
Applied Geomatics manuscript No.
(will be inserted by the editor)

Approximation Algorithms for Visibility Computation
and Testing over a Terrain

Sharareh Alipour · Mohammad Ghodsi · Uğur Güdükbay ·

Morteza Golkari

the date of receipt and acceptance should be inserted later

Abstract Given a 2.5D terrain and a query point p on
or above it, we want to count the number of triangles

on the terrain that are visible from p. We present an ap-

proximation algorithm to solve this problem. We imple-

ment the algorithm and test it on real data sets. The ex-

perimental results show that our approximate solution
is very close to the exact solution and compared to the

other similar works, the running time of our algorithm

is superior. We analyze the computational complexity

of the algorithm. We also consider the visibility testing
problem where the goal is to test whether a given trian-

gle of the terrain is visible or not with respect to p. We

propose an algorithm for this problem and show that

the average running time of this algorithm is the same

as the running time of the case where we want to test
the visibility between two query points p and q.

Sh. Alipour
Department of Computer Engineering, Sharif University of
Technology, Tehran, Iran.
E-mail: shalipour@cs.sharif.edu

M. Ghodsi
Department of Computer Engineering, Sharif University of
Technology, Tehran, Iran
Institute for Research in Fundamental Sciences (IPM),
Tehran, Iran.
E-mail: ghodsi@sharif.edu

U. Güdükbay
Department of Computer Engineering, Bilkent University,
Ankara, Turkey.
E-mail: gudukbay@cs.bilkent.edu.tr

M. Golkari
Department of Computer Engineering, Sharif University of
Technology, Tehran, Iran.
E-mail: golkari@ce.sharif.edu

1 Introduction

Problem Statement. Suppose that T is a set of n dis-

joint triangles representing a 2.5D terrain. Two points
p, q ∈ R3 on or above T are visible to each other with

respect to T if the line segment pq does not intersect

any triangle of T . A triangle ∆ ∈ T is also considered

to be visible from a point p on or above T if there ex-
ists a point q ∈ ∆ such that p and q are visible to each

other. Here, the visibility counting problem (VCP) is to

find the number of triangles of T that are visible from

a query point p. The visibility testing problem (VTP)

is also defined as follows: given a query point p and a
triangle ∆ ∈ T , we want to test whether ∆ is visible

from p.

Definition 1 The set of all points on T that are visible

from a query point p is the visibility region of p and is

denoted by V R(p).

Related Work. Computing the visible region of a
point is a well-known problem appearing in numerous

applications (see e.g., Cohen-Or and Shaked (1995),

Cole and Sharir (1989), Floriani and Magillo (1994),

Floriani andMagillo (1996), Franklin et al (1994), Good-
child and Lee (1989), Stewart (1998)). For example, the

coverage area of an antenna for which the line of sight

may be approximated by clipping the region that is

visible from the tip of the antenna with an appropri-

ate disk centered at the antenna. As a similar prob-
lem, natural resource extractors may wish to site visual

nuisances, such as clearcut forests and open-pit mines,

where they cannot be seen from public roads. Zoning

laws in some regions, such as the Adirondack Park of
New York State, may obstruct new buildings that can

be seen from a public lake (Franklin et al, 1994). Alsadik

et al (2014) proposed different methods for analyzing



2 Sharareh Alipour et al.

the visibility of point clouds from a photogrammetric

viewpoint and developed surface-based and voxel-based

visibility and hidden point removal (HPR) algorithms.

The complexity of computing the visibility region

of a point, VR(p), might be Ω(n2) (Cole and Sharir
(1989),Devai (1986)), where n is the number of trian-

gles in T . Therefore, an algorithm that computes an

approximation of VR(p) can highly reduce the com-

putation time. Moreover, a good approximation of the
visible region is often sufficient, especially when the tri-

angulation itself is only a rough approximation of the

underlying terrain (Ben-Moshe et al, 2008). It should

be noted that the terrain representation is fixed and

cannot be modified during the running time of the al-
gorithm.

Ben-Moshe et al (2008) propose a generic radar-like

algorithm for computing an approximation of VR(p).

