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ABSTRACT
One of the important yet insufficiently studied subjects in fair

allocation is the externality effect among agents. For a resource

allocation problem, externalities imply that the share allocated to

an agent may affect the utilities of other agents.

In this paper, we conduct a study of fair allocation of indivisible

goods when the externalities are not negligible. Inspired by the

models in the context of network diffusion, we present a simple and

natural model, namely network externalities, to capture the exter-

nalities. To evaluate fairness in the network externalities model, we

generalize the idea behind the notion of maximin-share (MMS) to
achieve a new criterion, namely, extended-maximin-share (EMMS).
Next, we consider two problems concerning our model.

First, we discuss the computational aspects of finding the value of

EMMS for every agent. For this, we introduce a generalized form of

partitioning problem that includes many famous partitioning prob-

lems such as maximin, minimax, and leximin. We further show that

a 1/2-approximation algorithm exists for this partitioning problem.

Next, we investigate on finding approximately optimal EMMS
allocations, i.e., allocations that guarantee each agent a utility of

at least a fraction of his extended-maximin-share. We show that

under a natural assumption that the agents are α-self-reliant, an
α/2-EMMS allocation always exists. The combination of this with

the former result yields a polynomial-time α/4-EMMS allocation
algorithm.

CCS CONCEPTS
•Theory of computation→Approximation algorithms anal-
ysis; • Applied computing → Economics; • Networks → Net-
work resources allocation; Network economics.
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1 INTRODUCTION
Consider a scenario where there is a collection of m indivisible

goods that are to be divided amongstn agents. For a properly chosen
notion of fairness, we desire our division to be fair. Motivating

examples are dividing the inherited wealth among heirs, dividing

assets of a bankrupt company among creditors, divorce settlements,

task assignments, etc.

Fair division has been a central problem in Economic Theory.

This subject was first introduced in 1948 by Steinhaus [28] in the Pol-

ish school of mathematics. The primary model used the metaphor

of cake to represent a single divisible resource that must be di-

vided among a set of agents. Proportionality is one of the most

well-studied notions defined to evaluate the fairness of a cake divi-

sion protocol. An allocation of a cake to n agents is proportional if

every agent feels that his allocated share is worth at least 1/n of the

entire cake. Despite many positive results regarding proportionality

in cake-cutting, moving beyond the metaphor of cake, the problem

becomes more subtle. For example, when the resource is a set of

indivisible goods, a proportional allocation is not guaranteed to

exist for all instances
1
.

For allocation of indivisible goods, Budish [10] introduced a

new fairness criterion, namely maximin-share, that attracted a lot

of attention in recent years [3, 6, 7, 14, 22, 27, 29]. This notion

is a relaxation of proportionality for the case of indivisible items.

Assume that we ask agent i to distribute the items into n bundles,

and take the bundle with the minimum value. In such a situation,

agent i distributes the items in a way that maximizes the value of

the minimum bundle. The maximin-share value of agent i is equal
to the value of the minimum bundle in the best possible distribution.

Formally, the maximin-share of agent i , denoted by MMSi , for a
setM of items and n agents is defined as

max

P=⟨P1,P2, ...,Pn ⟩∈Π
min

j
Vi (Pj ),

where Π is the set of all partitions ofM into n bundles, and Vi (Pj )
is the value of bundle Pj to agent i . In a nice paper, Procaccia and

Wang [27] show that in some instances, no allocation can guarantee

maximin-share to all the agents, but an allocation guaranteeing

each agent 2/3 of his maximin-share always exists. This factor has

been recently improved to 3/4 by Ghodsi et al. [14].

Our goal in this paper is to generalize maximin-share to the envi-

ronment with externalities. Roughly speaking, externalities are the

influences (costs or benefits) incurred by other parties. The conse-

quences of various economic activities on third parties are studied

by both economists and computer scientists. For resource allocation

1
For example, consider the case that there are two agents and the resource is a single

indivisible item.
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problems, externalities imply that the bundle allocated to an agent

may affect the utility of the other agents. These externalities can

be either positive or negative. In this work, we assume that the

externalities are non-negative, which is a common assumption in

the literature [9, 17, 24].

