
CCCG 2021, Halifax, Canada, August 10–12, 2021

Integer Cow-path Problem and Simple Robot Street Search

Azadeh Tabatabaei∗ Farehe Soheil† Mohammad Aletaha‡ Mohammad Ghodsi§

Abstract

In this paper, we revisit the well-known cow-path prob-
lem and introduce a new variation called Integer Cow-
path Problem (ICP). In the general cow-path problem,
w rays with one common end-point and a robot stand-
ing on the end-point are given. A target point is put
along one of the rays and can be detected only when it
is reached by the robot. The robot has to find the tar-
get by traversing the rays starting from the end-point.
In the ICP, the robot is restricted to take an integer
number of steps. The goal is to design a strategy for
the robot to find the target such that the length of
the traveled path is as small as possible. We present
a randomized strategy that gives an upper bound on
the competitive ratio for the ICP. Furthermore, as an
application of this variation, we study the Simple Robot
Street Search problem and give a randomized strategy
that is inspired from the strategy for the ICP.

1 Introduction

The problem of searching in unknown geometric en-
vironments is a fundamental problem in the fields
of computational geometry, robotics, and online algo-
rithms [13]. The cow-path problem is a well-known
problem that has been studied by mathematicians and
computer scientists [3, 6]. Many geometric search prob-
lems have applied the cow-path search algorithms.

In the general cow-path problem, we are given w ≥
2 rays with a common end-point s and a target point
t that is put along one of the rays, see Figure 1(a).
A searcher (robot), which is not aware of the location
of the target t, must find it. The searcher can only
move along the rays and cannot detect t before reaching
it. The name «cow-path» comes from the scenario in
which, metaphorically a cow is searching for her calf in w
concurrent paths [15]. Note that the cow-path problem
is also called star-search or ray-search. Furthermore,
when w = 2, it is called searching on a line or linear
search, see Figure 1(b).

∗Department of Computer Engineering, University of Science
and Culture, Iran. a.tabatabaei@usc.ac.ir

†Department of Computer Engineering, Sharif University of
Technology, Iran. soheil@ce.sharif.edu

‡Department of Computer Engineering, Sharif University of
Technology, Iran. mohammadaletaha@ce.sharif.edu

§Sharif University of Technology and Institute for Research in

s

t

s t

(a)

(b)

Figure 1: (a) An example of cow-path problem with w = 6.
The robot’s search path is shown in blue (b) Searching on a
line (w = 2).

Searching in an unknown environment can be seen as
an online problem since the robot does not have access
to the information about the position of the target and
must decide in an online manner. The notion of the
competitive analysis is proposed for measuring the per-
formance of the online algorithms [17]. In the cow-path
problem, the competitive ratio is the length of the path
traveled by the robot from the start point s to the target
point t over the shortest path from s to t. A strategy is
α-competitive if its competitive ratio is at most α.

The distances in this problem are expressed in steps.
A step is the unit of measurement in the literature [6].
We revisit the general cow-path problem in a way that
the robot is limited to take an integer number of steps
along the rays. While in the general problem such a
limitation does not exist and the robot can take any
real number of steps, see Figure 2. Notice that like the
general cow-path problem, the searcher stops whenever
it achieves the target and does not go further even if
it is in a middle of a step. We name this new varia-
tion Integer Cow-path Problem (ICP) and will study it
in section 2.

The motivation behind considering such a variation
(ICP) is to use simpler and cheaper searching agents
(robots). The robots which can take any real number
of steps need powerful movement capabilities, while the
robots whose number of steps are limited to integers
have simpler and less powerful movement capabilities.
More powerful and complicated dynamic abilities will
always lead to more expenses and costs. A stepper-

Fundamental Sciences (IPM), Iran. ghodsi@sharif.edu

33rd Canadian Conference on Computational Geometry, 2021

s

step

t

Figure 2: Example of the cow-path problem with w = 4.
Traversing an integer number of steps (shown in blue) in
the ICP, and traversing a real number of steps (shown in
dashed line) in the general problem. The target t is placed
n ∈ R (n ≥ 1) steps away from s.

motor (or stepping-motor) is an electric motor that in-
stead of rotating continuously, rotates in a number of
discrete equal steps. Then, one can command the motor
to move or hold at each step without any position sen-
sor for feedback (see [2] for more details about stepper-
motors). A stepper-motor makes the robot take only
an integer number of steps when attached to one. Note
that we configure the step-size of the robot’s stepper-
motor to be equal to the step-size of the problem. In
the general cow-path problem the searcher might take
any real number of steps along the rays. Hence, we
have introduced the ICP to find the same target in the
same environment with a simpler robot equipped with
a stepper-motor.

As an application of the ICP, we study the Simple
Robot Street Search problem. This problem refers to
searching for a specific target in a particular polygonal
environment (a street polygon) using a minimal sensing
robot. We will discuss it properly in section 3.

1.1 Our contribution

In this paper, we introduce and study the Integer Cow-
path Problem (ICP) and present the first randomized
search strategy for it. In fact, this strategy gives an
upper bound on the competitive ratio of the ICP. Our
randomized strategy for the ICP is β-competitive where

β = min
r∈Z,r>1

{
2 (rw − 1)

w(r − 1) ln r
+ (w + 1) · (0.56) + 1

}
and w is the number of rays, given as the input of the
problem. We have summarized the competitive ratio of
our strategy for some values of w in Table 1.

