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Abstract

For a set of n disjoint line segments S in R2, the visibility counting problem (VCP) is to

preprocess S such that the number of visible segments in S from a query point p can be computed

quickly. This problem can be solved in logarithmic query time using O(n4) preprocessing time

and space. In this paper, we propose a randomized approximation algorithm for this problem.

The space of our algorithm is Oε(n
4−3β) and the query time is Oε(n

β). The complexity of our

algorithm is superior compare to best known algorithm for this problem.
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1 Introduction

Suppose that S is a set of n disjoint line segments in the plane. For simplicity, we assume that

there is a bounding box containing all segments. Two points p, q ∈ R2 are visible to each other with

respect to (w.r.t.) S if the line segment pq does not intersect any segment of S. A segment st ∈ S
is also said to be visible (w.r.t. S) from a point p if there exists a point q ∈ st such that p and q are

visible to each other. The visibility counting problem (VCP) is to find the number of segments of S

visible from any query point p.

Definition 1.1. The visibility polygon of a given point p ∈ R2 is defined as

VS(p) = {q ∈ R2 : p and q are visible (w.r.t. S)}. (Fig. 1.(a)).
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Definition 1.2. The visibility polygon of a given segment st is defined as

VS(st) =
⋃
q∈st VS(q) ={p ∈ R2 : st and p are visible (w.r.t S)}. (Fig. 1.(b)).

Figure 1: (a) The visibility polygon of a point p and (b) The visibility polygon of a line segment st.

Consider the 2n endpoints of the segments of S as vertices of a graph. Add an edge between

each pair of vertices, if they see each other. The resulting graph is the visibility graph of S or V G(S)

(Fig. 2.(a)). If we extend each edge of V G(S) in both directions until it intersects the segments in

S (or the bounding box), at most two new vertices and some edges are produced. Adding all these

vertices and edges to V G(S) results in a new graph called the extended visibility graph or EV G(S)

(Fig. 2.(b)).

Figure 2: (a) A visibility graph. (b) The extended visibility graph of (a).

VS(p) can be computed in an optimal O(n log n) time using O(n) storage [3, 12]. VCP can also be

solved using EV G(S). There is an optimal O(n log n+m) time algorithm to compute V G(S), where

m = O(n2) is the number of the edges of V G(S) [7]. This algorithm can also be used to compute

EV G(S) in O(n log n+m) time [7]. Considering the planar arrangement of the edges of EV G(S) as

a planar graph which is called the visibility space partition, V SP (S) of S, all points in any face of this

arrangement have the same number of visible segments. Therefore, we can compute these numbers

for each face in the preprocessing step and then, locate the face containing the query point. There
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are O(n4) faces in the planar arrangement of EV G(S), so a point location structure of size O(n4)

can answer each query in O(log n) time. Obviously, the preprocessing time and space of O(n4) is

high. On the other hand, without any preprocessing, the query can be answered in O(n log n) time

which is also too high. There are several other results with a tradeoff between the preprocessing

cost and the query time [2, 4, 11, 14] (see the visibility book by Kumar Ghosh for a complete survey

[8]). Therefore, the main concern of VCP can be to obtain approximation algorithms with a lower

preprocessing cost in expense of higher than logarithmic query time. Moreover, the preference is to

obtain an estimation close to the exact problem answer.

Suri and O’Rourke introduced the first 3-approximation algorithm for VCP based on representing

a region by the union of a set of convex (triangular) regions [12]. Gudmundsson and Morin improved

this result to a 2-approximation algorithm using an improved covering scheme [9]. Their method

builds a data structure of size Oε(n
2(1+α)) in the preprocessing time of Oε(n

2(1+α)) and performs

a query in Oε(n
(1−α)) time, where 0 < α ≤ 1 and Oε(f(n)) = O(f(n)nε) (Here, and throughout

the remainder of the paper, ε, δ > 0 are constants that can be made arbitrarily small). If the exact

answer to the query is mp, the algorithm by [9] returns m′p such that mp ≤ m
′

p ≤ 2mp. There

are two other approximation algorithms for VCP by Fischer et.al. [5, 6]. One of these algorithms

uses a data structure of size O((m/r)2) to build a (r/m)-cutting for the EV G(S) by which the

queries are answered in O(log n) time with an absolute error of r compared to the exact answer

(1 ≤ r ≤ n). The second algorithm uses a random sampling method and builds a data structure of

size O((m2 logO(1) n)/l) to answer any query in O(l logO(1) n) time, where 1 ≤ l ≤ n. In the latter

method, the answer of VCP is approximated up to an absolute value of δn for any constant δ > 0

(the constant δ affects the constant factor of both data structure size and the query time).

In this paper, we present a (1 + δ)-approximation algorithm with Oε(n
(1−α)) query time, which

needs a data structure of size and the preprocessing time of Oε(n
(2+1.5α)), where 0 < α ≤ 1.

2 The new method

In this section after defining some new concepts, we present our randomized algorithm to approxi-

mate the answer of VCP.
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2.1 Definitions and the new algorithm

For each end-point of S, consider a vertex and for each pair of the end-points of S, which are

visible to each other, add an edge between them with the probability of 1/nα. We call this graph

Probabilistic Visibility Graph and denote it by V G′(S). Obviously V G′(S) is a subgraph of V G(S).

Similar to EV G(S), we extend the edges of V G′(S) in both directions to intersect a segment of S or

the bounding box. This new graph is called Probabilistic Extended Visibility Graph and is denoted

by EV G′(S). Also, we consider the plane graph of EV G′(S) that partitions the plane into a set of

regions, called Probabilistic Visibility Space Partition, i.e., V SP ′(S) = {r′1, ..., r′m′} (Fig. 3).
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Figure 3: V SP ′(S) and r′i ∈ V SP ′(S). For ri ∈ V SP ′(S), we have ai = 2 and bi = 3.