There are many reasons to consider externalities in an allocation

problem. The goods to be divided might exhibit network effects. For

example, the value of an XBox to an agent increases as more of his

friends also own an XBox, since they can play online. Many merit

goods generate positive consumption externalities. In healthcare,

individuals who are vaccinated entail positive externalities to other

agents around them, since they decrease the risk of contraction.

Furthermore, allocating a good to an agent might exert externalities

on his friends since they can borrow it.

We wish to take one step toward understanding the impact of

externalities in the fair allocation of indivisible items. The messages

of our paper can be summarized as follows. First, considering the

externalities is important: the value of EMMS (the generalization
we define to adapt MMS to the environment with externalities)

and MMS might have a large gap. In fact, we show that even a

small amount of influence can result in an unbounded gap between

these two notions. Thus, when the externalities are not negligible,

methods that guarantee MMS to all the agents might no longer be

applicable. Second, with respect to our model and fairness notion,

we can approximately maintain fairness in the environment with

externalities. In the next section, we give amore detailed description

of our results and techniques.

1.1 Our Contribution
We start by proposing a general model to capture the externalities in

a fair allocation problem under the additive assumption. Although

we present some of our results with respect to this general model,

our focus is on amore restrictedmodel, namely network externalities,
where the influences imposed by the agents can be represented by a

weighted directed graph. This model is inspired by the well-studied

linear-threshold model in the context of network diffusion.

We suggest the extended-maximin-share notion (EMMS) to adapt
maximin-share to the environment with externalities. Similar to

maximin-share, our extension is motivated by the maximin strategy

in a cut-and-choose game. We discuss two aspects of our notion.

First, we discuss the hardness of computing the value of EMMSi ,
where EMMSi is the extended-maximin-share of agent i . We intro-

duce a generalized form of the partition problem that includes many

famous partition problems such as maximin, minimax, and leximin

partitioning problems. This generalized problem is NP-hard due to

a trivial reduction from the classic partition problem. In Section 3,

we propose a 1/2-approximation algorithm for computing EMMSi
(Theorem 3.2). In fact, we show that the LPT method, which is a

famous greedy algorithm in the context of job scheduling, guaran-

tees 1/2-approximation for the general partition problem. We also

reveal several structural properties of such partitions.

Second, we consider the approximate α-EMMS allocations, that

is, allocations that guarantee every agent a utility of at least a frac-

tion α of his extended-maximin-share. We define the property of

β-self-reliance and show that when the agents are β-self-reliant,
there exists an allocation that guarantees every agent i a utility

of at least β/2-EMMSi (Theorem 4.2). This is our most technically

involved result. The basic idea behind our method is as follows:

every agent has an expectation value which estimates the utility

that he must gain through the algorithm. Initially, the expectation

value of agent i is at least EMMSi/2. In every step of the algorithm,

we choose an agent and allocate him a bundle with a value at least

as his expectation value. Based on this allocation, we decrease the

expectation value of the remaining agents. The process of updating

the expectation values is a fairly complex process which we describe

in Section 4.2. The analysis of the algorithm is technically involved

and heavily exploits the structural properties of the general parti-

tioning problem. Finally, the combination of our existential proof

with the 1/2-approximation algorithm for computing EMMS yields
a polynomial time β/4-EMMS allocation algorithm.

1.2 Related Work
Maximin-share has received a lot of attention over the past few

years [1–5, 8, 13–15, 18, 22, 27, 29]. The counter-example suggested

by Procaccia and Wang [27] refutes the existence of any allocation

with the maximin-share guarantee. In addition, Procaccia andWang

propose the first approximation algorithm that guarantees each

agent 2/3 of his maximin-share. Recently, Ghodsi et al. [14] improve

the approximation ratio to 3/4. For the special case of 3 agents,

Procaccia and Wang [27] prove that guaranteeing 3/4 of every

agent’s maximin-share is always possible. Kurokawa et al. [22]

show that when the valuations are drawn at random, an allocation

with maximin-share guarantee exists with a high probability, and

it can be found in polynomial time.