Furthermore, we study the Simple Robot Street
Search problem and show that in the worst case, this
problem can be seen as the ICP with w = 2. So, we
give a 6.29-competitive randomized strategy that uses
the strategy for the ICP as a subroutine.

2 Integer Cow-path Problem (ICP)

In this section, first, we express the Integer variation
of the Cow-path Problem (ICP) in detail and mention
some related works. Then, we present a randomized

w β
2 6.29
3 9.98
4 14.63
5 22.25
6 35.22

Table 1: The competitive ratio β for some values of w
for the integer cow-path problem.

strategy for the ICP and finally discuss the performance
of the proposed strategy in the remaining of this section.

2.1 Problem Definition

Given w ≥ 2 concurrent rays sharing a common end-
point s, and a robot R standing on s. A target point
t is put n ∈ R (n ≥ 1) steps away from s along an
arbitrary ray. The robot R moves in a round-to-round
manner and can only move back and forth along the
rays. At each round i ∈ Z0+, R takes di ∈ N steps on
ray li ∈ {0, 1, ..., w− 1} and if it does not find t, returns
back to s and advances on round i + 1. So, we use a
function S(i) = (di, li) to formulate the robot’s moving
strategy at round i.

Note that before t is reached, R always takes an in-
teger number of steps. Since the target’s distance can
be non-integer (n ∈ R), R is allowed to take only one
non-complete step during its travel, which is when it
encounters t. The robot R immediately stops as soon
as it reaches t even in a middle of a step. Let D denote
the length of the path (in steps) traveled by R from s to
find t. The problem refers to designing an online strat-
egy minimizing C = D/n, where C is the competitive
ratio of the strategy.

Note that a lower bound on n is necessary for having a
bounded competitive ratio. Otherwise, the competitive
ratio will be unbounded in the worst case. Consider t is
placed at distance ε > 0 steps from s on ray j. Now, if
the robot takes λ steps in the first round, on any other
ray k 6= j, then the competitive ratio is at least λε and it
might be unbounded. Hence, like many previous works,
we assume n ≥ 1.

2.2 Related works

The general cow-path problem was first proposed by
Bellman [8] and then, studied by mathematicians like
Beck and Newman [7] and Gal [12] who gave solutions to
this problem. After that, the problem was rediscovered
by computer scientists. Baeza-Yates et al. [6] and Kao
et al. [15] gave optimal deterministic and randomized
strategies for the general problem, respectively. The

CCCG 2021, Halifax, Canada, August 10–12, 2021

deterministic strategy in [6] is λ-competitive where

λ = 2 · ww

(w − 1)w−1
+ 1

and the randomized strategy in [15] is γ-competitive
where

γ = min
r>1

{
2

w
· 1 + r + r2 + · · ·+ rw−1

ln r
+ 1

}
.

Here, we mention the values of λ and γ for some w in Ta-
ble 2. So far, several variations of the general problem

w λ γ
2 9 4.6
3 14.5 7.74
4 19.97 10.85
5 25.42 13.95
6 30.86 17.04

Table 2: The competitive ratios λ and γ for some values
of w for the general cow-path problem.

have been introduced and studied by researchers, in-
cluding moving target, having turn cost, the existence
of lower and upper bounds on the target’s location, and
maximum clearance [5, 9, 10, 11].

2.3 Algorithm for the ICP strategy

Here, we present a randomized strategy for the ICP. Our
strategy is a modified version of the SmartCow strategy
by Kao et al. [15] such that it always generates integer
values for di at each round i. In fact, we apply the idea
of rounding using the ceiling function. We denote this
strategy by IntegerCow and express it as an algorithm
in Algorithm 1. The analysis of the algorithm can be

Algorithm 1: IntegerCow
Compute a random permutation σ of
{0, 1, ..., w − 1}
Compute the best value for r
Choose ε u.a.r.1 from [0, 1)
d← rε

i← 0
while the target t is not achieved do

Move along ray σ(i mod w) up to dde step(s)
Move back to the start point s
d← r · d
i← i+ 1

end

represented in terms of r > 1 which is a constant real
value. Also, r approximately determines by what factor
the number of steps in the next round should be more
than the current round. We will show how to find the

best value for r in the analysis section. Compared to
the SmartCow algorithm, the modification is slight but
it makes the analysis more complicated and non-trivial.

2.4 Analysis

Now, we obtain the competitive ratio of the Inte-
gerCow algorithm. Since this algorithm is random-
ized, its competitive ratio is defined as the expected
distance traveled by the robot over the actual distance
between s and t. The algorithm is designed to move
the robot

⌈
ri+ε

⌉
steps from s on round i ≥ 0, i.e.

S(i) = (
⌈
ri+ε

⌉
, lσ(i mod w)). As we noted earlier, n de-

notes the distance between s and t in the worst case.
Let k ∈ Z0+ and 0 ≤ δ < 1 such that n = rk+δ. Sup-
pose t lies on ray lj and let m be the first round where
R travels a distance of at least

⌈
rk
⌉
steps from s on lj .

Depending on the random order of rays in σ, the
value of m in the worst case satisfies k ≤ m ≤ k+w−1
(It is possible for m to take values less than k because
of the ceiling function, but this only decreases the
competitive ratio). Let D be the random variable
denoting the overall distance traveled by R to find
t. We denote the competitive ratio of the algorithm
by C that is computed as C = E[D]/n. To obtain C,
we need to calculate E[D] for which there are two cases:

Case 1: When m = c ≥ k + 1, R certainly finds t at
round c and the expected value of D is calculated as

E[D|m = c] = E

[
2

c−1∑
i=0

⌈
ri+ε

⌉
+ n

]

= E

[
2

c−1∑
i=0

(ri+ε +
⌈
ri+ε

⌉
− ri+ε) + n

]

= 2

c−1∑
i=0

(
E
[
ri+ε

]
+ E

[⌈
ri+ε

⌉
− ri+ε

])
+ n.

