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Abstract

For a set of n disjoint line segments S in R2, the visibility testing problem (VTP) is to test whether

the query point p sees a query segment s ∈ S. For this configuration, the visibility counting problem

(VCP) is to preprocess S such that the number of visible segments in S from any query point p can be

computed quickly. In this paper, we solve VTP in expected logarithmic query time using quadratic

preprocessing time and space. Moreover, we propose a (1+δ)-approximation algorithm for VCP using

at most quadratic preprocessing time and space. The query time of this method is Oε(
1

δ2
√
n) where

Oε(f(n)) = O(f(n)nε) and ε > 0 is an arbitrary constant number.

Keywords: Computational geometry, Visibility, Randomized algorithm, Approximation algorithm

1. Introduction

Statement of the problem. Suppose that we have a bounding box which covers a set S containing

n disjoint segments. Two points p, q ∈ R2 are visible from each other with respect to (w.r.t.) S, if

there exists no segment s ∈ S intersecting line segment pq. We say that a segment st ∈ S is visible

(w.r.t. S) from a point p, if a point q ∈ st can be found from which p is visible. Two problems5

are considered here: the visibility testing problem (VTP) in which we decide whether or not a given
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query segment s ∈ S is visible from a query point p, and the visibility counting problem (VCP) for

which we count the number of segments s ∈ S which are visible to a given query point p. Scrutinizing

the visibility polygon of the query point can be helpful for answering the mentioned problems. The

visibility polygon of a given point p ∈ R2 is defined as10

V PS(p) = {q ∈ R2 : p and q are visible (w.r.t. S)}.

and the visibility polygon of a given segment st is defined as

V PS(st) =
⋃
q∈st V PS(q) ={p ∈ R2 : st and p are visible (w.r.t. S)}.

Consider the 2n end-points of the segments of S as vertices of a geometric graph. Add an edge between

each pair of visible vertices such that the edge is a straight line. The result is the visibility graph of S15

or V G(S). We can extend each edge of V G(S) in both directions until it intersects the segments in S

(or the bounding box). Each edge in V G(S) creates at most two new vertices and some new edges.

Adding all these vertices and edges to V G(S) results in a new graph called the extended visibility

graph or EV G(S).

Related Works. The optimal running time to compute V PS(p) is O(n log n) that uses O(n) space20

[1, 2]. [3] has also presented an output sensitive algorithm in which preprocessing steps are in O(n2)

time and O(n2) space and as a result, V PS(p) is computed in O(|V PS(p)| log(
n

|V PS(p)|
)) time where

|V PS(p)| is the number of vertices in V PS(p).

Gudmundsson and Morin considered a version of VTP where a segment s ∈ S is chosen randomly

in the preprocessing time and the goal is to test whether any given query point p can see s. Suppose25

that ms is the number of edges of EV G(S) incident on s and ms ≤ k ≤ m2
s. They gave an algorithm

with preprocessing time and space of O(k) that answers each query in Oε(
ms√
k
) [4]. Also, the presented

algorithm in [5, 6] answers each query in O(log n) time by using O(m2
s/l), where l ≥ 1 is a space/time

tradeoff parameter of the data structure.

The version of VTP where s is fixed and chosen in the preprocessing time and VCP can be solved30

using EV G(S). There is an optimal O(n log n + m) time algorithm to compute V G(S) [7], where

m = O(n2) is the number of the edges of V G(S). This algorithm can be used to compute EV G(S)

in O(n log n+m) time as well [7]. Considering the planar arrangement of the edges of EV G(S) as a

planar graph, all points in any face of this arrangement have the same set of visible segments. The

number of visible segments can be computed for each face in the preprocessing step. Since there are35

O(n4) faces in the planar arrangement of EV G(S), a point location structure of size O(n4) can answer

each query in O(log n) time. As can be seen, the space and the time used in the preprocessing step

is high. However, without any preprocessing, the query can be answered by computing the visibility

polygon of query point in O(n log n) time which is also high. There are also some other results with
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a trade-off between the query time and the preprocessing cost [8, 9, 10, 11, 12] (a complete survey is40

presented in the visibility book of [13]).