Other studies generalize maximin-share for different settings. For

example, Farhadi et al. [13] generalize maximin-share to the case

of asymmetric agents with different entitlements. They introduce

the weighted-maximin-share (WMMS) criterion and propose an

allocation algorithm with a 1/2-WMMS guarantee. Suksompong

[29] considers the case that the items must be allocated to groups

of agents. Gourvès and Monnot [15] extend maximin-share to the

case that the goods collectively received by the agents satisfy a

matroidal constraint and propose an allocation with a 1/2maximin-

share guarantee. Ghodsi et al. [14] and Barman et al. [7] consider

maximin share guarantee for general valuation functions such as

submodular, XOS, and subadditive set functions.

In recent years, considering externalities for different economic

activities has received an increasing attention in computer science

[4, 8, 9, 17, 19, 20, 23–25]. For example, Haghpanah et al. [17] study

auction design in the presence of externalities. Pataki et al. [26]

study the influences of the externalities on the Pareto optimal al-

location of indivisible goods. Velez studies the fair allocation of

indivisible goods and money with externalities [30]. In a more

related work, Brânzei et al. [9] consider externalities in the cake

cutting problem. They introduce a model for cake cutting with

externalities and generalize classic fairness criteria to the case with

externalities. Following this work, Li et al. [24] study truthful and

fair methods for allocating a divisible resource with externalities.

2 MODEL
Throughout the paper, we assumeM is a set ofm indivisible items

that must be fairly allocated to a set N = [n] of agents, where [n]



b1 b2 b3
1 1,5,2 4,6,1 7,1,0

2 3,8,5 1,8,7 4,6,9

3 1,5,3 6,5,7 5,4,1

Table 1: An instance in the general externalities model

denotes the set {1, 2, . . . ,n}. We introduce our model in Section 2.1

and our fairness criteria in Section 2.2.

2.1 Modeling the Externalities
We start by proposing a general model to represent the externalities.

In the general externalitiesmodel, we suppose that for every item

b, Vj ,i (b) reflects the utility that agent i receives by allocating b to

agent j. In this model, there is no restriction on the value of Vj ,i (.).
Total utility of agent i for an allocation is defined to be the sum of

utilities he receives by every item, i.e.,

Ui =
∑
b ∈M

Vjb ,i (b)

where jb is the index of the agent whose b is allocated. For example,

consider the instance with 3 items and 3 agents demonstrated in

Figure 1. In this figure, for each agent i and item bj , three values
are given, where the k’th value shows the utility gained by agent

i , if we allocate bj to agent k . For this instance, if we allocate each
item bi to agent i , then we have:

U1 = 1 + 6 + 0 = 7,

U2 = 3 + 8 + 9 = 20,

U3 = 1 + 5 + 1 = 7.

The main focus of the paper is on a more restricted model where

the externalities are due to the relationships between agents. For

example, friends may share their items with a probability which

is a function of their relationship. In this model, each agent i has
a valuation function Vi , where for each bundle S , Vi (S) represents
the happiness of agent i , if we allocate S to him. We assume that

Vi (.) is additive, i.e., for every bundle S ,

Vi (S) =
∑
bj ∈S

Vi (bj ).

In addition, we consider a directed weighted graph G where for

every pair of vertices i and j, the weight of edge (
−→
j, i), denoted by

w j ,i , represents the influence ratio of agent j on agent i . We refer

such a graph as influence graph. If we allocate item b to agent j , the
utility gained by agent i from this allocation would beVi ({b}) ·w j ,i .