The algorithm extrapolates the visible region between
two consecutive rays (emanating from p) whenever the

rays are close enough; that is, whenever the difference

between the sets of visible segments along the cross

sections in the directions specified by the rays is be-

low some threshold. Thus, the density of the sampling
by rays is sensitive to the shape of the visible region.

Ben-Moshe et al (2008) suggest a specific way to mea-

sure the resemblance (difference) and to extrapolate the

visible region between two consecutive rays. They also
propose an alternative algorithm that uses circles of in-

creasing radii centered at p instead of rays emanating

from p. Both algorithms compute a representation of

the (approximate) visible region that is especially suit-

able for computing the visibility from a point. Over-
all, they used four algorithms, Fixed ECH, ECH, Fixed

radar-like, and Radar-like, to approximate V R(p). It

is shown that the Radar-like algorithm is the fastest

among these four algorithms.

Our Result. We propose an algorithm to approxi-
mate the number of visible triangles of a terrain from

a query point p, which is denoted by mp. Moreover,

the algorithm can be used to approximate V R(p). We

also consider the visibility testing problem and present
our experimental results on real data sets. We represent

the surface of the terrain as a triangulation mesh. The

main idea of the algorithm is to compute the visible

edges and vertices of the triangles. A preliminary ver-

sion of the proposed algorithms and the experimental
results are presented in Alipour et al (2014).

The rest of the paper is organized as follows. Sec-

tion 2 presents the algorithm for visibility testing be-

tween a point and a triangle and the results of test-
ing the algorithm. We also provide the average running

times and error rates of the proposed algorithm. Sec-

tion 3 describes two approximation algorithms for the

visibility counting problem and an exact algorithm that

is used to compare the approximated solution to the

exact solution. Section 4 provides the experimental re-

sults of the proposed algorithm on real data sets and

compare our results to the results of Ben-Moshe et al
(2008). Section 5 gives conclusions and future research

directions.

2 Visibility Testing Problem

Suppose that we are given a set S of n triangles in R3

and a query point p. We classify the visible triangles of

S from p into two groups:

– A triangle is an edge-visible triangle if there is a

point on its edges that is visible from p.

– If the triangle is visible from p but there is not any

visible point on its edges, then it is called a mid-
visible triangle.

Lemma 1 If the triangles of S form a terrain T , then

all the visible triangles from a query point p are edge-

visible.

Using Lemma 1, to compute the number of visible tri-

angles of a terrain T from a given query point p, it is

enough to consider the edges of triangles.

2.1 The Proposed Algorithm for Visibility Testing

According to Lemma 1, if a triangle ∆1 ∈ T is visible

from a query point p, then∆1 is edge-visible. Therefore,

for each edge of ∆1, begin from one of its vertices, such
as a1. If a1 is visible from p, then ∆1 is visible to p and

we terminate the algorithm, otherwise, we choose the

first triangle ∆2 hit by the ray emanating from p to a1.

∆2 covers some part of that edge. So, it is enough to

check whether the remaining part of the edge is visible
from p. For the remaining part, we consider the first

point a2 on that edge that is not covered by ∆2. We

shoot a ray from a2 to p. If a2 is visible from p, then

∆1 is visible from p, otherwise, we consider the first
triangle hit by the ray emanating from a2 to p. We run

the algorithm on ∆2 in the same way as ∆1. If we reach

the end of the edge, then that edge is not visible from

p. If all three edges of ∆1 are invisible from p, then ∆1

is also invisible from p (cf. Algorithm 1 and Figure 1).

2.2 Experimental Results of Visibility Testing

The computational complexity of Algorithm 1 for query

point p and triangle ∆1 depends on the number of rays



Approximation Algorithms for Visibility Computation and Testing over a Terrain 3

Algorithm 1 Algorithm for Visibility Testing
Input:
∆ ∈ T : A triangle over the terrain
p: A query point
Output:
A boolean value that indicates whether triangle ∆ is visible
from p or not.
Method:

1: Create three line segments s1, s2 and s3 based on ∆’s
edges.

2: Initialize segments queue segQueue with s1, s2 and s3.
3: while segQueue is not empty do

4: seg = segQueue.pop()
5: if At least one point on the line segment seg is visible

from p then

6: return true

7: else

8: Find the first concealer triangle TC for invisible point
p on the line segment seg.

