
An improved Constant-Factor Approximation Algorithm for

Planar Visibility Counting Problem

Sharareh Alipour Mohammad Ghodsi Amir Jafari

February 22, 2016

Abstract

Given a set S of n disjoint line segments in R2, the visibility counting problem
(VCP) is to preprocess S such that the number of segments in S visible from any
query point p can be computed quickly. This problem can trivially be solved in
logarithmic query time using O(n4) preprocessing time and space. Gudmoonsson
and Morin proposed a 2-approximation algorithm for this problem with a tradeoff
between the space and the query time. They answer any query in Oε(n

1−α) with
Oε(n

2+2α) of preprocessing time and space, where α is a constant 0 ≤ α ≤ 1, ε > 0 is
another constant that can be made arbitrarily small, and Oε(f(n)) = O(f(n)nε).

In this paper, we propose a randomized approximation algorithm for VCP with a
tradeoff between the space and the query time. We will show that for an arbitrary con-
stants 0 ≤ β ≤ 2

3 and 0 < δ < 1, the expected preprocessing time, the expected space,
and the query time of our algorithm are O(n4−3β log n), O(n4−3β), and O(1

δ3n
β log n),

respectively. The algorithm computes the number of visible segments from p, or mp,
exactly if mp ≤ 1

δ3n
β log n. Otherwise, it computes a (1 + δ)-approximation m′p with

the probability of at least 1− 1
logn , where mp ≤ m′p ≤ (1 + δ)mp.

Keywords. computational geometry, visibility, randomized algorithm, approxima-
tion algorithm, graph theory.

1 Introduction

Problem Statement

Let S = {s1, s2, ..., sn} be a set of n disjoint closed line segments in the plane contained
in a bounding box, B. Two points p and q in the bounding box are visible to each other
with respect to S, if the open line segment pq does not intersect any segments of S. A
segment si ∈ S is also said to be visible from a point p, if there exists a point q ∈ si such
that q is visible from p. The visibility counting problem (VCP) is to find mp, the number
of segments of S visible from a query point p. We know that the visibility polygon of a
given point p ∈ B is defined as

V PS(p) = {q ∈ B : p and q are visible},

and the visibility polygon of a given segment si is defined as

V PS(si) =
⋃
q∈si V PS(q).

Consider the 2n end-points of the segments of S as vertices of a geometric graph. Add
a straight-line-edge between each pair of visible vertices. The result is the visibility graph
of S or V G(S). We can extend each edge of V G(S) in both directions to the points that

1

the edge hits some segments in S or the bounding box. This creates at most two new
vertices and two new edges. Adding all these vertices and edges to V G(S) results in a new
geometric graph called the extended visibility graph of S or EV G(S). EV G(S) reflects all
the visibility information from which the visibility polygon of any segment si ∈ S can be
computed [11].

Relaterd Work

V PS(p) can be computed in O(n log n) time using O(n) space [4, 14]. Vegter proposed
an output sensitive algorithm that reports V PS(p) in O(|V PS(p)| log(n

|V PS(p)|)) time, by

preprocessing the segments in O(m log n) time using O(m) space, where m = O(n2) is
the number of edges of V G(S) and |V PS(p)| is the number of vertices of V PS(p) [15].

EV G(S) can be used to solve VCP. EV G(S) can optimally be computed in O(n log n+
m) time [9]. If a vertex is assigned to any intersection point of the edges of EV G(S),
we have a planar graph, which is called the planar arrangement of the edges of EV G(S).
All points in any face of this arrangement have the same number of visible segments and
this number can be computed for each face in the preprocessing step [11]. Since there
are O(n4) faces in the planar arrangement of EV G(S), a point location structure of size
O(n4) can answer each query in O(log n) time. But, O(n4) preprocessing time and space
is high. We also know that for any query point p, by computing V PS(p), mp can be
computed in O(n log n) with no preprocessing. This has led to several results with a
tradeoff between the preprocessing cost and the query time [3, 5, 10, 13, 16].

Suri and O’Rourke [14] introduced the first approximation algorithm for VCP with
the approximation factor of 3. Their algorithm is based on representing a region as
the union of a set of triangles. Gudmundsson and Morin [11] improved this result to a 2-
approximation algorithm using an improved covering scheme. Their method builds a data
structure of size Oε(m

1+α) = Oε(n
2(1+α)) in Oε(m

1+α) = Oε(n
2(1+α)) preprocessing time,

from which each query is answered in Oε(m
(1−α)/2) = Oε(n

1−α) time, where 0 < α ≤ 1.
This algorithm returns m′p such that mp ≤ m′p ≤ 2mp. The same result can be achieved
from [2] and [12]. In [2], it is proven that the number of visible end-points of the segments
in S, denoted by vep, is a 2-approximation of mp, that is mp ≤ vep ≤ 2mp. There are two
other approximation algorithms for VCP by Fischer et al. [7, 8]. One of these algorithms
uses a data structure of size O((m/r)2) to build a (r/m)-cutting for EV G(S) by which
the queries are answered in O(log n) time with an absolute error of r compared to the
exact answer (1 ≤ r ≤ n). The second algorithm uses the random sampling method to
build a data structure of size O((m2 logO(1) n)/l) to answer any query in O(l logO(1) n)
time, where 1 ≤ l ≤ n. In the latter method, the answer of VCP is approximated up to
an absolute value of δn for any constant δ > 0 (δ affects the constant factor of both data
structure size and the query time).