Now, we define functions f(r, i) and fM (r) as follows:

f(r, i) = E
[⌈
ri+ε

⌉
− ri+ε

]
=

∫ 1

0

(
⌈
ri+ε

⌉
− ri+ε)dε,

fM (r) = max
i∈Z0+

f(r, i).

So, the expression for E[D|m = c] can be written as

E[D|m = c] = 2

c−1∑
i=0

(
E
[
ri+ε

]
+ f(r, i)

)
+ n

≤ 2

c−1∑
i=0

(
E
[
ri+ε

]
+ fM (r)

)
+ n

1uniformly at random

33rd Canadian Conference on Computational Geometry, 2021

=
2(rc − 1)

r − 1
· E[rε] + 2c · fM (r) + n

=
2(rc − 1)

r − 1
·
∫ 1

0

rεdε+ 2c · fM (r) + n

=
2(rc − 1)

r − 1
· (r − 1

ln r
) + 2c · fM (r) + n

=
2(rc − 1)

ln r
+ 2c · fM (r) + n.

Case 2: When m = k, depending on the values of
ε and δ, R may find t on round k or may fail. In case
of failure, it continues to search and finally finds t on
round k + w. We classify this case into three events as
follows:

F1: When ε > δ, then trivially
⌈
rk+ε

⌉
> rk+δ and R

will find t on round k.

F2: When ε ≤ δ and
⌈
rk+ε

⌉
≥ rk+δ, again R will find t

on round k.

F3: When ε < δ and
⌈
rk+ε

⌉
< rk+δ, R will not find t

on round k. So, it continues searching and will find t on
round k + w.

So, the expected traveled distance in case 2 is

E[D|m = k] = Pr(F1) · E

[
2

k−1∑
i=0

⌈
ri+ε

⌉
+ n | F1

]

+ Pr(F2) · E

[
2

k−1∑
i=0

⌈
ri+ε

⌉
+ n | F2

]

+ Pr(F3) · E

[
2

k+w−1∑
i=0

⌈
ri+ε

⌉
+ n | F3

]
.

Similar to calculations of case 1, we have

E[D|m = k] ≤ Pr(F1) ·
[
2(rk − 1)

r − 1

]
· E[rε|F1]

+ Pr(F2) ·
[
2(rk − 1)

r − 1

]
· E[rε|F2]

+ Pr(F3) ·
[
2(rk+w − 1)

r − 1

]
· E[rε|F3]

+ Pr(F1) · 2k · fM (r) + Pr(F2) · 2k · fM (r)

+ Pr(F3) · 2(k + w) · fM (r) + n.

To calculate the expectations on rε, we define
α = minx ∈ [0, δ] such that

⌈
rk+x

⌉
≥ rk+δ. Notice that

r > 1 and 0 ≤ α ≤ δ. By the definition of α, for
event F2 we have α ≤ ε ≤ δ and for event F3 we have
0 ≤ ε < α. So, in events F2 and F3, we have rα ≥ 1
and rα ≤ rδ, respectively. Now, we can compute the
conditional expectations as follows:

E[rε|F1] =

∫ 1

δ

rεdε

Pr(F1)
=

r − rδ

Pr(F1) · ln r
,

E[rε|F2] =

∫ δ

α

rεdε

Pr(F2)
=

rδ − rα

Pr(F2) · ln r
≤ rδ − 1

Pr(F2) · ln r
,

E[rε|F3] =

∫ α

0

rεdε

Pr(F3)
=

rα − 1

Pr(F3) · ln r
≤ rδ − 1

Pr(F3) · ln r
.

Putting all these together, we have

E[D|m = k] ≤ 2(k + w) · fM (r) + n

+
2 ·
[
(r − rδ)(rk − 1) + (rδ − 1)(rk+w + rk − 2)

]
(r − 1) ln r

.

Thus, considering both cases and knowing that
Pr(m = j) = 1

w for any k ≤ j ≤ k + w − 1, the total
expected traveled distance equals to

E[D] =

k+w−1∑
j=k

Pr(m = j) · E[D|m = j]

=
1

w
· E[D|m = k] +

k+w−1∑
j=k+1

1

w
· E[D|m = j].

By the results of case 1 and case 2, we get

E[D] ≤
2 ·
[
(r − rδ)(rk − 1) + (rδ − 1)(rk+w + rk − 2)

]
w(r − 1) ln r

+
2

w
(k + w) · fM (r) +

n

w

+
1

w

k+w−1∑
c=k+1

(
2(rc − 1)

ln r
+ 2c · fM (r) + n

)
.

After simplification, we have

E[D] ≤
2 ·
[
rk+δ+w − rk − rδ − rw + w + 1

]
w(r − 1) ln r

+(2k + w + 1) · fM (r) + n.

Since k, δ ≥ 0 and r > 1, we have −rk < −1, −rδ ≤ −1,
and −rw < −w. So,

E[D] ≤
2
(
rk+δ+w − 1

)
w(r − 1) ln r

+ (2k + w + 1) · fM (r) + n.