The primary concern in VCP is to propose an approximation algorithm with acceptable approxi-

mation factor which reduces the preprocessing cost. The first approximation algorithm for VCP was

proposed by [2]. They represented the visiblity polygon of each segment by using the union of a set

of triangular convex regions. The approximation factor for the resulting algorithm was 3. With an45

improved covering scheme, Gudmundsson and Morin presented a 2-approximation algorithm [4]. Let

0 < α ≤ 1, using a data structure of size Oε(m1+α) and a preprocessing time of Oε(m1+α), this

algorithm can answer each query in Oε(m
(1−α)/2) time. If we show the number of visible segments

from p by mp, m′p is also returned by this algorithm such that mp ≤ m′p ≤ 2mp. [14] and [15] also

provide the same result.50

Throughout this paper, ε > 0 is an arbitrary small constant number and Oε(f(n)) = O(f(n)nε).

Two other approximation algorithms have also been introduced for VCP by Fischer et.al. [5, 6]. In

the first algorithm, a (r/m)-cutting, 1 ≤ r ≤ n, for EV G(S) (see [4]) is built using a data structure of

size O((m/r)2). With this cutting, the queries are answered in O(log n) time and an absolute error of

r compared to the exact answer. In the second algorithm, a random sampling method is used to build55

a data structure of size O((m2 logO(1) n)/l), 1 ≤ l ≤ n, and any query is answered in O(l logO(1) n)

time. Note that, for any constant δ > 0 , we can have an approximation up to an absolute value of

δn for the VCP. Moreover, δ can have effects on the constant factor of both the data structure size

and the query time.

Our Results. In this paper, we first propose an algorithm for VTP which answers each query60

in an expected O(log n) time. This algorithm uses O(n2.α(n)) preprocessing time where α(n) is a

pseudo-inverse of Ackermann’s function and O(n2) space. We also present a (1 + δ)-approximation

algorithm for VCP using a randomized approach. This algorithm uses O(n2.α(n)) preprocessing time

and O(n2) space and answers each query in Oε(
1

δ2
√
n) time. The experimental results demonstrate

the efficiency of the algorithm.65

In the 2nd section of this paper, we introduce our algorithm for VTP. In the 3rd section, the

algorithm for VCP is proposed. In Section 4, we present our experimental results and finally the last

section contains a summary of the results and the conclusion.

2. Visibility Testing Problem

In this section, we propose an algorithm to solve VTP. The preliminary version of this result70

appeared in [14]. Let r~d(p) denote a ray emanating from p in the direction of ~d. Also, assuming that

s′, s ∈ S, by prp(a′) = a we mean that r−→
pa′

(p) intersects a ∈ s right after it intersects a′ ∈ s′ (see
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Fig 1)
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Figure 1: prp(a) = a′ and for any point q ∈ s there is a point q′ ∈ si, such that si ∈ {s′, s2, s3} and prp(q′) = q.

Assume that s ∈ S and a point p are the query inputs. If s is not visible from p, then there must

exist a subset of S − s such that for any point a ∈ s, there is an a′ ∈ s′ such that prp(a′) = a for75

s′ ∈ S − s, see Fig 1. So, we start from the left end-point of s (denoted as sl) and move towards the

right end-point, or sr. (The left and right end-points of any segment are defined according to their

order of radial sweeping around p), see Fig 1. If sl is visible from p, then s and p are visible. Otherwise,

assume that for a point q′ ∈ s′ ∈ S− s, we have prp(q′) = sl. If s′r appears after sr in the radial sweep

around p, then s is not visible from p (see Fig 2(a)). Otherwise, let t be the intersection point of s80

and r−→
ps′r

(p). We conclude that the subsegment slt of s is not visible from p. So, we should only check

the part of s that lies to the right of t. So, we continue on tsr. This is done by checking whether s′r
and p are visible. If yes other and prp(s′r) = t ∈ s, we conclude that p is visible from a point t′ ∈ tsr
with an arbitrarily small distance to t. If so, p and s are visible (see Fig 2(b)). Otherwise, assume

that s′′ 6= s′ is the last segment intersected by r−→
ps′r

(p) before intersecting s. So, we continue on s′′ in85

the same way as done for s′ (see Fig 2(c) and (d)). This algorithm is formally shown in Algorithm 1.

