PRAM model can be simulated
in MapReduce model by a factor 2 slow-down [14]. A class of functions that can
be computed with minimum round and communication complexity are known as
MRC-parallelizable functions [16]. An example of a MRC-parallelizable func-
tions is computing the frequency of words in a set of documents which is known
as word count algorithm [7].

Special cases of dynamic programming have been discuessed in MapRe-
duce [15] with (1 + ε)-approximation factor, O(1) rounds and Õ(n) communica-
tion, where Õ ommits a polylog(n) factor. The required conditions for this type

678 S. Aghamolaei et al.

of dynamic programming are monotonicity and decomposability. Monotonicity
states that the cost of subproblems is less than the main problem, and decom-
posability states that the input can be decomposed into two-level laminar family
of partial inputs where group is the higher level and block is the lower level, such
that the solution to the main problem is a concatenation of the solutions to the
subproblems and a nearly optimal solution can be constructed from O(1) blocks.

Algorithms for constructing range searching data structures in MapReduce
exist [1]. However, they lack the efficiency required for simultaneous queries.

2.2 Geometric Spanners

A geometric network G is a t-spanner for a point set P , if a t > 1 exists such
that for each pair of points u and v in P , there is a path in G between u and
v, whose length is less than or equal to the t times of the Euclidean distance
between u and v. The minimum t such that G is a t-spanner of P is the spanning
ratio of G.

Many spanner algorithms exist which excel in different quality measures.
Here, we describe an algorithm for constructing a t-spanner of a set of points
in Euclidean space which constructs a spanner with a linear number of edges in
O(n log n) time.

Yao-Graph. One of the most common spanners is Yao-graph which is denoted
by Yk-graph. The Yk-graph is constructed as follows. Given a set P of points
in the plane, for each vertex p ∈ P , partition the plane into k disjoint cones
(regions in the plane between two rays originating from the same point) with
apex p, each defined by two rays at consecutive multiples of θ = 2π

k radians
from the negative y-axis and label the cones C0(p) through Ck−1(p), in counter-
clockwise order around p. Then for each cone with apex p, connect p to its closest
vertex q inside that cone.

It is proven that for any θ with 0 < θ < π/3, the Yao-graph with cones of
angle θ, is a t-spanner of P for t = 1

1−2 sin(θ/2) with O(n
θ) edges, that can be

constructed in O(n log n
θ) time [17].

3 Mergeable Dynamic Programming

In Algorithm 1 we solve the special dynamic programming, which is defined
below, in MapReduce model. Actually, the idea behind dynamic programming
in MapReduce is similar to the parallel prefix sum in PRAM.

Definition 1 (Mergeable DP). A dynamic program (DP) with input set S
and output set Q with a recurrence relation f : Sk → Q and a table T with a
valid filling order Φ : T → N and size |T | = nd, and mappings between S ↔ T
and Q ↔ T , is a mergeable DP if the following three conditions hold:

– Sparsity: The number of cells of T required for computing Q is O(|S|).

Geometric Spanners in the MapReduce Model 679

– Neighbors: Computing f on each block requires data only from O(1) previous
blocks (in the order of Φ).

– Order Preserving: The value of each cell must only depend on the cells with
smaller or equal index based on Φ and the order of each dimension of the
table T .

– Parallelizable: Function f must be a semi-group function.
– Summarizable: There is an integer � sublinear in |S| (� = o(|S|)), such that

using the last � values of T in the order of Φ, it is possible to compute the
rest of the table, i.e. function h exists such that T [Φ−1(k)] = h(T [Φ−1(k −
1)], . . . , T [Φ−1(k − �)], S[Φ−1(k)]).

The sparsity and summarizability of the DP table allow us to summarize
the computed part of the table into a sublinear subset of cells, which we call a
frontier. A formal definition of frontier is given in Definition 2.

Definition 2 (Frontier). The frontier is a subset of cells along with their
indices F (denoted by F.cells and F.indices) of a DP table T , such that cells
with indices R = {E(F) + 1, . . . , |T |} can be computed using cells with indices
F.indices ∪ R, where E(F) = maxf∈F.indices f .

Definition 3 (Frontier Merging). Given two frontiers a, b, frontier merg-
ing operation creates a frontier c which is a frontier for cells from 1 to k =
max{E(a), E(b)}. Build a hypotetical table TX similar to T but only store data
from set X = a.cells ∪ b.cells. Fill the table TX from cell 1 to cell k. Using
the summarizabilty property of the mergeable DP with table TX and ordering Φ,
there is a sequence TX [Φ−1(k)], . . . , TX [Φ−1(k − �−1)] for each cell TX [Φ−1(k)].
Report this as c.