Our Results

In this paper, we present a randomized (1+δ)-approximation algorithm, where 0 < δ ≤ 1.
The expected preprocessing time and space of our algorithm are O(m2−3β/2 logm) and
O(m2−3β/2) respectively, and our query time is O(1

δ3
mβ/2 logm), where 0 ≤ β ≤ 2

3 is
chosen arbitrarily in the preprocessing time.

In our proposed algorithm, a graph G(p) is associated to each query point p; the
construction of G(p) is explained in Section 2. It will be shown that G(p) has a planar
embedding and this formula holds: mp = n − F (G(p)) + 1 or n − F (G(p)) + 2, where
F (G(p)) is the number of faces of G(p).

2

Using Euler’s formula for planar graphs, we will show that if p is inside a bounded face
of G(p), then mp = vep − C(G(p)) + 1, otherwise mp = vep − C(G(p)), where C(G(p))
is the number of connected components of G(p). In Section 3 and 4, we will present
algorithms to approximate vep and C(G(p)). This leads to an overall approximation for
mp.

Some detail of our algorithm is as follows: First, we try to calculate V PS(p) by running
the algorithm presented in [15] for 1

δ3
mβ/2 logm steps. If this algorithm terminates, the

exact value of mp is calculated, which is obviously less than 1
δ3
mβ/2 logm. Otherwise, our

algorithm instead returns m′p, such that mp ≤ m′p ≤ (1 + δ)mp with the probability of at

least 1− 1
logn . Table 1 compares the performance of our algorithm with the best known

result for this problem. Note that if we choose a constant number 0 < δ < 1, then our
query time is better than [11], however our algorithm returns a (1 + δ)-approximation of
the answer with a hight probability.

Table 1: Comparison of our method and the best known result for VCP. Note that β
(0 ≤ β ≤ 2

3) is chosen in the preprocessing time and 1+δ (0 < δ ≤ 1) is the approximation
factor of the algorithm which affects the query time and Oε(f(n)) = O(f(n)nε), where ε
is a constant number that can be arbitrary small.

Reference Preprocessing time Space Query Approx-Factor

[11] Oε(m
2−3β/2) Oε(m

2−3β/2) Oε(m
3β/4) 2

Our result O(m2−3β/2 logm) O(m2−3β/2) O(1
δ3
mβ/2 logm) 1 + δ

2 Definitions and the main theorem

For each point a′ ∈ si, let
−→
pa′ be the ray emanating from the query point p toward a′ and

let a = pr(a′) be the first intersection point of
−→
pa′ and a segment in S or the bounding

box right after touching a′. We say that a = pr(a′) is covered by a′ or the projection of
a′ is a. Also, suppose that x′y′ is a subsegment of si and xy is a subsegment of sj , such
that pr(x′) = x and pr(y′) = y and for any point z′ ∈ x′y′, pr(z′) ∈ xy, then we say that
xy is covered by x′y′.

For each query point p, we construct a graph denoted by G(p) as follows: a vertex vi
is associated to each segment si ∈ S, and an edge (vi, vj) is put if sj covers one end-point
of si (or vice-versa; that is, if si covers one end-point of sj). Obviously, there are two
edges between vi and vj , if sj (or si) covers both end-points of si (or sj). As an example,
refer to Fig 1.(a) and (d). Note that the bounding box is not considered here.

For any segment s ∈ S, let l(s) and r(s) be the first and second end-points of s,
respectively swept by a ray around p in clockwise order (Fig 1.(a)).

Lemma 2.1. G(p) has a planar embedding.

Proof. Here is the construction. For each end-point a ∈ si not visible from p, let a′ ∈ sj
such that pr(a′) = a. Draw the straight-line aa′. Doing this, we have a collection of
non-intersecting straight-lines. For each si, we put a vertex vi located very close to the
mid-point of si. Also, for each segment aa′, we connect a to vi and a′ to vj . This creates
an edge consisting of three consecutive straight-lines via, aa′, and a′vj that connects vi
to vj . Obviously, none of these edges intersect. Finally, all the original segments are

3

s1l(s1) r(s1)

s2l(s2)
r(s2)

s3l(s3)

r(s3)
s4l(s4)
r(s4)

s5l(s1)
r(s1)

p

(a)

s1a

a′s2
s3

s4
s5

p

(b)

v1

v2

v3

v4

v5

p

(c)

v1

v2

v3

v4

v5

p

(d)

Figure 1: The steps to draw a planar embedding of G(p). (a) The segments are s1, . . . ,
and s5 with their left and right end-points and a given query point is p. (b) For each
end-point a ∈ si not visible to p, if a′ ∈ sj such that pr(a′) = a, we draw aa′. (c) Put a
vertex vi for each segment si in a distance sufficiently close to the middle of si. For each
a and a′ (described in (b)), connect a to vi and a′ to vj . This creats and edge between vi
and vj shown in red (d) Remove the segments and the remaining is the planar embedding
of G(p). Note that the final embedding has 5 vertices and 5 edges and each edge is drown
as 3 consequence straight lines.