For convenience, we definewi ,i = 1 for every agent i andw j ,i = 0,

for every agent j which is not connected via a directed edge to i .
For instance, consider the example illustrated in Figure 1. For

the allocation that allocates every item bi to agent i (1 ≤ i ≤ 5), the
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Figure 1: An instance in the network externalities model

total utility of the agents would be

U1 = 5 + 5 · 0.2 = 6,

U2 = 2,

U3 = 3 + 5 · 0.2 + 2 · 0.3 = 4.6,

U4 = 9 + 8 · 0.1 + 2 · 0.4 = 10.6,

U5 = 4 + 8 · 0.25 + 7 · 0.2 = 7.4.

We call such a model the network externalities model.

Definition 2.1. For the network externalities model, we say agent

i is β-self-reliant, if

1∑
1≤j≤n w j ,i

≥ β .

For example in Figure 1, agent 4 is 2/3-self-reliant and agent

2 is 1-self-reliant. In real-world situations, we expect β to be a

value close to 1. In other words, we expect an agent to be far more

satisfied, when we allocate an item to him rather than allocating it

to the other parties. However, being β-self-reliant for β ≃ 1 doesn’t

mean that we can ignore the externalities. We discuss more on this

in Section 4.

Definition 2.2. For every agent i , we define the influence vector
of agent i , denoted by xi = [xi ,1, xi ,2, . . . , xi ,n ] as the vector rep-
resenting the influences of the agents on agent i in the influence

graph, in a non-decreasing order.

As mentioned, we suppose that for every agent i , we havewi ,i =

1. As an example, for the graph in Figure 1, we have

x1 = [0, 0, 0, 0.2, 1],

x2 = [0, 0, 0, 0, 1],

x3 = [0, 0, 0.2, 0.3, 1],

x4 = [0, 0, 0.1, 0.4, 1],

x5 = [0, 0, 0.2, 0.25, 1].

We emphasize that throughout the paper, our assumption is that

the externalities and the valuations are all non-negative.



2.2 Extended Maximin Share
In this paper, we introduce the extended maximin-share (EMMS)
criterion. As mentioned, the maximin-share (MMS) notion was

introduced by Budish [10] as a fairness criterion in the division of

indivisible items. In Section 1, we gave a formal definition of this

notion. The intriguing fact about MMS solution is that it can be

motivated by the “cut and choose” game. In this game, an agent

divides the items into n bundles and lets other agents choose their

bundle first. In the worst-case scenario, the least valued bundle

remains, and hence the maximin strategy is to divide the items in a

way that the minimum bundle is as attractive as possible.

To extend maximin-share to the case of the agents with exter-

nalities, again we consider the worst-case scenario in a “cut and

choose” game which incorporates externalities. Suppose that an

agent divides the items into n bundles, and other agents somehow

distribute these bundles (one bundle to each agent). The maximin

strategy of this agent is to divide the items in a way that maximizes

his utility in the worst possible scenario (a scenario that minimizes

his utility). We define the extended-maximin-share of agent i as his
maximin value in a “cut and choose” game with externalities.

Formally, let P = ⟨P1, P2, . . . , Pn⟩ be a partition of M into n
bundles with the following properties:

• For every i , we have Pi , ∅.
• For every i, j where i , j, we have Pi ∩ Pj = ∅.
• ∪iPi =M.

Furthermore, let A : P → [n] be an allocation function that

allocates every set Pi to agent A(Pi ) (one set to each agent). For

brevity, when P is clear from the context, we use Ai instead of

A(Pi ) to refer to the agent whom Pi is allocated to. Since exactly

one bundle must be allocated to each agent, A is a bijection. The

utility of agent i for an allocation A is:

Ui (A) =
∑
j
VAj ,i (Pj ).

For example, consider the instance shown in Figure 2 and let

P = ⟨P1,P2,P3⟩ = ⟨{b1,b3}, {b2,b5}, {b4}⟩

be a partition of the items into three bundles. One possible allocation

is to allocate every bundle Pi to agent i . For this allocation (namely,

AP ), we have

U1(AP ) = (5 + 2) + (6 + 4) · 0.8 = 15,

U2(AP ) = (9 + 5) · 0.65 + (2 + 1) = 12.1,

U3(AP ) = (2 + 3) · 0.6 + (0 + 6) · 0.2 + 5 = 9.2.