In Lemma 1, we show that a frontier of a mergeable DP can be constructed using
a (diminished) parallel prefix algorithm.

Lemma 1. The operation of Definition 3 builds a frontier for ∪k−�
i=kT [Φ−1(i)]

and it is a semi-group function.

Proof. Since T is a mergeable DP, TX is also a mergeable DP. For two sets A and
B, using the semi-group property of f , computing TA and TB and applying f
on their results in the order of Φ, gives TA∪B. For A = {T [1], . . . , T [E(a)]}
and B = {T [1], . . . , T [E(b)]}, the result is A ∪ B = {T [1], . . . , T [k]}, k =
max(E(a), E(b)) = E(c).

Assume three frontiers a, b and c of a DP table in the order of Φ with the
set of indices denoted by Sa, Sb and Sc, respectively. Now, we prove the two
possible orders of computation result in the same result. Since the frontiers in
the computation follow the order of Φ:

a ⊕ b = TSa∪Sb
[E(b)] ⇒ (a ⊕ b) ⊕ c = TSa∪Sb∪Sc

[E(c)]

The other case can be proven similarly:

b ⊕ c = TSb∪Sc
[E(c)] ⇒ a ⊕ (b ⊕ c) = TSa∪Sb∪Sc

[E(c)]

which proves the lemma. 	

680 S. Aghamolaei et al.

Now, we give an algorithm (Algorithm 1) for solving the mergeable DP (Defini-
tion 1) problems in MapReduce.

Algorithm 1. Mergeable DP in MapReduce
Input: A mergeable DP (S, Q, f, T, Φ)
Output: The output of DP
1: Compute a valid ordering Φ on S and distribute the points by Algorithm 2.
2: Map each cell S[Φ−1(i)] to a �-tuple (∅, . . . , ∅, S[Φ−1(i)]).
3: Run the diminished parallel prefix algorithm with the frontier merging as the oper-

ation on �-tuples.
4: Compute T by applying f on �-tuples and S and store the result.
5: Use f to update the local values of T to compute Q.
6: return Q

Theorem 1. Algorithm1 solves mergeable dynamic programming problems cor-
rectly.

Proof. By Definition 1, for a mergeable dynamic programming, the order (Φ)
in which the table is filled can be determined. Using this order, Algorithm2
finds partitions that are ordered based on the order of the dynamic program
(Theorem 4). Then, a parallel prefix computation can be used for computing the
frontier in each cell (Lemma 1) and the minimum of the related cells gives the
value of the cell in T . 	

Theorem 2. Algorithm1 takes O(logn

m) rounds and it has O(n logn
m) commu-

nication complexity in MRC model, if � = O(d+1
√

n) for a d-dimensional DP.

Proof. The algorithm consists of a parallel prefix computation and running
Algorithm 2 once. The round and communication complexity of Algorithm2 is
O(logn

m) and O(n logn
m) respectively. The round complexity of parallel prefix

algorithm is O(logn
m) and the communication complexity of the algorithm is

O(�.�d logn
m), since instead of data with O(1) dimension, vectors of length O(�)

have been used, and there are O(�d) cells.
Using Theorem 4, the number of points in each row and column is O(m), so

the overall communication and space for sending data from a row and a column
is also O(m). Based on Definition 1, the amount of data from other cells is O(m).
Therefore, all the steps of the algorithm can be run using O(n) communication
per round. 	

4 Application: Geometric Spanners in MapReduce

In this section, we present an efficient algorithm for constructing a geometric
spanner in the MapReduce model.

Geometric Spanners in the MapReduce Model 681

4.1 A Balanced Grid in MapReduce

We can store a grid by its separating lines. A partitioning based on a regular grid
and an indexing scheme is used to distribute data among machines. Algorithm 2
takes as input a set of point-sets and an ordering scheme and builds a regular
grid and a partitioning of that grid based on the given ordering.

In Algorithm 2, Sortf (S) means sorting based on function f of points in S in
MapReduce model. Sorting points means they are distributed among L machines
such that i < j ⇒ ∀a ∈ Si, b ∈ Sj , f(a) ≤ f(b). Sorting n points in this model
can be done in O(logn

m) rounds [14], which is O(1δ) for m = nδ where δ is a
constant (0 ≤ δ ≤ 1).