The algorithm returns true if and only if there is a point on s that is visible to p. This is the answer

of the VTP and implies its correctness.

2.1. Analysis of the running time and space

For a segment s, the running time of this algorithm depends on the number of steps in which the90

algorithm processes a subset S′s of S. Let cs(p) be a subset of S such that for each s′ ∈ cs(p) there is
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Figure 2: The algorithm for VTP begins from the left end-point to the right end-point. (a) s′r swept after sr, which
means it is the end of algorithm. (b) p sees some part of s right after prp(s′r). (c) and (d) s′′ is the last segment
intersected by r−−→

ps′r
(p) before intersecting s.
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Algorithm 1 The Visibility Testing Algorithm
1: Input :
2: S: a set of segments and the data structure used for ray shooting
3: s ∈ S: a given segment
4: p: a query point
5: Output :
6: true: if s is visible from p
7: false: otherwise
8: if p and sl are visible from each other then
9: return true

10: else
11: let s′ be the segment such that prp(q′) = sl for a point q′ ∈ s′.
12: while true do
13: if sr is swept before s′r while a radial sweep line around p is moving from sl towards sr then
14: return false
15: else
16: if s′ is the only segment intersected by

−→
ps′r before intersecting s then

17: return true
18: else
19: let s′′ be the last segment intersected by

−→
ps′r before intersecting s (except s′ itself). Let

s′ = s′′

20: end if
21: end if
22: end while
23: end if

at least one point a′ ∈ s′ and prp(a′) = a ∈ s. So, S′s ⊂ cs(p) (see Fig 3). Other than S′s, the running

time of this algorithm also depends on the way we find the segment s′ in lines 11 and 19 of Algorithm

1. This can be answered by using the data structures for solving the ray-shooting problem. Assume

that for each end-point s′r, we can answer this query in f(n) time. Then, the total time complexity95

of this algorithm is O(|cs(p)|f(n)) where |.| is the size of corresponding set. Theorem 2.1 implies that

by preprocessing the segments in Oε(n2) time and space, we have f(n) = O(log n).

Theorem 2.1. [? ] Given a set of n disjoint line segments S, we can preprocess the segments using

O(n2α(n)) time, where α(n) is a pseudo-inverse of Ackermann’s function, and O(n2) space such that

for a given query point p and a direction ~d, the first segment in S intersected by r~d(p) is determined100

in O(log n) time.

Note that to find the last segment before s which is crossed by r−→
ps′r

(p), we first find the intersection

point of s and r and then shoot a ray from that point towards p. The first segment intersected by

this ray is the last segment before s intersected by r−→
ps′r

(p).

Lemma 2.1. If we choose s ∈ S randomly, then the expected size of cs(p) is O(1).105

Proof. We partition the segments of cs(p) into 2 subsets. For each segment s′ ∈ cs(p), if prp(s′r) ∈ s or

prp(s
′
l) ∈ s then we put it in e(cs(p)) and else we put s′ in m(cs(p)). Trivially, e(cs(p)) and m(cs(p))
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are disjoint and cs(p) = e(cs(p))
⋃
m(cs(p)) (see Fig 3). We prove that |m(cs(p))| ≤ |e(cs(p))|+1. Sort

the segments in cs(p) regarding to the order of their projection on s from sl to sr. Assume that s1 and

s2 are two adjacent segments. Trivially, at least one of these segments is in e(cs(p)) or in other word110

two segments of m(cs(p)) can not be adjacent. This means that |m(cs(p))| ≤ |e(cs(p))|+ 1. For each

segment si, we compute csi(p). Obviously, for any si ∈ S, |m(csi(p))| ≤ |e(csi(p))|+1. It is simple to

see that for a given point p, each segment t can be a member of e(csi(p)) for at most two segments of S.