9: for each segment segt in segments queue segQueue
do

10: COVER LINE SEGMENT(p, TC , segt) ⊲ This
function removes the invisible part from segment
seg1 according to p and TC and divides seg1 to
new segments

11: end for

12: end if

13: end while

14: return false

a2

a3s1

a1

∆1

∆2

∆3

p

Fig. 1: The proposed algorithm for visibility testing.
The dashed lines are the portions of the line segments

that are not visible from p. a1 is not visible from p and

∆2 covers a1a2. In the next step, ∆3 covers a2a3. If we

continue, either we reach the end of s1, which means

that s1 is not visible from p or we find a visible point
on s1, which means that s1 is visible from p.

shot, which is equal to the number of triangles cover-
ing the edges of ∆1. We denote this number by tp(∆1).

Therefore, the computational complexity of this algo-

rithm is O(tp(∆)f(n)) in which f(n) is the time for

shooting each ray. In our data sets, the terrain is repre-
sented as a height field where a height value is specified

for each point (i, j) on a regular 2D grid. The regu-

lar grid is triangulated to represent the terrain. We use

a regular triangulation such that for every four points

x1 = (i, j, k1), x2 = (i + 1, j, k2), x3 = (i, j + 1, k3),

x4 = (i + 1, j + 1, k4), two triangles are constructed:

∆1 = (x1, x2, x4) and ∆2 = (x1, x3, x4). In our experi-

ments, we do not preprocess the triangles of the terrain,
so f(n) = O(

√

(n)). For each tested data set, we choose

random points and run Algorithm 1 for each point p and

each triangle of the terrain. For each triangle ∆1 ∈ T ,

we calculate tp(∆1). The experimental results indicate:

E(tp(∆1)) =

n
∑

∆i∈T

tp(∆i)

n
= O(1),

which means that the average number of triangles cov-

ering a triangle for a random query point is O(1). So,

the average running time of visibility testing between a
triangle and a random query point is O(f(n)). Table 1

shows the average tp for each data set, which is smaller

than two for the tested data sets. It is seen that the

average number of tp(∆) is independent of the size of

the data set.

Number of Average number of
vertices covering triangles

2, 400 1.70
2, 400 1.18
2, 400 1.06

5, 400 1.58
5, 400 1.09
5, 400 1.03

9, 600 1.53
9, 600 1.10
9, 600 1.04

29, 400 1.48
29, 400 1.02
29, 400 1.08

60, 000 1.51
60, 000 1.37
60, 000 1.08

Table 1: The average number of triangles that cover
a triangle according to a random query point for each

data set.

3 The Visibility Counting Problem

Our visibility counting algorithm is based on counting

the number of triangles whose vertices are visible from
a query point. To compute the visible region of query

point p, the algorithm can be easily modified to output

the triangles whose vertices are visible from p.



4 Sharareh Alipour et al.

3.1 Approximation Algorithm for Visibility Counting

For each query point p, if at least one of the vertices of
a triangle is visible from p, we consider it as a visible

triangle. To compute the number of triangles that at

least one of their vertices are visible from p, we propose

the following algorithm:

First, we emanate a random ray from p to the sur-
face of T and select the first triangle ∆1 that intersects

this ray. Obviously, ∆1 is visible from p. In the next

step, we consider the three neighbors of ∆1; we check

whether the vertices of these triangles are visible from p.
If at least one of the vertices of these triangles is visible

from p, then the triangle is visible from p. We run the

algorithm recursively on the neighbors of the triangles.

Otherwise, we decide that the triangle is an invisible

triangle. For each non-visible triangle, we shoot a ray
emanating from p to the vertices of visible triangles;

the first triangle hit by that ray is considered as a vis-

ible triangle and we recursively run the algorithm on

its neighbors. Algorithm 2 shows the pseudocode of the
approximation algorithm for counting the visible trian-

gles.

Algorithm 2 Approximation algorithm for counting

the visible triangles
Input:
T : A 2D array of triangles.
p: A query point.
Output:
The number of visible triangles from p.
Method:

1: Create empty Queue, bfsQueue.
2: Find the first triangle ∆1 intersected by a random ray

emanating from p to the surface of terrain.
3: Add ∆1 to bfsQueue.
4: while bfsQueue is not empty do

5: ∆t = bfsQueue.pop()
6: if At least one vertex of triangle ∆t is visible from p

then

7: Add three neighbors of ∆1 to bfsQueue.
8: else

9: Find concealer triangles that cover vertices of trian-
gle ∆t.