Since k, δ ≥ 0 and n = rk+δ, we have

C ≤
2
(
rk+δ+w − 1

)
rk+δw(r − 1) ln r

+
(2k + w + 1) · fM (r)

rk+δ
+ 1.

(1)

Using (1), we demonstrate the following lemma.

Lemma 1 The competitive ratio C is upper bounded by

min
r>1

{
2 (rw − 1)

w(r − 1) ln r
+ (w + 1) · fM (r) + 1

}

CCCG 2021, Halifax, Canada, August 10–12, 2021

Proof. We are interested to obtain an upper bound on
C and we want this upper bound to be as small as possi-
ble. The number of rays, w, is the input of the problem.
The value of r is a parameter of the algorithm for which
we determine its value. After deciding about the value
of r, the adversary determines the value of k and δ to
maximize the competitive ratio C. As a result, we must
choose the proper value for r to assure that for a fixed
value of δ and k, given by the adversary, still we obtain a
minimum upper bound for C. So, we consider the right
hand side of (1) as a function of r. This function has a
minimum in r ∈ [1,∞) and it can be verified by taking
the first derivative of the r.h.s function with respect to
r. Now, inspiring from (1), we define function Frhs(k, δ)
as below

min
r>1

{
2
(
rk+δ+w − 1

)
rk+δw(r − 1) ln r

+
(2k + w + 1) · fM (r)

rk+δ
+ 1

}
.

It is obvious that C ≤ Frhs(k, δ). The adversary can
determine the value of k and δ to maximize Frhs(k, δ).
It can be proven that Frhs(k, δ) is maximized when
k, δ = 0 (by taking the derivatives, one can show this
function is non-increasing with respect to k, δ ≥ 0). So,
we can conclude that C ≤ Frhs(0, 0) and this completes
the proof of lemma. �

From now on, we focus on proving an upper bound
for fM (r). Since we use Ramanujan’s bounds for ln(n!)
further, we claim it as the following theorem.

Theorem 2 [4] For ln(n!), the following lower and up-
per bounds hold:

ln(n!) < n ln(n)− n+ 1
6 ln

(
8n3 + 4n2 + n+ 1

30

)
+ 1

2 ln(π),

ln(n!) > n ln(n)− n+ 1
6 ln

(
8n3 + 4n2 + n+ 1

100

)
+ 1

2 ln(π).

Now, we state the following lemma which gives an
upper bound for fM (r).

Lemma 3 For all integers r > 1, we get fM (r) < 0.56.

Proof. According to definition of f(r, i), we have

f(r, i) =

∫ 1

0

(
⌈
ri+ε

⌉
− ri+ε)dε

=

∫ 1

0

⌈
ri+ε

⌉
dε−

∫ 1

0

ri+εdε. (2)

The second part of (2) is easily calculated as∫ 1

0

ri+εdε =
ri+1 − ri

ln r
(3)

In order to compute the first part of (2), let z = i + ε,
then dz = dε which gives∫ 1

0

⌈
ri+ε

⌉
dε =

∫ i+1

i

drze dz

=

∫ i+1

0

drze dz −
∫ i

0

drze dz.

Let

g(i) =

∫ i

0

drze dz,

then ∫ 1

0

⌈
ri+ε

⌉
dε = g(i+ 1)− g(i). (4)

Considering the graph of f(x) = drxe in Figure 3, we
can compute g(i) by summing up the areas of the blue
rectangles.

logr(2)

2

3

4

logr(3) logr(4) ilogr(
⌈
ri
⌉
− 1)

drie

drie − 1

f(x)

x

Figure 3: The function f(x) = drxe is shown in red. The
blue region is g(i).

According to Figure 3, g(i) can be calculated as:

g(i) =

∫ i

0

drze dz =
drie−1∑
j=2

j · (logr (j)− logr (j − 1))

+
⌈
ri
⌉
·
(
i− logr

(⌈
ri
⌉
− 1
))
.

The above expression is hard to simplify for all real val-
ues of r > 1 because of the ceiling functions. So, by
considering only integer values for r, one can reduce the
difficulties induced by the ceiling functions. Since i is an
integer, by letting r be an integer we will have drie = ri

and i = logrdrie. Note that r is a parameter of the algo-
rithm not the input of the problem, so we are allowed to
decide its value. Henceforth, we study r only for integer
values, i.e. r > 1 and r ∈ Z. So the above summation
can be simplified as

g(i) =

ri∑
j=2

j · (logr (j)− logr (j − 1))

= ri · logr(ri)−
ri−1∑
j=2

logr(j)

= i · ri − logr
(
(ri − 1)!

)
. (5)

By applying (5) in (4) and using (3), we can calculate (2)

33rd Canadian Conference on Computational Geometry, 2021

as follows:

f(r, i) = (i+ 1)ri+1 − logr
(
(ri+1 − 1)!

)
− (i)ri + logr

(
(ri − 1)!

)
− ri+1 − ri

ln r

= ri
(
(r − 1) i+ r − r − 1

ln r

)
− logr

((
ri+1 − 1

)
!

(ri − 1)!

)

= ri
(
(r − 1) i+ r − r − 1

ln r

)
− logr

(
ri+1!

r · ri!

)
= ri

(
(r − 1) i+ r − r − 1

ln r

)
− 1

ln r

(
ln
(
ri+1!

)
− ln

(
ri!
))

+ 1.