Then,
∑
s∈S |cs(p)| =

∑
s∈S |e(cs(p))| +

∑
s∈S |m(cs(p))| ≤ 2

∑
s∈S |e(cs(p))| + 1 = O(n). Therefore,

the expected size of cs(p) of a randomly chosen segment s ∈ S is
O(n)

n
= O(1).115

sl srs

s1
s2

s3
s4

s5

s6

s7

s8

s10
s9

p

Figure 3: s is not visible from p and for any point q ∈ s there is a point q′ in cs(p) = {s1, s2, s3, s4, s5, s6, s7, s8}
such that prp(q′) = q for which m(cs(p)) = {s1, s7} and e(cs(p)) = {s2, s3, s4, s5, s6, s8}. In this example s2 is not
visible to p either and m(cs2 (p)) = {s10} and e(cs2 (p)) = {s1}. Another segment which is not visible to p is s1 and
m(cs1 (p)) = {s9} and e(cs1 (p)) = {s10}. For this configuration of segments we have: e(cs9 (p)) = {s10}. In this example
if we run the VTP algorithm on s and p, the order of segments in S′s is: s1, s3, s2 ,s5 and s7. Obviously S′s ⊂ cs(p).

Corollary 2.1. VTP can be answered in O(log n) expected query time using O(n2.α(n)) preprocessing

time and O(n2) space.

3. Visibility Counting Problem

In this section, we propose an algorithm to approximate the answer of VCP. The algorithm is

composed of two phases. In the first phase, we run the algorithm of [3] to compute V PS(p) for120

Oε(
√
n) times. In [3], the algorithm for computing the visibility polygon, consists of a rotational

sweep of a line about the query point. During the sweep, the subsegments visible from p along the

sweep-line are collected. We sweep the line until at most
√
n of the visible subsegments are counted.

So, if before counting
√
n visible segments, the line completely sweeps around p, then we have V PS(p)

and |V PS(p)| ≤
√
n. If V PS(p) is calculated in this phase, then we have the exact value of mp from125

V PS(p).
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Otherwise, |V PS(p)| >
√
n and we choose a random subset RS1 ⊂ S such that each segment is

chosen with the probability of
1√
n
. Then, for each segment si ∈ RS1, we check whether si is visible

to p with respect to S, using the proposed algorithm of VTP in the previous section. Let X1 be

the number of visible segments from p in RS1 with respect to S. We run this for t random subset130

RSi ⊂ S. Let Xi be the number of visible segments from p in RSi with respect to S. We report

m′p =

∑t
i=1

√
nXi

t
as the approximated value of mp.

Lemma 3.1. (Chebyshev’s Inequality) Let X1, X2,...,Xt be any random variable with E(Xi) = µ ,

and let ε > 0 be any positive real number. Then

P ((|X1 +X2 + ...+Xt

t
− µ|) > ε) ≤ V ar(X)

tε2135

Using Lemma 3.1 we have

Lemma 3.2. With a probability close to 1 we have

(1− δ)mp ≤
√
n
X1 +X2 + ...+Xt

t
≤ (1 + δ)mp

Proof. In Lemma 3.1, we choose ε = δmp, where δ is a constant number which can be arbitrarily

small and t =
1

δ2
. Obviously, E(

√
nXi) = mp and V ar(

√
nXi) = n(mp)(1 −

1√
n
)
1√
n
. Therefore,140

with the probability

P = P (|
√
n
X1 +X2 + ...+Xt

t
−mp| > δmp) ≤

√
nmp

mp
2

.

Since mp > Oε(
√
n), then P ∼ 0. This means that with probability of at least 1− P, we have

(1− δ)mp ≤ m′p ≤ (1 + δ)mp.