4

removed. The remaining is the vertices and edges of a planar embedding of G(p) (These
steps can be seen in Fig 1).

�

From now on, we use G(p) as the planar embedding of the graph G(p). As we know
the Euler’s formula for any non-connected planar graph G with multiple edges is:

V (G)− E(G) + F (G) = 1 + C(G),

where E(G), V (G), F (G), and C(G) are the number of edges, vertices, faces, and con-
nected components of G, respectively. The following theorem provides a method to cal-
culate mp, using G(p).

Theorem 2.1. The number of segments not visible from p is equal to F (G(p))− 2 if p is
inside a bounded face of G(p), or is equal to F (G(p))− 1, otherwise.

si
l(s1) = q0 r(s1) = q5

s′1
s′2

q1 q2 q3 q4

s′3

s′4

s′5

s′6

p

Figure 2: si is not visible from p. It can be partitioned into 5 subsegments
q0q1, q1q2, q2q3, q3q4, and q4q5, each is covered respectively by subsegment of s′1, s

′
2, s
′
3, s
′
4,

and s′3 shown above.

Proof. We construct a bijection φ between the segments not visible from p to the faces
of G(p) except the unbounded face and the face that contains p. This will compelete the
proof of our theorem.

Suppose that si is a segment not visible from p. Then, we can partition si into k
subsegments, q0q1, q1q2, . . . , and qk−1qk such that q0 = l(si), qk = r(si), and for each
qiqi+1, there is a subsegment q′iq

′
i+1 ∈ sj that covers qiqi+1. Let s′1, s

′
2, ...,, and s′k be the

set of segments such that xy ∈ s′i+1 covers qiqi+1 (note that some segments may appear
more than once in the above sequence) (Fig 2). We claim that the vertices vi, v

′
1, v
′
2, ...,

and v′k form a bounded face of G(p) that does not contain p. In φ, we associate this face
to si. Since v′1 is the vertex associated to the first segment that covers q0q1, s

′
1 will cover

l(si) and hence vi is adjacent to v′1. Similarly, since s′k covers r(si), hence vi is adjacent
to v′k. The next subsegment that covers a subsegment of si comes from s′2. This means
that r(s′1) is covered by s′2 or l(s′2) is covered by s′1. This implies that v′1 is adjacent to
v′2. Similarly, we can show that v′i is adjacent to v′i+1 for all 1 ≤ i < k. To complete the
construction, we need to show that the closed path formed by vi → v′1 → v′2, ...→ v′k → vi
is a bounded face not containing p. Consider a ray around p in clockwise order. The

5

area that this ray touches under si and above s′1, . . . , and s′k is a region bounded by
vi, v

′
1, v
′
2, ..., and v′k. Obviously, p is not inside this region.

Now, we show that our map φ is one-to-one and onto. The proof of one-to-oneness
is easier. If φ(si) = φ(sj), then according to the construction of φ, a subsegment of si
covers a subsegment of sj and a subsegment of sj covers a subsegment of si. This is a
contradiction since these segments do not intersect. To prove the onto-ness, we need to
show for any bounded face f that does not contain p, there is a vertex vi corresponding
to a segment si that is not visible to p such that φ(si) = f .

To find si, we use the sweeping ray around p. Since f is assumed to be bounded and not
containing p, the face f is between two rays from p; one from the left and the other from
the right. If we start sweeping from left to right, there is a segment corresponding to the
vertices of f whose end-point is the first to be covered by the other segments corresponding
to the vertices of f . We claim that si is the desired segment .i.e. si is not visible to p and
φ(si) = f . For example in Fig 2, the closed path vi → v′1 → v′2 → v′3 → v′4,→ v′3,→ vi
forms a face and si is the first segment among {si, s′1, s′2, s′3, s′4} such that l(si) is covered
by one of the segments in {si, s′1, s′2, s′3, s′4}.

Obviously, l(si) is not visible from p. v′1 is adjacent to vi which means that a subseg-
ment of s′1 covers a subsegment of si. Since v′1 and v′2 are adjacent, this means that a
subsegment of s′2 consecutively covers the next subsegment of si right after s′1. Continuing
this procedure, we conclude that a subsegment of each s′i covers some subsegment of si
continuously right after s′i−1. v

′
k and vi are also adjacent, so r(si) is not visible from p.