10: Shoot rays from p to the vertices of concealer trian-
gles.

11: Find the intersection points of the rays shot and the
surface of the terrain.

12: Add triangles corresponding to the intersection
points to bfsQueue.

13: end if

14: end while

3.2 Computational Complexity

In Algorithm 2, each triangle is stored in the queue just
once. For each triangle, we shoot three rays to the ver-

tices of that triangle. In each step of ray shooting, we

check whether there is a triangle between p and a ver-

tex. For each ray, we want to find the first triangle hit by

a ray emanating from p to a specific direction. In both
of these ray shootings, we have to check at most O(

√
n)

triangles. So, the computational complexity of the al-

gorithm is O(
√
nmp) where mp is the number of visible

triangles. It should be noted that if we preprocess the
triangles, each ray shooting would take O(log n) time

and this could reduce the computational complexity.

3.3 Randomized Algorithm for Visibility Counting

We present an approximate randomized algorithm for

the visibility counting problem. Our algorithm is based
on random sampling and is similar to the one intro-

duced in Alipour and Zarei (2011). To find the number

of visible triangles, we first run the algorithm proposed

in the previous section at most for O(
√
n) times. Ob-

viously, if mp <
√
n, the algorithm will terminate and

output an approximation ofmp. Ifmp >
√
n, we use the

following algorithm. Suppose that the number of trian-

gles is n. We choose each triangle with the probability

of 1√
n

and perform visibility testing for each triangle.
We compute the number of triangles that are visible to

p, multiply this number by
√
n, and report it as the

approximate value of mp. We run this algorithm for t

times and report the mean value of these t values.

Alipour and Zarei (2011) show that, by Chebishev

Lemma, the approximate value will be a 1 + δ approx-
imation of the real solution. The computational com-

plexity of this algorithm is O(
1

δ2
√
n f(n) logn) be-

cause we run the visibility testing for the selected trian-

gles. Here, δ is the approximation factor. For more de-

tails on the approximation factor, please refer to Alipour

and Zarei (2011).

Using Algorithm 1, we test whether each triangle of
T is visible from p. So, we can compute the exact num-

ber of visible triangles. We use this data in our experi-

mental results to show that the approximate number of

visible triangles is close to the exact number of visible
triangles.

4 Experimental Results for Visibility Counting

We ran the approximation algorithm on three real ter-

rain data sets. The terrain is represented as a height



Approximation Algorithms for Visibility Computation and Testing over a Terrain 5

(a) Approximated visible region (b) Actual visible region (c) Subtraction of the approximated
visible region (a) from the exact visi-
ble region (b)

Fig. 2: The approximate (a) and the exact (b) visible region of the query point p(3.3, 242.5, 2089.5). The query

point is shown in red. The blue areas are not visible to the query point and all the other areas are visible. As the
height of a visible area increases, the color of that area is shown darker. Therefore, the dark parts are associated

to the mountains and the white parts are associated to the valleys.

(a) Approximated visible region (b) Actual visible region (c) Subtraction of the approximated
visible region (a) from the exact visi-
ble region (b)

Fig. 3: The approximate (a) and the exact (b) visible region of the query point p(468.8, 232.5, 3228.6). The query

point is shown in red. The blue areas are not visible to the query point and all the other areas are visible. As the

height of a visible area increases the color of that area is shown darker, so the dark parts are associated to the
mountains and the white parts are associated to the valleys.

field that for each point (i, j) on the regular 2D grid,
a height value is specified. The regular grid is triangu-

lated to represent the terrain as described in Subsec-

tion 2.2. We run the proposed algorithm on height-field

representation of the terrain.

Figures 2 and 3 show the actual and approximate

visible regions of two query points. We calculate the
approximate visible region of a query point using Al-

gorithm 2 and use the exact algorithm to calculate the

exact number of visible region of a query point. It is

seen that the approximate visibility region of a query
point is close to the actual visibility region of that point.