145

3.1. Analysis

In the first phase of the algorithm, we run the method of [3] for Oε(
√
n) times. In the second

phase according to Corollary 2.1, in the expected time of O(log n) we can check whether p and a

random selected segment are visible to each other with respect to S. Since we chose O(
√
n) random

segments for each RSi, the query time is O(t
√
n log n). Therefore, considering both phases, the query150

time, preprocessing time and space are Oε(t
√
n), O(n2.α(n)) and O(n2), respectively. Consequently,

we conclude the result of this section in the following theorem.

Theorem 3.1. VCP can be approximated in expected Oε(
1

δ2
√
n) time using O(n2) space and O(n2.α(n))

preprocessing time. This algorithm returns a value m′p such that with probability of arbitrarily close

to 1, (1− δ)mp ≤ m′p ≤ (1 + δ)mp when mp >
√
n and returns the exact value when mp ≤

√
n.155
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According to [4], by space and preprocessing time of Oε(m), VCP for each query is answered in

Oε(
√
m), where m is the number of edges in EV G(S). However, in our method, with Oε(n2) space

and preprocessing time, the query time is Oε(t
√
n). Note that we choose δ a constant number, so the

query time of this algorithm is Oε(
√
n). Furthermore, the approximation factor of [4] is 2, while ours

is 1 + δ.160

4. Experimental results

In this section, we present our experimental results. First of all for VTP, we generate ran-

dom segments for different values of n and also a random point p. Then we calculate csi(p) and

average(n) =
∑n
i=1 csi(p)/n for every set of segments for some specified values of n. Fig 4 reveals

our results for different values of n. It is worth noting that for each experimented n, we computed165

average(n) with different random points and we achieved the same result. This result indicates that

the expected number of segments that cover a randomly chosen segment is independent of the size of

n, the location of p and the structure of other segments. Fig 5 and 6 show calculated average(n) for

different locations of p and different values of n.

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
0
1
2
3

different values of n

av
er
ag
e(
n
)

Figure 4: Average(n) for different values of n

0 2 4 6 8 10 12 14 16 18 20
0
1
2
3

different query points for n = 500

av
er
ag
e(
n
)

Figure 5: Average(n) for different locations of p and n=500

0 2 4 6 8 10 12 14 16 18 20
0
1
2
3

different query points for n = 1000

av
er
ag
e(
n
)

Figure 6: Average(n) for different locations of p and n=1000
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For VCP, we generate a new random set of segments and also a random query point for each n.170

Using different values of δ and t, we calculate mp and m′p. Our experimental results demonstrate

that when mp >
√
n, our result is a 1 + δ approximation of the main result. Table 1 illustrates this

conclusion.

n δ t =
1

δ2
mp m′p

10000 1 1 5971 5700
10000 1 1 2985 3200
10000 1 1 7021 6200
10000 1 1 3973 3900
10000 0.5 4 4964 5700
10000 0.5 4 5029 4600
10000 0.5 4 4986 4400
10000 0.5 4 5071 6150
10000 0.25 16 4998 4675
10000 0.25 16 4982 5175
10000 0.25 16 4905 5275
10000 0.25 16 5036 5100
100000 1 1 39641 42690
100000 1 1 80070 70202
100000 1 1 19859 17392
100000 1 1 50021 48382
100000 0.5 4 49882 51070
100000 0.5 4 49940 50754
100000 0.5 4 50001 56604
100000 0.5 4 49990 46169
100000 0.25 16 49977 49647
100000 0.25 16 50202 46326
100000 0.25 16 50256 51702
100000 0.25 16 49816 45773
1000000 1 1 399439 409000
1000000 1 1 600475 572000
1000000 1 1 699566 712000
1000000 1 1 900418 901000
1000000 0.5 4 499632 509000
1000000 0.5 4 499833 491000
1000000 0.5 4 499444 499000
1000000 0.5 4 500249 501500
1000000 0.25 16 500395 512250
1000000 0.25 16 499721 487000
1000000 0.25 16 500044 497250
1000000 0.25 16 500273 499250

Table 1: The values of mp and m′p for various values of δ and t.