The worst allocation of P for agent i , denoted byWi (P), is the
allocation of P that minimizes the utility of agent i:

Wi (P) = arg min

A∈ΩP
Ui (A),

where ΩP is the set of all n! different allocations of P . For example,

a worst allocation of P for agent 1 is to allocate P3 to agent 1, P2 to

agent 3, and P1 to agent 2. The utility of agent 1 for this allocation

is 3 + 7 · 0.8 = 8.6. Similarly, the best allocation of P is defined as:

Bi (P) = arg max

A∈ΩP
Ui (A).
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Figure 2: Another instance in the network externalities
model

Again, the best allocation of P for agent 1 is to allocate P2 to agent

1, P1 to agent 2, and P3 to agent 3 which results in the utility of

10 + 7 · 0.8 = 15.6 for agent 1.

Finally, the extended-maximin-share of agent i , denoted by EMMSi ,
is defined as:

EMMSi = max

P ∈Π
Ui (Wi (P)),

where Π is the set of all partitions ofM into n non-empty subsets.

We also define the optimal partition ofM for agent i , denoted by

Oi , as the partition that determines the value of EMMSi ,

Oi = argmax

P ∈Π
Ui (Wi (P)).

Throughout the paper, when speaking of the network externalities

model, we assume that the bundles in Oi = ⟨Oi ,1,Oi ,2, . . . ,Oi ,n⟩

are sorted by their non-increasing values for agent i , i.e., for all j,
Vi (Oi , j ) ≥ Vi (Oi , j+1). Thus, we have

2

EMMSi =
∑

1≤j≤n
Vi (Oi , j ) · xi , j .

It can be observed that for agent 1 in Figure 2, we have

O1 = ⟨{b1,b3}, {b4,b5}, {b2}⟩

and

EMMS1 = U1(Wi (Oi ))

= 7 · 0.8 + 6 = 11.6.

When the agent is clear from the context, for any partition P we

use Pj to refer to the j’th valuable bundle of P for that agent.

Finally, anα-EMMS fair allocation problemwith the externalities

is defined as follows: is there an allocation such that every agent i
receives a utility of at least α · EMMSi ?

2.3 Average allocations
We also introduce another fairness notion for the extension of

proportionality to the environments with externalities, namely

average-share.

Definition 2.3 (average-share). The average value of item b for

agent i , denoted byV i ({b}), is defined as
∑
j Vj ,i ({b})/n. The average-

share of agent i is V i (M) =
∑
b ∈M V i ({b}). Furthermore, an allo-

cation is said to be average, if the total utility of every agent from

this allocation would be at least as his average-share.

2
If it is not clear why this equation holds, see Section 3.



For the case of network externalities model, we have

V i (M) = Vi (M)/n ·
∑
j
w j ,i . (1)

For the agents in Figure 2, we have

V 1(M) = (1.8/3) · 20 = 12

V 2(M) = (1.65/3) · 19 = 10.45

V 3(M) = (1.8/3) · 16 = 9.6.

Average-share plays an important role in analyzing our algo-

rithm for finding the (approximately) optimal partitions in Section

3. As we show in Section 2.4, this notion is stronger than extended

maximin-share. However, no approximation of this notion can be

satisfied even for very simple scenarios.

2.4 Basic Observations
In Section 2.1, we introduced two notions: average-share, and

extended-maximin-share. For a better understanding of these no-

tions, here we briefly compare them in the general externalities
model. First, in Lemma 2.4, we prove that average share is stronger

than extended maximin-share.

Lemma 2.4. Average-share implies extended-maximin-share.

Proof. Let A = {A1,A2, . . . ,An }, where Ak is an allocation of

Oi that allocates Oi , j to agent

j ′ = ((j + k − 1) mod n) + 1.