Algorithm 2. A Regular Grid in MapReduce
Input: a set of points set S = {S1, · · · , SL}, an ordering function f(., .)
Output: a space partitioning of S, the grid lines
1: Sortx(S)
2: Xi ← min(x,y)∈∪iSi

x
3: send xi to all other machines (X = ∪iXi)
4: Sorty(S)
5: Yi ← min(x,y)∈∪iSi

y
6: send Yi to all other machines (Y = ∪iYi)
7: locally compute the index of each cell (i, j) using the ordering function f(i, j)
8: Sortf(x,y)(S)
9: Re-index the sets in the order of min(x,y)∈Si

f(x, y)
10: return S = {S1, · · · , SL}, X, Y

Here, we present some properties of Algorithm 2, which are used later.

Lemma 2. The number of points in each cell of the grid in Algorithm2 is at
most m.

Proof. Based on the sorting on x, the number of points between Xi and Xi+1

is O(m). Similarly, the number of points between Yi and Yi+1 is O(m). So, in
the grid built on X × Y , the number of points in each cell is O(m). By indexing
the points based on f(x, y), the partitions lie inside cells of X × Y . Since all
equal keys in a MapReduce computation go to the same machine, there are no
half-cells.

Theorem 3. The round complexity of Algorithm2 is O(logn
m) and its commu-

nication complexity is O(n logn
m).

Proof. Each sorting takes O(logn
m) rounds, which is constant for m = O(nδ)

and O(logn
m) communication. Since the round and communication complexities

of the algorithm are the sum of the complexities of these sorting steps, they are
O(logn

m) and O(n logn
m) respectively. 	

682 S. Aghamolaei et al.

Theorem 4. There are at most O(L) partitions in the output of Algorithm2,
each with O(m) points.

Proof. The last sorting step of the algorithm which sorts points based on the
value of f , divides points into sets S1, . . . , SL such that ∀(x, y) ∈ Si, (x′, y′) ∈
Sj , i < j ⇒ f(x, y) ≤ f(x′, y′). The size of the sets created using a sorting
algorithm is O(m) (Lemma 2) and the number of sets is O(L), so the number of
partitions is O(L) and each of them has O(m) points. 	

4.2 Simultaneous 2-Sided Queries

Now we present an offline algorithm for solving the 2-sided range queries in
Algorithm 3, which can be extended to MapReduce in the same way as parallel
prefix computation.

In Algorithm 3, the closest point to (Xi, Yj) using distance function �1 that
lies inside the 2-sided range (x ≤ Xi, y ≤ Yj) is computed. Also, ‖x‖1 denotes
the length of vector x under �1.

Algorithm 3. Simultaneous 2-Sided Queries
Input: A point set S, a rectangular grid {Xi}�

i=1 × {Yj}�
i=1

Output: The nearest neighbor to (Xi, Yj) using points of S inside the 2-sided range
1: Run Algorithm 2 to build a � × � table T and index it using Φ(x, y) = x + y × �.
2: Run Algorithm 1 with S as point set, T as table, T [i, j] =

arg min
t∈S[i,j]∪T [i−1,j]∪T [i,j−1]

‖t − (Xi, Yj)‖1 as f and Φ as the ordering.

3: return T

Fig. 1. For a 2D DP table which is filled in 2 directions (down and right), the data of
the same row and column cells are needed in addition to Ci of the previous cells.

Lemma 3. Algorithm3 is a mergeable dynamic programming.

Proof. The algorithm is mergeable since it satisfies the conditions of mergeable
dynamic programming as defined in Definition 1:

– Sparsity: The number of cells required to answer 2-sided queries is O(n), since
we only need to know the value of cells which contain a point.

Geometric Spanners in the MapReduce Model 683

– Neighbors: The value of a cell (i, j) can be determined using the values of
cells T [i − 1, j], T [i, j − 1], S[i, j].

– Parallelizable: Minimum distance to the grid point corresponding to the cor-
ner of cell [i, j] is a semi-group function, since minimum computations are
semi-group.

– Summarizable: The anti-diagonal of T that passes through each cell is the
frontier of that cell under 2-sided queries. So this problem is summarizable
for � = n. 	

(0,0) (0,1)

(1,0) (1,1)

(0,2) (0,3)

(1,2) (1,3)

(2,0) (2,1)

(3,0) (3,1)

(2,2) (2,3)

(3,2) (3,3)

Fig. 2. Three 2-sided range queries for computing 3 nearest neighbors.

Lemma 4. The nearest neighbor of a point inside a 2-sided range using �1 dis-
tance can be computed using Algorithm3.

Proof. Each 2-sided range query on the grid (Fig. 2), can be computed using
Algorithm 1 for computing the recurrence relation. The nearest point to (Xi, Yj)
using �1 distance is either in cell S[i, j] or in one of its neighbors: T [i − 1, j],
T [i, j − 1] (Fig. 1). Since the algorithm checks all these values, it finds the exact
nearest neighbor. 	