5. Conclusion

In this paper, we propose an algorithm to answer VTP. We prove that the expected time to answer175

each query is O(log n) for any query point p and a randomly chosen segment s ∈ S. This means that

the expected time for answering VTP of a point and a segment is equal to the time required for two

query points. Using the result of this algorithm, a randomized algorithm is proposed to approximate

the answer of VCP. The idea of this algorithm is to choose a random sample of segments and extend
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the answer of this sample to the whole input. This algorithm improves the time complexity of the180

previous methods. Our experimental data and the implementation prove efficiency of our method.

Precisely, the experimental results show that the average running time obtained in theory is the actual

running time in practice.

References

[1] T. Asano, An efficient algorithm for finding the visibility polygon for a polygonal region with185

holes, IEICE TRANSACTIONS (1976-1990) 68 (9) (1985) 557–589.

[2] S. Suri, J. O’Rourke, Worst-case optimal algorithms for constructing visibility polygons with

holes, in: Proceedings of the Second Annual Symposium on Computational Geometry, SCG ’86,

ACM, New York, NY, USA, 1986, pp. 14–23. doi:10.1145/10515.10517.

URL http://doi.acm.org/10.1145/10515.10517190

[3] G. Vegter, The visibility diagram: a data structure for visibility problems and motion planning.,

in: J. R. Gilbert, R. G. Karlsson (Eds.), SWAT, Vol. 447 of Lecture Notes in Computer Science,

Springer, 1990, pp. 97–110.

URL http://dblp.uni-trier.de/db/conf/swat/swat90.html#Vegter90

[4] J. Gudmundsson, P. Morin, Planar visibility: testing and counting., in: J. Snoeyink, M. de Berg,195

J. S. B. Mitchell, G. Rot, M. Teillaud (Eds.), Symposium on Computational Geometry, ACM,

2010, pp. 77–86.

URL http://dblp.uni-trier.de/db/conf/compgeom/compgeom2010.html#GudmundssonM10

[5] M. Fischer, M. Hilbig, C. Jähn, F. M. auf der Heide, M. Ziegler, Planar visibility counting, CoRR

abs/0810.0052.200

URL http://dblp.uni-trier.de/db/journals/corr/corr0810.html#abs-0810-0052

[6] M. Fischer, M. Hilbig, C. Jähn, F. Meyer auf der Heide, M. Ziegler, Planar visibility counting,

in: Proc. 25th European Workshop on Computational Geometry, 2009, pp. 203–206.

[7] S. K. Ghosh, D. M. Mount, An output-sensitive algorithm for computing visibility, SIAM J.

Comput. 20 (5) (1991) 888–910. doi:10.1137/0220055.205

URL http://dx.doi.org/10.1137/0220055

[8] B. Aronov, L. J. Guibas, M. Teichmann, L. Z. 0001, Visibility queries and maintenance in simple

polygons., Discrete & Computational Geometry 27 (4) (2002) 461–483.

URL http://dblp.uni-trier.de/db/journals/dcg/dcg27.html#AronovGTZ02

11

http://doi.acm.org/10.1145/10515.10517
http://doi.acm.org/10.1145/10515.10517
http://doi.acm.org/10.1145/10515.10517
http://dx.doi.org/10.1145/10515.10517
http://doi.acm.org/10.1145/10515.10517
http://dblp.uni-trier.de/db/conf/swat/swat90.html#Vegter90
http://dblp.uni-trier.de/db/conf/swat/swat90.html#Vegter90
http://dblp.uni-trier.de/db/conf/compgeom/compgeom2010.html#GudmundssonM10
http://dblp.uni-trier.de/db/conf/compgeom/compgeom2010.html#GudmundssonM10
http://dblp.uni-trier.de/db/journals/corr/corr0810.html#abs-0810-0052
http://dblp.uni-trier.de/db/journals/corr/corr0810.html#abs-0810-0052
http://dx.doi.org/10.1137/0220055
http://dx.doi.org/10.1137/0220055
http://dx.doi.org/10.1137/0220055
http://dblp.uni-trier.de/db/journals/dcg/dcg27.html#AronovGTZ02
http://dblp.uni-trier.de/db/journals/dcg/dcg27.html#AronovGTZ02
http://dblp.uni-trier.de/db/journals/dcg/dcg27.html#AronovGTZ02
http://dblp.uni-trier.de/db/journals/dcg/dcg27.html#AronovGTZ02


[9] P. Bose, A. Lubiw, J. I. Munro, Efficient visibility queries in simple polygons, Comput. Geom.210

Theory Appl. 23 (3) (2002) 313–335. doi:10.1016/S0925-7721(01)00070-0.