We conclude that subsegments of s′1, s
′
2 . . . , and sk completely cover si and hence si is

not visible from p.
So, if p is in the unbounded face of G(p), the number of segments which are not visible

from p is F (G(p))− 1, otherwise it is F (G(p))− 2. �

The Euler’s formula is used to compute F (G(p)). Obviously, V (G(p)) is n. For each
end-point not visible from p, an edge is added to G(p); therefore, E(G(p)) is 2n − vep
(vep was defined above as the number of visible end-points from p). The Euler’s formula
and Theorem 2.1 indicate the following lemma.

Lemma 2.2. If p is inside a bounded face of G(p), then mp = vep−C(G(p))+1, otherwise,
mp = vep − C(G(p)).

In the rest of this paper, two algorithms are presented; one to approximate vep and the
other to approximate C(G(p)). By applying Lemma 2.2, an approximation value of mp

is calculated. The main result of this paper is thus derived from the following theorem.
The proof is given in the Appendix.

Theorem 2.2. (Main theorem) For any 0 < δ ≤ 1 and 0 ≤ β ≤ 2
3 , VCP can be approxi-

mated in O(1
δ3
mβ/2 logm) query time using O(m2−3β/2 logm) expected preprocessing time

and O(m2−3β/2) expected space. This algorithm returns a value m′p such that with the

probability at least 1− 1
logm , mp ≤ m′p ≤ (1 + δ)mp when mp ≥ 1

δ3
mβ/2 logm and returns

the exact value when mp <
1
δ3
mβ/2 logm.

3 An approximation algorithm to compute the number of
visible end-points

In this section, we present an algorithm to approximate vep, the number of visible end-
points. In the preprocessing phase, we build the data structure of the algorithm presented

6

in [15] which calculates V PS(p) in O(|V PS(p)| log(n/|V PS(p)|)) time, where |V PS(p)| is
the number of vertices of V PS(p). In [15], the algorithm for computing V PS(p), consists
of a rotational sweep of a line around p. During the sweep, the subsegments visible from p
along the sweep-line are collected. In the preprocessing phase, we choose a fixed parameter
β, where 0 ≤ β ≤ 2

3 . In the query time we also choose a fixed parameter 0 < δ ≤ 1 which
is the value of approximation factor of the algorithm.

We use the algorithm presented in [15] to find the visible end-points, but for any query
point, we stop the algorithm if more than 2

δ3
mβ/2 logm of the visible end-points are found.

If the sweep line completely sweeps around p before counting 1
δ3
mβ/2 logm of the

visible end-points, then we have completely computed V PS(p) and we have |V PS(p)| ≤
2
δ3
mβ/2 logm. In this case, the number of visible segments can be calculated exactly in

O(1
δ3
mβ/2 logm) time. Otherwise, vep >

2
δ3
mβ/2 logm and the answer is calculated in the

next step of algorithm, that we now explain.
The visibility polygon of an end-point a is a star shaped polygon consisting of ma =

O(n) non-overlapping triangles [4, 14], which are called the visibility triangles of a denoted
by V TS(a). Notice that ma is the number of edges of EV G(S) incident to a. The query
point p is visible to an end-point a, if and only if it lies inside one of the visibility triangles
of a. Let V TS be the set of visibility triangles of all the end-points of the segments in
S. Then, the number of visible end-points from p is the number of triangles in V TS
containing p. We can construct V TS in O(m logm) = O(n2 log n) time using EV G(S)
and |V TS | = O(m) = O(n2)[11].

We can preprocess a given set of triangles using the following lemma to count the
number of triangles containing any query point.

Lemma 3.1. Let ∆ be a set of n triangles. There exists a data structure of size O(n2),
such that in the preprocessing time of O(n2 log n), the number of triangles containing a
query point p can be calculated in O(log n) time.

Proof. Consider the planar arrangement of the edges of the triangles in ∆ as a planar
graph. Let f be a face of this graph. Then, for any pair of points p and q in f , the number
of triangles containing p and q are equal. Therefore, we can compute these numbers for
each face in a preprocessing phase and then, for any query point locate the face containing
that point. There are O(n2) faces in the planar arrangement of ∆, so a point location
structure of size O(n2) can answer each query in O(log n) time. Note that the number of
triangles containing a query point differs in 1 for any pair of adjacent faces. �

3.1 The algorithm

Here, we present an algorithm to approximate vep. We use this algorithm when mp >
1
δ3
mβ/2 logm. In the preprocessing phase we take a random subset RV T1 ⊂ V TS such

that each member of V TS is chosen with the probability of 1
mβ

.

Lemma 3.2. E(|RV T1|) = O(m1−β).

Proof. Let V TS = {∆1,∆2, ...∆m′}, where m′ = O(m) = O(n2) and Xi = 1 if ∆i ∈ RTV1,
and Xi = 0 otherwise. We have,

E(|RV T1|) = E(
∑m′

i=1Xi) =
∑m′

i=1E(Xi) =
∑m′

i=1
1
mβ

= m′

mβ
= O(m1−β).