Using inequalities in Theorem 2, we get

f(r, i) < 1 + ri
(
(r − 1) i+ r − r − 1

ln r

)
+

1

ln r

(
ri ln

(
ri
)
− ri − ri+1 ln

(
ri+1

)
+ ri+1

)
− 1

ln r

(
1

6
ln

(
8
(
ri+1

)3
+ 4

(
ri+1

)2
+ ri+1 +

1

100

))
+

1

ln r

(
1

6
ln

(
8
(
ri
)3

+ 4
(
ri
)2

+ ri +
1

30

))
. (6)

We denote the right hand side of (6) by fub(r, i). Ac-
cording to the definition of fM (r), any upper bound on
f(r, i) for all i ∈ Z0+ yields an upper bound on fM (r).
If we fix r (for all integers r > 1), then fub(r, i) is non-
increasing with respect to i ∈ [0,∞) (Section A in the
Appendix covers the proof of this statement). So, the
maximum value of fub(r, i) happens at i = 0.

The function fub(r, 0) is non-increasing with respect
to r (proof is similar). Therefore, for all integers r > 1
the maximum value of fub(r, 0) happens at r = 2 and
it approximately equals to 5.557. So, we conclude that
for all integers r > 1, we have

fM (r) < fub(2, 0) < 0.56.

This completes the proof of lemma. �

Now, by Lemma 1 and Lemma 3, we conclude the fol-
lowing theorem which is the main contribution of this
paper.

Theorem 4 The IntegerCow algorithm for the ICP is
β-competitive where

β = min
r∈Z,r>1

{
2 (rw − 1)

w(r − 1) ln r
+ (w + 1) · (0.56) + 1

}
.

By Theorem 4, for any w ≥ 2, Algorithm 1 computes
the best value for r (denoted by r∗) which minimizes
the above function. For some values of w, the values for
r∗ and their corresponding β are given in Table 3.

w r∗ β
2 4 6.29
3 2 9.98
4 2 14.63
5 2 22.25
6 2 35.22

Table 3: The values of r∗ and β for some w

3 Simple Robot Street Search

In this section, we introduce an application of the ICP
called Simple Robot Street Search and give a random-
ized strategy for it, inspired by the ICP strategy.

3.1 Preliminaries

A simple polygon P with two distinct vertices s and
t is called a street if the clockwise chain (Lchain) and
counter-clockwise chain (Rchain) which are constructed
on the polygon from s to t, are mutually weakly visible.
In other words, each point on Lchain must see at least
one point on Rchain and vice versa, see Figure 4.

The set of points that are visible from a point q in P is
called the visibility polygon of q, denoted by vis(q). An
edge of vis(q) which does not belong to the boundary
of P is called a gap (sometimes called window), see Fig-
ure 4. Each gap g is induced by a reflex vertex called
ref(g) and a region of P is hidden on one of its sides
called pocket of g. We assume a gap g is oriented such
that its start point is ref(g). The gap g is called a l-gap
(r-gap), denoted by L (R), if the pocket of g lies on its
left (right) side, see Figure 4.

A simple robot B is a point robot which can only
detect gaps in a cyclical order, see Figure 4. As a tech-
nical point of view, it is equipped with a sensor which
detects the order of discontinuities in depth information
(gaps) in its visibility polygon. A simple robot can only

s

t

RR

L

Lchain

Rchain

B

Figure 4: A street polygon with respect to s and t, Rchain

and Lchain, two r-gaps and one l-gap. The visibility polygon
of the robot B is shown in blue.

move toward gaps and the target t when it becomes
visible. The unit of simple robot’s movement is called
step which is a constant distance that has been speci-
fied by the robot’s manufacturer. Technically speaking,
a stepper-motor is put on the robot which makes it move

CCCG 2021, Halifax, Canada, August 10–12, 2021

in discrete equal distances (steps). Furthermore, a sim-
ple robot has a stopping function that, whenever called,
forces the robot to stop immediately even if in a middle
of a step. For example, at the point that the target t
becomes visible, one can call its stopping function to
stop the robot and prevent it from going further in the
wrong direction.

3.2 Problem Definition

We are given a street polygon P with point s and t and
a simple robot B. The robot B is placed at s and moves
through P in an arbitrary number of steps. We assume
a step is small enough compared to the scale of P . The
robot is presumed to take an integer number of steps
except when the strategy forces the robot to stop. The
goal is to reach the target t starting from s such that
the traversed path by B is as short as possible.

3.3 Related Works

In 1992, Klein [16] introduced street polygons and pro-
posed a 5.73-competitive strategy for the street search
problem using a 360◦-vision robot. The 360◦-vision
robots can detect any vertex and edge of the polygon,
measure any angle and distance between objects, and
move freely in any direction. After several improve-
ments, finally, Icking et al. [14] presented the optimal√
2-competitive strategy for this problem.
The limited sensing model (gap sensor) that a sim-

ple robot is equipped with, was introduced by To-
var et al [22]. Note that unlike 360◦-vision robots, a
simple robot’s vision and movement are strictly lim-
ited. For the first time, Tabatabaei et al. [20] used
the simple robots for the street search problem and
gave an 11-competitive strategy using auxiliary tools
called pebbles. After that, Tabatabaei et al. [19] and
Wei and Tan [23] independently presented the opti-
mal 9-competitive deterministic strategies for the Sim-
ple Robot Street Search problem. In this paper, we
study the latter problem and give a randomized 6.29-
competitive strategy. The cooperation of two robots [1]
and minimizing the number of turns in street search-
ing [18], and searching in generalized streets [21] are
other works that used simple robots.