URL http://dx.doi.org/10.1016/S0925-7721(01)00070-0

[10] M. Pocchiola, G. Vegter, The visibility complex., Int. J. Comput. Geometry Appl. 6 (3) (1996)

279–308.

URL http://dblp.uni-trier.de/db/journals/ijcga/ijcga6.html#PocchiolaV96215

[11] A. Zarei, M. Ghodsi, Efficient computation of query point visibility in polygons with holes., in:

J. S. B. Mitchell, G. Rote (Eds.), Symposium on Computational Geometry, ACM, 2005, pp.

314–320.

URL http://dblp.uni-trier.de/db/conf/compgeom/compgeom2005.html#ZareiG05

[12] D. Chen, H. Wang, Visibility and ray shooting queries in polygonal domains, in: F. Dehne,220

R. Solis-Oba, J.-R. Sack (Eds.), Algorithms and Data Structures, Vol. 8037 of Lecture

Notes in Computer Science, Springer Berlin Heidelberg, 2013, pp. 244–255. doi:10.1007/

978-3-642-40104-6_22.

URL http://dx.doi.org/10.1007/978-3-642-40104-6_22

[13] S. Ghosh, Visibility Algorithms in the Plane, Cambridge University Press, New York, NY, USA,225

2007.

[14] S. Alipour, A. Zarei, Visibility testing and counting, in: Proceedings of the 5th Joint International

Frontiers in Algorithmics, and 7th International Conference on Algorithmic Aspects in Informa-

tion and Management, FAW-AAIM’11, Springer-Verlag, Berlin, Heidelberg, 2011, pp. 343–351.

URL http://dl.acm.org/citation.cfm?id=2021911.2021949230

[15] M. N. Baygi, M. Ghodsi, Space/query-time tradeoff for computing the visibility polygon., Com-

put. Geom. 46 (3) (2013) 371–381.

URL http://dblp.uni-trier.de/db/journals/comgeo/comgeo46.html#BaygiG13

12

http://dx.doi.org/10.1016/S0925-7721(01)00070-0
http://dx.doi.org/10.1016/S0925-7721(01)00070-0
http://dx.doi.org/10.1016/S0925-7721(01)00070-0
http://dblp.uni-trier.de/db/journals/ijcga/ijcga6.html#PocchiolaV96
http://dblp.uni-trier.de/db/journals/ijcga/ijcga6.html#PocchiolaV96
http://dblp.uni-trier.de/db/conf/compgeom/compgeom2005.html#ZareiG05
http://dblp.uni-trier.de/db/conf/compgeom/compgeom2005.html#ZareiG05
http://dx.doi.org/10.1007/978-3-642-40104-6_22
http://dx.doi.org/10.1007/978-3-642-40104-6_22
http://dx.doi.org/10.1007/978-3-642-40104-6_22
http://dx.doi.org/10.1007/978-3-642-40104-6_22
http://dx.doi.org/10.1007/978-3-642-40104-6_22
http://dl.acm.org/citation.cfm?id=2021911.2021949
http://dl.acm.org/citation.cfm?id=2021911.2021949
http://dblp.uni-trier.de/db/journals/comgeo/comgeo46.html#BaygiG13
http://dblp.uni-trier.de/db/journals/comgeo/comgeo46.html#BaygiG13

	Introduction
	Visibility Testing Problem
	Analysis of the running time and space

	Visibility Counting Problem
	Analysis

	Experimental results
	Conclusion