4.3 A Geometric Spanner in MapReduce

To build a spanner similar to Yao-graph, we first solve simultaneous 2-sided
range queries, using dynamic programming. These queries are then used in the
spanner algorithm to find an approximate nearest neighbor in each cone.

Our algorithm for constructing a spanner (Algorithm4) creates a grid and
applies nearest neighbor search to find the edges. Algorithm4 creates a set of
oriented rhomboid grids with lines parallel to the ones creating cones around
each point, as shown in Fig. 3.

In Algorithm 4, the distances computed in Algorithm 3 are �1 distances of
the affine transformations of a grid, as shown in Fig. 4. Lemma 5 computes the
approximation factor between this distance and the Euclidean distance.

Lemma 5. The distance between two points on a grid with unit vectors that
have an angle θ (0 ≤ θ ≤ π

2) between them, is 1 + O(θ) times the Euclidean
distance between those points.

684 S. Aghamolaei et al.

Fig. 3. The overlay of two out of k = 8 square grids of Algorithm 4, indicated by dotted
lines and dashed lines. The bold red lines denote the cones around a point. (Color figure
online)

Algorithm 4. A Geometric Spanner in MapReduce
Input: A set of points set S = {S1, . . . , SL}, an integer k ≥ 7
Output: A spanner with k cones around each point
1: Θ = { 2πi

k
|i = 1, . . . , k}

2: locally create pairs of consecutive directions from Θ in clockwise order.
3: locally build a grid for each pair of directions from previous step.
4: repeat each point p once in each grid.
5: run Algorithm 3 with d(., .) defined as the �1 distance and ∪iSi as the point set,

using Algorithm 1 in each grid to find the nearest neighbor of each point inside its
cone.

6: add an edge between each point and one of its nearest neighbors in each direction
(cone).

7: return the edges of the spanner.

Proof. Assume w.l.o.g. that one of the points is (0, 0) and the other one is p =
(x, y), x, y > 0. The angle between −→op and

−→
i is α ≤ θ, since p lies inside the cone.

Using basic trigonometry, the distance computed in our algorithm is x + y and
the Euclidean distance between these points is y sin(θ)

sin(α) . Also, x = cos(α)y sin(θ)
sin(α) −

y cos(θ). So, using Taylor series for cosine and Maclaurin series for 1
1−X , the

approximation factor is proved:

x + y

|−→op| =
cos(α)y sin(θ)

sin(α) − y cos(θ) + y

y sin(θ)
sin(α)

=
y cos(α) sin(α) − y cos(θ) sin(α) + y sin(α)

y sin(θ)
=

sin(θ − α) + sin(α)
sin(θ)

=
2 sin(θ

2) cos(θ−2α
2)

2 sin(θ
2) cos(θ

2)
=

cos(θ−2α
2)

cos(θ
2)

≤ 1
1 − θ2

8

= 1 +
θ2

8
+ o(θ2).

	

Geometric Spanners in the MapReduce Model 685

Fig. 4. A grid built inside a cone and the path on the grid compared to the distance
between the point inside the cone and the apex.

Theorem 5. The stretch factor of the spanner of Algorithm4 is 1 + O(θ).

Proof. Applying Lemma 5 proves using �1 distance instead of the Euclidean dis-
tance (Algorithm 4) adds a factor 1 + O(θ2), and Lemma 4 proves Algorithm 3
computes the exact �1 distance. Using induction on the length of the path, sim-
ilar to the proof of the stretch factor of Yao-graph, proves the approximation
factor. 	

Theorem 6. Algorithm4 has O(k logn

m) round complexity and O(nk logn
m) com-

munication complexity.

Proof. The algorithm solves one instance of range query per cone to compute the
nearest neighbors simultaneously. Based on Lemma 3, Algorithm 3 is a mergeable
dynamic program, and using Theorem1, it takes O(logn

m) rounds and O(n logn
m)

communications to solve it. Since there are k cones, the overall complexity of
the algorithm is O(k logn

m) rounds and O(kn logn
m) communication. 	

5 Conclusion

We introduced a (1 + ε)-spanner in Euclidean plane and presented a MRC algo-
rithm for constructing it in optimal round and communication complexities.
However, the number of machines used in our algorithm is sub-quadratic. Find-
ing algorithms that use fewer machines and algorithms for spanners with other
geometric properties such as bounded degree spanners and bounded diameter
spanners are also important.

We also proved conditions for parallelizable dynamic programming problems.
Solving other problems in MapReduce using our method might also be inter-
esting. Also, finding algorithms for other simultaneous queries can reduce the
complexity of some MapReduce algorithms.