3.4 Motion primitives

Gaps are maintained in a data structure called S-
GNT [20]. While B is moving, combinatorial changes
called critical events, occur in its visibility polygon
which update S-GNT. There are four critical events:

• Appearance and Disappearance of gaps occur when
the robot crosses the inflection rays.

• Merge and Split of gaps occur when the robot
crosses the bitangent complements.

as illustrated in Figure 5. An inflection ray is the ex-

inflection ray

R

bitangent

complement

R

L

(c) (d)

(e)

R

R

L

bitangent

complement

R

R

R

L

R

R

L
R

R

L

R

L R

LR

R

LL R

LR

R

R

R R

inflection ray

(f)

RR

(a)

LR

Lchain

s

t

gr

gl

L

R

Rchain

(b)

R

bitangent

complement

R

L
LR

L
R

Figure 5: A street polygon and the dynamical changes
of the gaps as the robot moves. The black circle is the
location of B. Pink squares and blue circles denote prim-
itive and non-primitive gaps, respectively. (a) Existing
gaps at s. (b) A split event. (c) A disappearance event.
(d) An appearance event. (e) Another split event. (f)
A merge event.

tension of the hidden edge of a gap into the interior
of the polygon, see Figure 5(c). A bitangent comple-
ment is a line that is tangential to two reflex vertices of
the polygon, see Figure 5(b). A new gap whose pocket
was formerly visible is called primitive. Otherwise, it
is called non-primitive, see Figure 5. We are only in-
terested in probing non-primitive gaps since the region
behind a non-primitive gap had never been visible to
the robot before. We define gl to be the rightmost non-
primitive l-gap, and gr to be the leftmost non-primitive
r-gap, see Figure 5(a). As the robot moves, the critical
events may dynamically change gl and gr in a way that
one the followings happens:

• Uni-gap: if there exists only one of gr or gl or they
are collinear, a uni-gap occurs, see Figure 6(a).

• Funnel: When both gr and gl exist, we say a fun-
nel is created, see Figure 6(b). Also, by the robot’s

33rd Canadian Conference on Computational Geometry, 2021

movement, a funnel may end or a new one may
start. We refer to the point, in which a funnel
ends, a critical point of that funnel, see point 2
in Figure 6(b).

t

Critical point

s

j

(a)

3

1

(b)

t

2

1

2

s

gls

grs

3

Figure 6: The bold path is the robot’s search path, the
dotted path is the shortest path. (a) There is only gr. (b)
Both gr and gl at the start point s and a funnel case. The
angle ϕ between the gaps, is the opening angle.

In a funnel case, as the robot moves toward gl or gr,
the following events update the location of gl and gr as
well as the location of the funnel.

1. When gr/gl splits into itself and a new r-gap/l-
gap. Then the gr/gl will be replaced by this new
r-gap/l-gap (point 1 in Figure 6(b)).

2. When gr/gl splits into itself and a new l-gap/r-
gap, then this new l-gap/r-gap will be set as gl/gr.
This point is a critical point in which the funnel
ends (point 2 in Figure 6(b)).

3. When gl or gr disappears, a critical point has
been achieved and the funnel ends (point 3 in Fig-
ure 6(a)).

Note that the split and disappearance events may occur
concurrently (point 3 in Figure 6(b)).

3.5 Strategy

When the target t is not visible, it is hidden behind one
of the gaps. Otherwise, the robot could see it. The
following theorem states that when t is not visible, it is
behind one of gl or gr. So, we can ignore other ones and
focus only on gl and gr.

Theorem 5 [20] While t is not visible, it is behind gl
or gr.

In a uni-gap case, where there exists only one of gr or
gl or they are collinear, according to Theorem 5, t is
behind that gap, see Figure 6(a). But at each funnel,

where both gr and gl exist, the robot is not aware be-
hind which of gr or gl the target t is hidden. So, usually,
a detour from the shortest path (an extra undesirable
longer path) is unavoidable. Notice that potentially,
there might be more than one critical point for a fun-
nel. But, as soon as the robot achieves a critical point,
according to its strategy, the funnel ends. So, B achieves
only one critical point for each funnel.

Now, we demonstrate our strategy. Until B does not
see the target t, it continues to search. If t becomes
visible, B’s stopping function will be called. So, B im-
mediately stops and moves directly toward t. Before t
becomes visible, at each point of the search path, two
cases might happen:

1. If there exists only one of gr or gl (uni-gap case),
then t is behind the existing gap, see Figure 6(a).
In this case, B moves toward this gap until one of
these happens: either t becomes visible, a funnel
case occurs or B reaches the reflex vertex of this
gap. In any of these three conditions, B’s stopping
function will be called.

2. If a funnel case occurs, to bound the detour, the
robot moves toward gr and gl alternatively, see Fig-
ure 6(b). In fact, a funnel can be seen as two con-
current rays created by gr and gl. So, we can apply
the ICP strategy when w = 2 with a minor differ-
ence. In the ICP when w = 2, the robot goes d
steps along one ray, takes another d steps to turn
back to the starting point, and then goes d′ steps
along the other ray. However in this strategy, af-
ter traversing d steps along a gap, the robot stops
but does not turn back to the starting point of the
funnel. Rather, it changes its direction toward the
other gap and takes d + d′ steps in the new di-
rection. As the robot moves, whenever t becomes
visible or B reaches the critical point of the funnel,
the strategy will call B’s stopping function.