�

7

Suppose that in the preprocessing time, we choose mβ/2 independent random subsets
RV T1, ..., and RV Tmβ/2 of V TS . Using Lemma 3.1, for any query point p, the number
of triangles of each RV Ti containing p denoted by (vep)i, is calculated in O(logm) time
by O(m2−2β logm) expected preprocessing time and O(m2−2β) expected space. Then,

ve′p = mβ
∑mβ/2

i=1 (vep)i
mβ/2

is returned as the approximation value of vep.

3.2 Analysis of approximation factor

In this section the approximation factor of the algorithm is calculated. Let Xi = mβ(vep)i.

Lemma 3.3. E(Xi) = vep

Proof. Suppose that V T (p) = {∆′1,∆′2, ...,∆′vep} ⊂ V TS be the set of all triangles con-

taining p. Let Yj = 1 if ∆′j ∈ RV Ti, and Yj = 0 otherwise. So, (vep)i =
∑vep

j=1 Yj

and E((vep)i) = E(
∑vep

j=1 Yj) =
vep
mβ

. E(Xi) = E(mβ(vep)i) = mβE((vep)i) = mβ vep
mβ

=
vep. �

In addition, we can conclude the following lemma:

Lemma 3.4. E(
∑mβ/2

i=1 Xi
mβ/2

) = vep

So, X1, X2, ..., Xmβ/2 are random variables with E(Xi) = vep. According to Cheby-
shev’s Lemma the following lemma holds

Lemma 3.5. (Chebyshev’s Lemma) Given X1, X2, ..., Xn sequence of i.i.d.’s random vari-
ables with finite expected value E(X1) = E(X2) = ... = µ, we have,

P ((|X1+...+Xn
n − µ|) > ε1) ≤ V ar(X)

nε12
.

Lemma 3.6. With a probability at least 1− 1
logm we have,

(1− δ)vep ≤ ve′p ≤ (1 + δ)vep.

Proof. Using Lemma 3.5, we choose ε1 = δvep. Here, δ indicates the approximation factor
of the algorithm. Obviously, V ar(Xi) = m2β(vep)(1− 1

mβ
) 1
mβ

. So,

P = P (|ve′p − vep| > δvep) ≤ mβvep
mβ/2δ2(vep)2

.

We know that vep ≥ 1
δ2
mβ/2 logm, so

P = P (|ve′p − vep| > δvep) ≤ 1
logm .

With the probability of at least 1− P, we have,

(1− δ)vep ≤ ve′p ≤ (1 + δ)vep.

Also, for a large m, we have P ∼ 0. �

8

3.3 Analysis of time and space complexity

In the first step of the query time, we run the algorithm of [15]. The preprocessing time and
space for constructing the data structure of [15] are O(m logm) and O(m), respectively,
which computes V PS(p) in O(|V PS(p)| log(n/|V PS(p)|)) time. As we run this algorithm
for at most 1

δ3
mβ/2 logm steps, the query time of the first step is O(1

δ3
mβ/2 logm).

According to Lemma 3.2, E(|RV Ti|) = O(m1−β). Using Lemma 3.1, the expected
preprocessing time and space for each RV Ti are O(m2−2β logm) and O(m2−2β) respec-
tively, such that in O(logm) we can calculate (vep)i. So, the expected preprocessing time

and space are mβ/2O(m2−2β logm) = O(m2− 3
2
β logm) and mβ/2O(m2−2β) = O(m2− 3

2
β)

respectively.
In the second step, for each RV Ti the value of (vep)i is calculated in O(logm). There-

fore, the query time is O(1
δ3
mβ/2 logm)+O(mβ/2 logm). So, we have the following lemma.

Lemma 3.7. There exists an algorithm that for any query point p, approximates vep
in O(1

δ3
mβ/2 logm) query time using O(m2−3β/2 logm) expected preprocessing time and

O(m2−3β/2) expected space (0 ≤ β ≤ 2
3). This algorithm returns the exact value of vep

when vep <
1
δ2
mβ/2 logm. Otherwise, a value of ve′p is returned such that with the prob-

ability of at least 1− 1
logm , we have (1− δ)vep ≤ ve′p ≤ (1 + δ)vep.

4 An approximation algorithm for computing the number
of components of G(p) and the proof of Theorem 2.2

In this section, we explain an algorithm to compute the number of connected components
of G(p), each is simply called a component of G(p).

Let c be a component such that p is not inside any of its faces. It is easy to see that
there exists a ray emanating from p that does not intersect any segments corresponding
to the vertices of c. We start sweeping this ray in a clockwise direction. Let l(c) (left
end-point of c) be the first end-point of a segment of c and r(c) (right end-point of c) be
the last end-point of a segment of c that are crossed by this ray. (Fig 3). This way every
component c has l(c) and r(c) except the component containing p.

As said, the bounding box is not a part of G(p), but G(p) is contained in the bounding
box.

Lemma 4.1. For each component c, except the one containing p, the projections of l(c)
and r(c) both belong either to the same segment or the bounding box.