686 S. Aghamolaei et al.

References

1. Agarwal, P.K., Fox, K., Munagala, K., Nath, A.: Parallel algorithms for construct-
ing range and nearest-neighbor searching data structures. In: Proceedings of the
35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Sys-
tems, pp. 429–440. ACM (2016)

2. Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Geometric approximation via
coresets. Comb. Comput. Geom. 52, 1–30 (2005)

3. Andoni, A., Nikolov, A., Onak, K., Yaroslavtsev, G.: Parallel algorithms for geo-
metric graph problems. In: Proceedings of the 46th Annual ACM Symposium on
Theory of Computing, pp. 574–583 (2014)

4. Bakhshesh, D., Farshi, M.: Geometric spanners merging and its applications. In:
Proceedings of the 28th Canadian Conference on Computational Geometry, pp.
133–139 (2016)

5. Birn, M., Osipov, V., Sanders, P., Schulz, C., Sitchinava, N.: Efficient parallel and
external matching. In: Wolf, F., Mohr, B., an Mey, D. (eds.) Euro-Par 2013. LNCS,
vol. 8097, pp. 659–670. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40047-6 66

6. Callahan, P.B.: Dealing with higher dimensions: the well-separated pair decompo-
sition and its applications. Ph.D. thesis, Johns Hopkins University (1995)

7. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51, 107–113 (2008)

8. Eldawy, A., Li, Y., Mokbel, M.F., Janardan, R.: CG Hadoop: computational geom-
etry in MapReduce. In: Proceedings 21st ACM SIGSPATIAL International Con-
ference on Advances in Geographic Information Systems, pp. 294–303 (2013)

9. Eldawy, A., Mokbel, M.F.: Communication steps for parallel query processing. In:
Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, pp. 273–284 (2013)

10. Eldawy, A., Mokbel, M.F.: SpatialHadoop: A MapReduce framework for spatial
data. In: Proceedings of the 31st International Conference on Data Engineering,
pp. 1352–1363 (2015)

11. Farley, A.M., Proskurowski, A., Zappala, D., Windisch, K.: Spanners and message
distribution in networks. Discrete Appl. Math. 137, 159–171 (2004)

12. Ghodsi, M., Sack, J.: A coarse grained solution to parallel terrain simplification.
In: Proceedings of 10th Canadian Conference on Computational Geometry (1998)

13. Goodrich, M.T.: Simulating parallel algorithms in the MapReduce framework with
applications to parallel computational geometry. arXiv preprint arXiv:1004.4708
(2010)

14. Goodrich, M.T., Sitchinava, N., Zhang, Q.: Sorting, searching, and simulation in
the MapReduce framework. In: Proceedings of the 22nd Annual International Sym-
posium on Algorithms and Computation, pp. 374–383 (2011)

15. Im, S., Moseley, B., Sun, X.: Efficient massively parallel methods for dynamic
programming. In: Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing, pp. 798–811. ACM (2017)

16. Karloff, H., Suri, S., Vassilvitskii, S.: A model of computation for MapReduce.
In: Proceedings of the 21st ACM-SIAM Symposium on Discrete Algorithms, pp.
938–948 (2010)

17. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University
Press, Cambridge (2007)

Geometric Spanners in the MapReduce Model 687

18. Nath, A., Fox, K., Munagala, K., Agarwal, P.K.: Massively parallel algorithms
for computing TIN DEMs and contour trees for large terrains. In: Proceedings of
the 24th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems (2016)

19. Navarro, G., Paredes, R., Chávez, E.: t-spanners as a data structure for metric
space searching. In: Laender, A.H.F., Oliveira, A.L. (eds.) SPIRE 2002. LNCS,
vol. 2476, pp. 298–309. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45735-6 26

20. Rao, S.B., Smith, W.D.: Approximating geometrical graphs via “spanners” and
“banyans”. In: Proceedings of the 30th Annual ACM Symposium on Theory of
Computing, pp. 540–550 (1998)

21. van Kreveld, M.: Algorithms for triangulated terrains. In: Plášil, F., Jeffery, K.G.
(eds.) SOFSEM 1997. LNCS, vol. 1338, pp. 19–36. Springer, Heidelberg (1997).
https://doi.org/10.1007/3-540-63774-5 95

22. Xia, G.: The stretch factor of the Delaunay triangulation is less than 1.998. SIAM
J. Comput. 42, 1620–1659 (2013)

23. Yaroslavtsev, G., Vadapalli, A.: Massively parallel algorithms and hardness
for single-linkage clustering under �p-distances. arXiv preprint arXiv:1710.01431
(2017)