Each time the strategy calls B’s stopping function, the
robot stops and checks which of the above two cases is
happening. We have demonstrated the above strategy
as an algorithm in Algorithm 2.

3.6 Analysis

Throughout the search, in uni-gap cases or when the
target t is visible, the search path coincides with the
shortest path. But as noted earlier, in funnel cases de-
tours are unavoidable. So, to prove the competitive ra-
tio of the strategy, we compare the length of the tra-
versed path and the shortest path in funnel cases. In
this case, the angle between gr and gl, which is always
smaller than π, is called the opening angle, denoted by
ϕ, see Figure 6(b). In Lemma 6, we show that the de-
tour from the shortest path depends on the size of ϕ.

CCCG 2021, Halifax, Canada, August 10–12, 2021

Algorithm 2: Randomized Street Search
while the target t is not visible do

if a uni-gap case occurs then
repeat

Move toward the existing gap
until a funnel case happens or reflex
vertex of the gap is achieved or t
becomes visible;

else if a funnel case occurs then
{d0, d1} ← {r, l}
Choose i u.a.r. from {0, 1}
Choose ε u.a.r. from [0, 1)
j ← 4ε

Move toward gdi up to dje step(s)
i← (i+ 1)mod(2)
repeat

d← dje+ d4 · je
Move toward gdi up to d steps
i← (i+ 1)mod(2)
j ← 4 · j

until a critical point of the funnel is
achieved or t becomes visible;

end
Move directly toward t

Lemma 6 In a funnel case, the detour from the short-
est path for a small opening angle is shorter than the
detour for a large opening angle.

Proof. According to our strategy, in a funnel case, B
moves toward gr and gl alternatively. In this alterna-
tive movement, moving toward one of the directions is
correct and moving toward the other is a deviation. As-
sume that at point pi, when a funnel case occurs, B
moves toward gr and reaches point pi+1 while the tar-
get t is behind gl, see Figure 7(a). Now, to achieve t, B
should traverse at least a distance

δ =

√
|pipi+1|2 + |pivl|2 − 2 · |pipi+1| · |pivl| · cosϕ

by the law of cosines, see Figure 7(a). It can be verified
that δ is strictly increasing as a function of ϕ by taking
the derivative with respect to ϕ where 0 < ϕ < π. So,
greater opening angle ϕ results in greater detour taken
by the robot. �

The following theorem demonstrates the competitive
ratio of the strategy.

Theorem 7 Given a street P and a simple robot B,
Our randomized strategy for the street search problem is
6.29-competitive.

Proof. As we noted before, except in funnel cases, the
search path coincides with the shortest path. So, the
detours from the shortest path happen only in the pres-
ence of funnels. Therefore, to compute the competitive

s

gl

vl

gr

vr

pi

pi+1

vl vr

d

j

(a)

(b)

Figure 7: (a) pipi+1 is a detour from the shortest path. (b)
The worst case.

ratio of our strategy, only funnel cases matter. In a
funnel case, by Theorem 6, for larger opening angles
the robot deviates more from the shortest path. Since
ϕ never exceeds π, the worst case happens when the
opening angle ϕ is adequately close to π and the robot
can only move toward left and right. In this situation,
searching for a critical point in a funnel case reduces to
the ICP with w = 2, see Figure 7(b). Hence, to obtain
the worst-case analysis, we consider the case when ϕ is
very close to π. According to Algorithm 2, our strategy
in a funnel case with opening angel ϕ close to π, oper-
ates the same as the strategy for the ICP presented in
Algorithm 1 with w = 2 and r = 4. Note that for the
ICP, we have obtained r∗ = 4 for the case of w = 2,
see Table 1. By Theorem 4, the strategy for the ICP is
6.29-competitive for w = 2 and this completes the proof
of the theorem. �

4 Conclusion

We introduced and studied a new variation of the cow-
path problem called the Integer Cow-path Problem
(ICP). In this variation, the robot is restricted to take
only an integer number of steps. We present a ran-
domized strategy for this problem which gives an upper
bound on the competitive ratio of all randomized strate-
gies. Moreover, we use this strategy for the problem of
searching in a street using a simple robot. Improving
the upper bound and proving a lower bound on the com-
petitive ratio can be one of the future works. Also, it
is interesting to design deterministic strategies for the
ICP. Albeit the doubling strategy in [6] is a determinis-
tic solution to the ICP for w = 2, the ICP remains an
interesting open problem for w > 2.

References

[1] M. Abouei Mehrizi, M. Ghodsi, and A. Tabatabaei.
Robots’ cooperation for finding a target in streets.
In International Conference on Topics in Theoretical
Computer Science, pages 30–43. Springer, 2015.

33rd Canadian Conference on Computational Geometry, 2021

[2] P. P. Acarnley. Stepping motors: a guide to theory and
practice. Number 63. Iet, 2002.

[3] S. Alpern and S. Gal. The theory of search games and
rendezvous, volume 55. Springer Science & Business
Media, 2006.

[4] G. E. Andrews and B. C. Berndt. Ramanujan’s lost
notebook, volume 1. Springer, 2005.

[5] S. Angelopoulos and M. Voss. Online search with maxi-
mum clearance. arXiv preprint arXiv:2011.14144, 2020.

[6] R. A. Baezayates, J. C. Culberson, and G. J. Rawlins.
Searching in the plane. Information and computation,
106(2):234–252, 1993.