We define the error measure as follows. Let m′
p be

the number of visible triangles in the approximate so-
lution. Then the error associated with m′

p is (mp−m′
p)

divided by mp. For each data set, we choose 1000 ran-

dom query points and calculate the error using mp and

m′
p for each query point p. Each random point is cho-

sen at different heights above the terrain. It is obvious

that the increase in the height of a point results in an

increase in the number of visible triangles and the run-



6 Sharareh Alipour et al.

Algorithm 3 Randomized Algorithm for Visibility

Counting
Input:
Triangles of terrain T .
p: a query point.
t: number of iterations of the randomized algorithm.
Output:
counter : the number of triangles of terrain T visible from p

Method:

1: set p to 1
√

n
where n is number of triangles in terrain T .

2: set counter to 0.
3: loop

4: t iterations
5: for each triangle ∆ of terrain T do

6: select triangle ∆ with probability of p.
7: use visibility testing algorithm to check whether tri-

angle ∆ is visible from p or not.
8: if ∆ is visible from p then

9: counter++
10: end if

11: end for

12: end loop

13: return counter
t p

ning time as well. Table 2 shows the average time and

average error for each data set. We compare our results

Number of Running Error
vertices time (ms) (%)

2, 400 17 1.39
2, 400 14 0.45
2, 400 13 0.41

5, 400 44 2.03
5, 400 36 0.89
5, 400 28 0.45

9, 600 90 2.28
9, 600 80 1.17
9, 600 66 0.90

29, 400 355 3.92
29, 400 396 1.78
29, 400 365 2.47

60, 000 840 5.28
60, 000 870 3.17
60, 000 954 3.70

Table 2: The average running times for each data set.

For each data set, some random points are selected at

different heights.

to the results of the approach proposed by Ben-Moshe

et al (2008). They proposed four algorithms and mea-

sured the computational costs of these algorithms. We

use data sets similar to the ones used in the experi-
ments presented in Ben-Moshe et al (2008). In their ex-

periments, they tested ten input terrains representing

different geographic regions. Each input terrain covers

a rectangular area of approximately 5, 000−10, 000 ver-

tices. For each terrain, they picked several view points

(x, y coordinates) randomly. For each query point p,

they applied each of the four approximation algorithms

(as well as the exact algorithm) 20 times: once for each
combination of height (either 1, 10, 20, or 50 meters

above the surface of the terrain) and range of sight (ei-

ther 500, 1, 000, 1, 500, 2, 500, or 3, 500 meters). For

each (approximate) region that was obtained, they com-
puted the associated error according to the error mea-

sure they used.

Their error measure is defined as follows: let Rp be

an approximation of Rp obtained by some approxima-

tion algorithm where Rp is the region visible from p.

The error associated with Rp is the area of the exclu-
sive or of Rp and R′

p, divided by the area of the sight

that is in use. In the case that Rp is small compared

to the the sight and the difference between R′
p and Rp

is high compared to Rp, the error will be very small.

However, the difference between R′
p and Rp is gener-

ally high. Thus, our error measure is more accurate than

theirs. The data sets they tested contain 5, 000−10, 000

triangle vertices. We also tested some data sets with the

number of triangles is around 10, 000.

As it is shown in Table 3, the best average running

time of their algorithm is 274 ms with the error of 0.5
(using their error measure) whereas the average running

time of our proposed algorithm is 70 ms with the error

of 0.55 (using our error measure). If we use their error

measure, then our error will be 0.35.

Error 1.00 0.75 0.5
Fixed ECH 597 1,0045 1,648
ECH 579 1,012 1,591
Fixed radar-like 112 192 301
Radar-like 101 168 274

Table 3: The results of Ben-Moshe et al (2008). They

define an error function for approximating the visible
region of a query point. The running times of the al-

gorithms (ms) are given for each error value. The best

running time is obtained by the Radar-like algorithm.

The test environment for our experiments and the

one used in Ben-Moshe et al (2008) are described in

Table 4.