Lemma 2.1. The expected size of V SP ′(S), E(|V SP ′(S)|), is O(n4−2α).

Proof. Let EEVG′ = {e1, e2, ..., e′′m} be the set of edges in EV G′(S). We consider a random

variable Xi for each edge of EV G(S), such that Xi = 1 if ei is chosen and otherwise Xi = 0, then

E(m′′) =
∑m′′

i=1Xi = n2.1/nα = n2−α.

As each pair of edges in EV G′(S) may intersect, then the expected number of edges, vertices and

E(|V SP ′(S)|) are O(n4−2α).

Consider a region r′ ∈ V SP ′(S). ri is a combination of some regions in V SP (S). So, we could

achieve V SP ′(S) by merging some adjacent regions of V SP (S). Two regions are adjacent, if they

have a mutual edge and merging two adjacent regions means to combine them by omitting their

mutual edge. Let r be a region of V SP (S). According to the definitions, some of its edges or vertices
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are omitted in V SP ′(S). Let r′ be a region of V SP ′(S) containing all point of r, then we say r is a

sub-region of r′.

Consider a region r′i ∈ V SP ′(S). r′i is a combination of some regions of V SP (S) that are merged

in V SP ′(s). As it was noted, we can compute the exact answer of VCP for each of these sub-

regions. Suppose that the minimum value of VCP among these regions is ai in a ∈ V SP (S) and

the maximum value is bi in b ∈ V SP (S) (Fig. 3). We know that a and b are sub-regions of r′i. For

each r′i ∈ V SP ′(S), we save ai and bi. As the difference of two adjacent regions is at most 1, then

there should be a set of sub-regions SR = {a = r1, ..., b = rk} such that ri and ri+1 are adjacent

and |SR| ≥ bi − ai. This means that O(bi − ai) edges are not chosen in EV G′(S). As each edge is

chosen with the probability of 1/nα, the probability that there exists r′i is at most

P (r′i) ≤ (1− 1/nα)
bi−ai .

and for each r′i ∈ V SP ′(S)

P (bi − ai ≥ δnβ) ≤ (1− 1/
√
n)δn

β

.

Suppose that we construct V SP ′(S), z = O(nγ) times, denoted by V SP ′i (S), i = 1.., z. Now consider

a query point p. In each V SP ′i (S), let r′i ∈ V SP ′i (S) be the region containing p. If bi/ai ≤ 1 + δ

then, we report bi as the approximated value of mp. In this condition we have

mp ≤ bi ≤ (1 + δ)mp

Which is a 1 + δ approximation factor answer to VCP. We prove that, if mp ≥ nβ and β + γ > α,

then there is a region rj ∈ V SP ′j(S) such that with high probability bj/aj ≤ 1 + δ. Assume that for

each r′i ∈ V SP ′i (S), i = 1.., z, bi/ai ≥ 1 + δ. This means that in each ri, at least δO(δnβ) edges are

not chosen and the probability that this happens is at least O(1− (1/nα))δn
β

). So, the probability

that in all the V SP ′i (S) this happens is at least

P = O((1− (1/nα))δn
β+γ

).

Since δ is a constant, it is obvious that, if β + γ > α, then P → 0. If there is not any ri ∈ V SP ′j(S)

such that bj/aj ≤ 1 + δ, then with the probability of 1− P , mp ≤ nβ , so we use the method of [13]

to calculate the exact value of mp (Algorithm 1).
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Algorithm 1 (1 + δ)-approximation factor algorithm for VCP

1: Input : S (a set of segments) and p (a query point).
2: Output : The number of visible segments from p.
3: For each query:
4: for each V SP ′i (S) do
5: if bi/ai ≤ 1 + δ then
6: return bi as the approximated value of mp

7: Break
8: end if
9: end for

10: Use the method of [13] to compute VS(p)
11: return the exact value of mp.

2.2 Analysis of time and space

According to Lemma 2.1, the space for each V SP ′i (S) is O(n4−2α). On the other hand, the space

for constructing the data structure of [13] is O(n2). So, the total space is O(n4−2α+γ + n2). We

choose α and γ such that 4− 2α+ γ ≥ 2, then the space is O(n4−2α+γ).

At the query time, with logarithmic time for each V SP ′i (S), we can find the location of query

point p and as we do this at most O(nγ) times, the query time is Oε(n
γ). If there is no ri with

bi/ai ≤ 1 + δ, then we have to use the method of [13] with the query time of Oε(n
β) to compute

VS(p) and calculate the exact answer. So, in the worst case the query time is Oε(n
β + nγ).

Theorem 2.1. We can answer VPC in Oε(n
β) by using Oε(n

4−3β) space (0 ≤ β ≤ 2/3). Our

algorithm returns a value m′p such that mp ≤ m′p ≤ (1 + δ)mp when mp ≥ nβ and the exact value

when mp ≤ Θ(nβ).

Proof. If we choose α = 2β − ε = 2γ − ε, then we achieve the desired space and query time.

Compared to the best known result for VCP, according to [9], if we set k = n4−3β , then the

space would be Oε(k) and the query time would be Oε(n
1.5β), where in our method with this space

the query time would be Oε(n
β). Their method gives a 2-approximation factor algorithm, where in

our method we can achieve a 1 + δ-approximation factor algorithm where δ can be chosen as little

as we want.
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3 Conclusion

In this paper we proposed a randomized algorithm to approximate the answer of VCP. Compared

with the best known results for this problem, our algorithm improves the approximation factor and

the query time. But we have not yet find any method to reduce the construction time for calculating

ai and bi for each region. So, working on these issues is of our interest.
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