Proof. Assume that pr(l(c)) belongs to a segment s ∈ S. Since l(s) is on the left of l(c), s
can not be among the segments of c. We claim that r(s) is on the right of r(c). Obviously,
if this claim is true then, if pr(r(c)) ∈ s′, then l(s′) is on the left of l(c). Clearly, if s 6= s′,
then these two should intersect, which is impossible. Also, this implies that if pr(l(c))
is on the bounding box, then pr(r(c)) should to be on the bounding box as well. The
claim is proven by contradiction. Assume that r(s) is on the left of r(c). Since, r(s) is
not visible from p, then there should exist a segment s′ that covers r(s). Since, s is not
in c and s′ is connected to s, s′ can not be in c, so l(s′) is to the right of l(c) and hence is
not visible. Therefore, there should exist a different segment s′′ that covers l(c) and with
the same argument s′′ can not be in c and l(s′′) should be covered by another segment.
This process can not be continued indefinitely since the number of segments is finite and
therefore we will reach a contradiction. �

9

s1

s6
l(s6)

s2
l(s2)

s3
l(s3)

s4
r(s4)s5

l(s5) r(s5)

p

a′a

b′b c

c′

Figure 3: aa′ and bb′ are the visible subsegments of s1. The bounding box has one visible
part from c to c′. G(p) has three components; {s1, s2, s6}, {s3, s4}, and {s5}. l(s2), l(s3),
and l(s5) are the left end-points of these components, respectively. r(s6), r(s4), and r(s5)
are the right end-points of these components, respectively.

Let s′1, s
′
2, s
′
3, and s′4 be the segments of the bounding box. According to Lemma 4.1,

we can associate a pair of adjacent visible subsegments or a connected visible part of the
bounding box for each component of G(p). For example, in Fig 3, s1 has two visible
subsegments which are associated to the component composed of s3 and s4. If we can
count the number of visible subsegments of each segment and the number of visible parts
of the bounding box, then we can compute the exact value of C(G(p)). Because each pair
of consecutive visible subsegments of a segment and each visible part of the bounding
box are associated to a component. Let c′ be the number of visible parts of the bounding
box. If c′ > 0, then p is in the unbounded face. So, if each segment si has ci visible
subsegments, then C(G(p)) = c′ +

∑n
i=1 max {(ci − 1), 0} . For example in Fig 3, c1 = 2,

c2 = 1, c3 = 1, c4 = 2, c5 = 1 and c6 = 1, also c′ = 1. This implied that C(G(p)) = 3. If
c′ = 0, then p is in a bounded face and this face is contained in a component with no left
and right end-point, so in this case C(G(p)) = 1 +

∑n
i=1 max {(ci − 1), 0}.

In the following we propose an algorithm to approximate the number of visible sub-
segments of each segment si ∈ S ∪ {s′1, s′2, s′3, s′4}.

4.1 Algorithm

According to [11], it is possible to cover the visibility region of each segment si ∈ S ∪
{s′1, s′2, s′3, s′4} with O(msi) triangles denoted by V T (si). Here, |V T (si)| = O(msi), where
msi is the number of edges of EV G(S) incident on si. Note that the visibility triangles
of si may overlap. If we consider the visibility triangles of all segments, then there is a
set V TS = {∆1,∆2, ...} of |V TS | = O(m) triangles. We say ∆i is related to sj if and
only if ∆i ∈ V T (sj). For a given query point p, m′′p, the number of triangles in V TS
containing p, is between mp and 2mp. So, m′′p gives a 2-approximation factor solution
for VCP [11]. Since the visibility triangles of each segment may overlap, some of the
segments are counted repeatedly. In [11], it is shown that each segment si is counted ci
times, where ci is the number of visible subsegments of si. In other words, there are ci
triangles related to si in V TS which contain p.

A similar approach can be used to approximate C(G(p)). A random subset RV T1 ⊂
V TS is chosen such that each member of V TS is chosen with probability 1

mβ
. For a given

10

query point p, let c′i,1 ≥ 1 be the number of triangles related to si in RV T1 containing

p. We report C1 =
∑n

i=1(m
βc′i,1 − 1) as the approximated value of C(G(p)) received by

RV T1. We choose mβ/2 random subsets RV T1, ..., RV Tmβ/2 of V TS . Let p be the given

query point, for each RV Tj , Cj =
∑n

i=1(m
βc′i,j − 1) is calculated. At last, C ′p =

∑mβ/2

j=1 Cj

mβ/2

is reported as the approximation value of C(G(p)).

4.2 Analysis of approximation factor

We show that with the probability at least 1
logm , if C(G(p)) > 1

δ2
mβ/2 logm, then C ′p is

a (1 + δ)-approximation of C(G(p)).

Lemma 4.2. E(Cj) = C(G(p)).