Figure 4 presents the average running times and the

error rates of the proposed approximate and random-

ized algorithms. It should be noted that the proposed
approximate algorithm calculates the visibility region

whereas the randomized algorithm gives only an ap-

proximate measure of the visible region in terms of the



Approximation Algorithms for Visibility Computation and Testing over a Terrain 7

Ben-Moshe Pentium 4 2.4GHz Linux 8.1 Java 1.4
Our platform Core i5 2.4GHz Win10 Java 1.8

Table 4: The test environments of Ben-Moshe et al

(2008) and ours.

number of triangles. The running times and the error

rates of the proposed approximate algorithm are bet-
ter than those of the Radar-like algorithm proposed by

Ben-Moshe et al (2008). As it is expected, the running

time of the randomized algorithm is significantly lower

than that of the approximate algorithm. However, the

randomized algorithm is only applicable for the cases
where we do not need the visible region but we need

a measure of the portion of the terrain that is visible

from a query point.

(a) Average running time

(b) Average error

Fig. 4: The average running times and the error rates

of the approximate and random algorithms.

5 Conclusion

We propose algorithms for visibility computation and

testing over a terrain. We implement our algorithm for

visibility testing and the experimental results show that

the average running time of visibility testing between a
query point and a triangle is almost equal to the run-

ning time of visibility testing between two points.

We also propose an approximation algorithm for
visibility counting and tested it on real data sets. We

compare our algorithm with the algorithms proposed

by Ben-Moshe et al (2008), which are the state-of-the-

art algorithms for the same problem. We show that in

almost similar conditions (considering the platforms,
the number of triangles of terrains used in the experi-

ments), the running time of our algorithm is better than

that of their radar-like algorithm. As a future extension,

we would like to propose exact algorithms for visibility
counting. Another possible extension is to adapt the

proposed algorithms to the case where triangles are in

3D.

6 Acknowledgement

Grand Canyon Data obtained from the United States
Geological Survey (USGS), with processing by Chad

McCabe of the Microsoft Geography Product Unit.

References

Alipour S, Zarei A (2011) Visibility testing and count-

ing. In: Proceedings of the 5th Joint International

Frontiers in Algorithmics, and 7th International Con-

ference on Algorithmic Aspects in Information and
Management, Springer-Verlag, Berlin, Heidelberg,

FAW-AAIM’11, pp 343–351

Alipour S, Ghodsi M, Güdükbay U, Golkari M (2014)

An approximation algorithm for computing the visi-
bility region of a point on a terrain and visibility test-

ing. In: Proceedings of the International Conference

on Computer Vision Theory and Applications, IEEE,

Piscataway, New Jersey, VISAPP 2014, pp 699–704

Alsadik B, Gerke M, Vosselman G (2014) Visibility
analysis of point cloud in close range photogram-

metry. ISPRS Annals of Photogrammetry, Remote

Sensing and Spatial Information Sciences Volume II-

5:9–16
Ben-Moshe B, Carmi P, Katz MJ (2008) Approximat-

ing the visible region of a point on a terrain. Geoin-

formatica 12(1):21–36



8 Sharareh Alipour et al.

Cohen-Or D, Shaked A (1995) Visibility and dead-zones

in digital terrain maps. Computer Graphics Forum

14(3):171–180

Cole R, Sharir M (1989) Visibility problems for poly-

hedral terrains. Journal of Symbolic Computation
7(1):11 – 30

Devai F (1986) Quadratic bounds for hidden line elimi-

nation. In: Proceedings of the Second Annual Sympo-

sium on Computational Geometry, ACM, New York,
NY, USA, SCG ’86, pp 269–275

Floriani LD, Magillo P (1994) Visibility algorithms

on triangulated digital terrain models. Interna-

tional Journal of Geographical Information Systems

8(1):13–41

Floriani LD, Magillo P (1996) Representing the visibil-

ity structure of a polyhedral terrain through a hori-

zon map. International Journal of Geographical In-

formation Systems 10(5):541–561

Franklin WR, Ray CK, Shashank M (1994) Geometric
Algorithms for Siting of Air Defense Missile Batter-

ies. Battelle, Inc., Columbus OH

Goodchild MF, Lee J (1989) Coverage problems and

visibility regions on topographic surfaces. Annals of
Operations Research 18(1):175–186

Stewart A (1998) Fast horizon computation at all points

of a terrain with visibility and shading applications.

IEEE Transactions on Visualization and Computer

Graphics 4(1):82–93


	Introduction
	Visibility Testing Problem
	The Visibility Counting Problem
	Experimental Results for Visibility Counting
	Conclusion
	Acknowledgement