[7] A. Beck and D. Newman. Yet more on the linear search
problem. Israel journal of mathematics, 8(4):419–429,
1970.

[8] R. Bellman. Problem 63-9, an optimal search. SIAM
review, pages 274–274, 1963.

[9] P. Bose and J.-L. De Carufel. A general framework
for searching on a line. Theoretical Computer Science,
703:1–17, 2017.

[10] P. Bose, J.-L. De Carufel, and S. Durocher. Searching
on a line: A complete characterization of the optimal so-
lution. Theoretical Computer Science, 569:24–42, 2015.

[11] E. D. Demaine, S. P. Fekete, and S. Gal. Online
searching with turn cost. Theoretical Computer Sci-
ence, 361(2-3):342–355, 2006.

[12] S. Gal. Minimax solutions for linear search problems.
SIAM Journal on Applied Mathematics, 27(1):17–30,
1974.

[13] S. K. Ghosh and R. Klein. Online algorithms for search-
ing and exploration in the plane. Computer Science
Review, 4(4):189–201, 2010.

[14] C. Icking, R. Klein, E. Langetepe, S. Schuierer, and
I. Semrau. An optimal competitive strategy for walking
in streets. SIAM Journal on Computing, 33(2):462–486,
2004.

[15] M.-Y. Kao, J. H. Reif, and S. R. Tate. Searching in
an unknown environment: An optimal randomized al-
gorithm for the cow-path problem. Information and
Computation, 131(1):63–79, 1996.

[16] R. Klein. Walking an unknown street with bounded
detour. Computational Geometry, 1(6):325–351, 1992.

[17] D. D. Sleator and R. E. Tarjan. Amortized efficiency
of list update and paging rules. Communications of the
ACM, 28(2):202–208, 1985.

[18] A. Tabatabaei and M. Ghodsi. Optimal strategy for
walking in streets with minimum number of turns for
a simple robot. In International Conference on Combi-
natorial Optimization and Applications, pages 101–112.
Springer, 2014.

[19] A. Tabatabaei and M. Ghodsi. Randomized strategy
for walking in streets for a simple robot. arXiv preprint
arXiv:1512.01784, 2015.

[20] A. Tabatabaei and M. Ghodsi. Walking in streets with
minimal sensing. Journal of Combinatorial Optimiza-
tion, 30(2):387–401, 2015.

[21] A. Tabatabaei, F. Shapouri, and M. Ghodsi. A com-
petitive strategy for walking in generalized streets for a
simple robot. In CCCG, pages 75–79, 2016.

[22] B. Tovar, R. Murrieta-Cid, and S. M. LaValle. Distance-
optimal navigation in an unknown environment with-
out sensing distances. IEEE Transactions on Robotics,
23(3):506–518, 2007.

[23] Q. Wei, X. Tan, and Y. Ren. Walking an un-
known street with limited sensing. International Jour-
nal of Pattern Recognition and Artificial Intelligence,
33(13):1959042, 2019.

.

CCCG 2021, Halifax, Canada, August 10–12, 2021

Appendix

A

To prove that fub(r, i) is non-increasing with respect to
i ∈ [0,∞), all we need is to show that the derivative of
fub(r, i) is least equal to zero. It can be calculated as:

d

di
fub(r, i) = ri(i(r − 1) + r) ln(r)

+ (
1

3
)ri
(
−3r ln

(
r(i+1)

)
+ 3 ln

(
ri
))

− (
1

3
)ri

 50r
(
8r(i+1) + 24r(2i+2) + 1

)
100r(i+1) + 400r(2i+2) + 800r(3i+3) + 1

+ (
1

3
)ri
(

15
(
24r2i + 8ri + 1

)
240r3i + 120r2i + 30ri + 1

)

After multiplying all the above terms, we get:

= ri(ir − i+ r) ln r − ri(ir − i+ r) ln r

+
9600r4i+3(1− r) + 48003i+1(1− r2)

(800r3i+3 + 400r2i+2 + 100ri+1 + 1)(240r3i + 120r2i + 30ri + 1)

+
1200r2i+1(r − 1) + 24ri(1− 10

3
r2 + 3ri − 10ri+3)

(800r3i+3 + 400r2i+2 + 100ri+1 + 1)(240r3i + 120r2i + 30ri + 1)

Since the first expression yields 0 and the denominator of
the remaining fraction above is positive, we only need to
consider the sign of the numerator, so:

= (1− r)(9600r4i+3 + 48003i+1(1 + r) + 1200r2i+1)

+ 24ri(1− 10

3
r2 + 3ri − 10ri+3). (7)

According to the fact that r > 1, with a precise look at (7)
we get

(9600r4i+3 + 48003i+1(1 + r) + 1200r2i+1) > 0

and we know (1− r) < 0. So,

(1− r)(9600r4i+3 + 48003i+1(1 + r) + 1200r2i+1) < 0.

Also, we have − 10
3
r2 < − 10

3
, and 3ri < 10ri+3. Then,

24ri(1− 10

3
r2 + 3ri − 10ri+3) < 0.

Hence, (7) is always least equal to zero and this completes
the proof.

	Introduction
	Our contribution

	Integer Cow-path Problem (ICP)
	Problem Definition
	Related works
	Algorithm for the ICP strategy
	Analysis

	Simple Robot Street Search
	Preliminaries
	Problem Definition
	Related Works
	Motion primitives
	Strategy
	Analysis

	Conclusion