Proof. E(Cj) = E(
∑n

i=1m
βc′i,j − 1) =

∑n
i=1E(mβc′i,j − 1) =

∑n
i=1 ci − 1 = C(G(p)). �

Using Lemma 3.5, we have,

P = P (|C1+...+Cmβ/2

mβ/2
− C(G(p))| > δC(G(p))) ≤ V ar(Ci)

mβ/2δ2C(G(p))2
.

V ar(Ci) = m2βC(G(p))(1
mβ

)(1− 1
mβ

). Since we have, C(G(p)) > 1
δ2
mβ/2 logm,

P = P (|C1+...+Cmβ/2

mβ/2
− C(G(p))| > δC(G(p))) ≤ 1

logm .

So, with the probability at least 1− P,

(1− δ)C(G(p)) ≤ C ′p ≤ (1 + δ)C(G(p)).

and for a large m, we have, P ∼ 0.

4.3 Analysis of time and space complexity

By Lemma 3.1, for each RV Ti, a data structure of expected preprocessing time and size
of O(m2−2β logm) and O(m2−2β) is needed. RV Ti returns Ci in O(logm) for each query
point p. So, the expected space for all mβ/2 data structures is O(m2−2β+β/2 logm) and
the query time for calculating C ′p is O(mβ/2 logm). So, we have the following lemma.

Lemma 4.3. There exists an algorithm that approximates C(G(p)) in O(1
δ2
mβ/2 logm)

query time by using O(m2−3β/2) expected preprocessing time and O(m2−3β/2) expected
space (0 ≤ β ≤ 2

3). For each query p, this algorithm returns a value C ′p such that with

probability at least 1 − 1
logm , (1 − δ)C(G(p)) ≤ C ′p ≤ (1 + δ)C(G(p)) when C(G(p)) >

1
δ2
mβ/2 logm.

5 Conclusion

In this paper, a randomized algorithm is proposed to compute an approximation answer to
VCP. The main ideas of the algorithm that reduce the complexity of previous methods are
random sampling and breaking the query into two steps. The time and space complexity
of our algorithm depend on the size of EV G(S). A planar graph is associated to each
query point p. It is proven that the answer is equal to vep − C(G(p)), where vep is the
number of visible end-points and C(G(p)) is the number of connected components in the
planar graph. To improve the running time of our algorithm instead of finding the exact
values of vep and C(G(p)), we approximate these values. Although an exact calculation
of vep using a tradeoff between the query time and the space is possible.

11

References

[1] P. K. Agarwal and J. Erickson. Geometric range searching and its relatives. In B.
Chazelle, J. E. Goodman, and R. Pollack, editors, Advances in Discrete and Compu-
tational Geometry, volume 223 of Contemporary Mathematics, pages 156. American
Mathematical Society Press, 1999.

[2] Alipour, S., Zarei, A.: Visibility Testing and Counting. FAW-AAIM 2011, Jinhua,
China, LNCS (Volume 6681) by Springer-Verlag, 343-351 (2011)

[3] Aronov, B., Guibas, L. J., Teichmann M. and Zhang L.: Visibility queries and mainte-
nance in simple polygons. Discrete and Computational Geometry. 27, 461–483 (2002)

[4] Asano, T.: An efficient algorithm for finding the visibility polygon for a polygonal
region with holes. IEICE Transactions. 557–589(1985)

[5] Bose, P., Lubiw, A. and Munro, J. I.: Eficient visibility queries in simple polygons.
Computational Geometry Theory and Applications. 23(7), 313–335(2002)

[6] Bondy, J. A., Murty, U. S. R.: Graph theory with applications (Vol. 290). London:
Macmillan (1976)

[7] Fischer, M., Hilbig, M., Jahn, C., Meyer auf der Heide F. and Ziegler M.: Planar
visibility counting. CoRR, abs/0810.0052. (2008)

[8] Fischer, M., Hilbig, M., Jahn, C., Meyer auf der Heide F. and Ziegler M.: Planar
visibility counting. In Proceedings of the 25th European Workshop on Computational
Geometry(EuroCG 2009).203–206(2009)

[9] Ghosh, S. K. and Mount, D.: An output sensitive algorithm for computing visibility
graphs. SIAM Journal on Computing. 20, 888–910 (1991)

[10] Ghosh, S. K.: Visibility algorithms in the plane. Cambridge university press. (2007)

[11] Gudmundsson, J., Morin, P.: Planar visibility: testing and counting. Annual Sym-
posium on Computational Geometry. 77–86 (2010)

[12] Nouri, M. and Ghodsi, M.: Space/query-time tradeoff for computing the visibility
polygon. Computational Geometry. 46(3), 371–381 (2013)

[13] Pocchiola, M. and Vegter, G.: The visibility complex. International Journal of Com-
putational Geometry and Applications. 6(3), 279–308 (1996)

[14] Suri, S. and O’Rourke, J.: Worst-case optimal algorithms for constructing visibility
polygons with holes. In Proceedings of the Second Annual Symposium on Computa-
tional Geometry (SCG 84), 14–23(1984)

[15] Vegter, G.: The visibility diagram: A data structure for visibility problems and
motion planning. In: Gilbert, J.R., Karlsson, R. (eds.) SWAT(1990). LNCS, 447, pp.
97–110. Springer, Heidelberg (1990)

[16] Zarei, A. and Ghodsi, M.: Efficient computation of query point visibility in polygons
with holes. In Proceedings of the 21st Annual ACM Symposium on Computational
Geometry. (SCG 2005). (2005).

12

Appendix

Proof of Theorem 2.2

Assume that we have the data structures of [15] and the algorithms of Lemma 3.7
and Lemma 4.3. For a given query point p, we first run the algorithm of [15] for
2
δ3
mβ/2 logm steps. If V PS(p) is calculated, then the exact value of mp is computed

in O(1
δ3
mβ/2 logm). Otherwise, we calculate ve′p and C ′p in O(1

δ2
mβ/2 logm) time by

Lemma 3.7 and Lemma 4.3. In the second case, we have mp > 2
δ3
mβ/2 logm. As

mp ≤ 2vep, so vep >
1
δ3
mβ/2. Lemma 3.7 also implies |ve′p − vep| ≤ δvep.

In the following it is shown that if C ′p < (1 + δ) 1
δ2
mβ/2 logm, then with probability at

least 1− 1
logm , we have C(G(p)) < 1+δ

1−δ
1
δ2
mβ/2 logm.

By Lemma 3.5 we have,

p(|C(G(p)− C ′p| > δC(G(p)) ≤ mβ/2

δ2C(G(p)

p(C(G(p)) >
C′
p

1−δ) ≤ mβ/2

δ2C(G(p))
.

Which means, if C(G(p)) > 1
δ2
mβ/2 logm, then with probability at most 1

logm we have,

C(G(p)) >
C′
p

1−δ . So, with a probability at least 1− 1
logm we have

C(G(p)) ≤ C′
p

1−δ ≤
1+δ
1−δ

1
δ2
mβ/2 logm.

Since, C(G(p)) ≤ mp and mp >
1
δ3
mβ/2 logm, we have, C(G(p)) ≤ 1+δ

1−δ δmp. We know

that vep = mp + C(G(p)), and with probability at least 1 − 1
logm we have, (1 − δ)vep ≤

ve′p ≤ (1 + δ)vep, thus

ve′p
1+δ ≤ mp + C(G(p)) ≤ mp + 1+δ

1−δ δmp.

Which implies

mp ≤
ve′p
1−δ ≤

1+δ2(1+δ)
(1−δ)2 mp.

Let 1 + δ∗ = 1+δ2(1+δ)
(1−δ)2 , then

mp ≤
ve′p
1−δ ≤ (1 + δ∗)mp.

So,
ve′p
1−δ is reported as the approximated value of mp.

If C ′p > (1 + δ) 1
δ2
mβ/2 logm, then according to Lemma 3.5, we have,

P (|C ′p − C(G(p)| ≥ 1
δm

β/2 logm) ≤ mβ/2C(G(p))
1
δ2
mβ log2m

.

So, P (C(G(p)) < C ′p−1
δm

β/2 logm) ≤ mβ/2C(G(p))
1
δ2
mβ log2m

. We know that C ′p > (1+δ) 1
δ2
mβ/2 logm.

So, if C(G(p)) ≤ 1
δ2
mβ/2 logm, then P (C(G(p)) < 1

δ2
mβ/2 logm) ≤ 1

logm . We conclude

that with probability at least 1 − 1
logm , C(G(p)) > 1

δ2
mβ/2 logm, and so we can use

Lemma 4.3.

mp = vep − C(G(p)) ≤ ve′p
1−δ −

C′
p

1+δ

≤ (1+δ)vep
1−δ − (1−δ)C(G(p))

1+δ

≤ vep − C(G(p)) +
2(δ)vep
1−δ + 2δC(G(p))

1+δ .

13

We know that C(G(p)) ≤ mp. Moreover, we have, mp ≤ 2vep, so

≤ mp +
4δmp
1−δ +

2δmp
1+δ

≤ (1 + 4δ
1−δ + 2δ

1+δ)mp.

Let δ∗ = 4δ
1−δ + 2δ

1+δ , then

mp ≤
ve′p
1−δ −

C′
p

1+δ ≤ (1 + δ∗)mp.

Therefore,
ve′p
1−δ −

C′
p

1+δ is reported as the approximated value of mp. Note that δ∗ < 1 and
it can be arbitrary small by choosing δ small enough.

The query time of our algorithm is O(1
δ3
mβ/2 logm), where the dependence of the

variable δ∗ to δ is as follows. When δ is less than a fixed constant C, δ∗ is at most a
linear fixed multiple of δ and hence, the query time of the algorithm can be expressed
as O(1

δ3
mβ/2 logm). Note that for δ > C since δ−3 < C−3 it will be absorbed in the

constant hidden in O(mβ/2 logm).

14