Since in A each item is allocated to each agent once,

∑
j Ui (A

j ) =∑
j Vj ,i (M). Thus, the worst allocation in set A has a utility of at

most

∑
j Vj ,i (M)/n = V i (M) for agent i . As a result, EMMSi =

Ui (Wi (Oi )) ≤ V i (M). �

By a similar argument as in the proof of Lemma 2.4 we can show

that for an arbitrary partition P ,

V i (M) ≤ Ui (Bi (P)).

Therefore, for any partition P we have

EMMSi ≤ Ui (Bi (P)).

In Lemma 2.5, we show that for n = 2, a cut and choose method

guarantees EMMSi to both the agents.

Lemma 2.5. For two agents, the following two step algorithm yields
a 1-EMMS allocation:(i): Ask the first agent to partition the items into
his optimal partitionO1, and (ii): Ask the second agent to allocateO1

(one bundle to each agent).

Proof. We know U2(B2(O1)) ≥ EMMS2. Furthermore, since

W1(O1) determines the value of EMMS1, we have:

U1(B2(O1)) ≥ EMMS1.

�

Note that there are instances with two agents such that no ap-

proximation of average-share can be guaranteed. For example, when

there is only one item with value 1 to both the agents, and no ex-

ternalities. We later establish another difference between these

two notions by providing allocations that approximately guarantee

extended maximin-share.

3 COMPUTING EMMS
In this section, we study the problem of computing EMMSi andOi .

A closer look at the model reveals that the challenges to calculate

EMMS are twofold. One is to find the worst allocation of a given

partition, and the other is to find a partition that maximizes the

utility of the worst allocation. In Lemma 3.1 and Observation 1,

we explore the hardness of these problems in the general exter-
nalities model. We then focus on the network externalities model

and give a constant factor approximation algorithm for computing

EMMSi .

Lemma 3.1. Given a partition P = ⟨P1, P2, . . . , Pn⟩ of the items in
M, the worst allocation of P for agent i can be found in polynomial
time.

Proof. (sketch) Consider a complete bipartite graph G(X ,Y )
where X represents the bundles of P , and Y represents the agents

and there is an edgewithweightVj ,i (Pk ) between every pairxk ∈ X
and yj ∈ Y . FindingWi (P) is equivalent to finding the min-weight

perfect matching inG. Classic network flow algorithms solve this

problem in polynomial time [11]. �

Observation 1. Since finding the maximin partition of a set of
items is NP-hard [31], finding the optimal partition ofm items and n
agents with externalities is also NP-hard.

Woeginger [31] also show that finding the maximin partition

of a set of items without externalities admits a PTAS. However,
their method does not directly extend to the case with externalities.

To the best of our knowledge, finding an approximately optimal

partition for an agent with externalities has not been studied before.

In the case of network externalities, our model is easier to deal

with. Since the utility of each agent is a convex combination of his

valuation, finding the worst allocationWi (P) is trivial: consider
an n-step allocation algorithm whose every step allocates the most

valuable remaining bundle to a remaining agent with the least effect

on agent i . Hence,

Ui (Wi (P)) =
∑
j
xi , j ·Vi (Pj ). (2)

Recall that xi (the influence vector of agent i) is non-decreasing,
and the bundles in P are sorted in non-increasing order of their

values for agent i . This property of the network externalities model

allows us to approximate the value of EMMSi with a constant ratio,

using a simple greedy approach. On top of that, it is possible to infer

relations between EMMS and some classic partitioning schemes.

Apart from the allocation of bundles, partitioning the items is

another challenge to overcome. By definition, an optimal partition is

a partition thatmaximizes Equation (2). Finding an optimal partition

for a given vector xi is in fact, a generalized form of partitioning

problems that includes both maximin andminimax partitions. What

happens if we partition the items by one of the famous partitioning

schemes such as minimax or maximin? A maximin partition is a

partition that maximizes the value of the minimum bundle. It is easy

to see that a maximin partition is optimal when xi = [1, 0, . . . , 0].
Likewise, minimax partition is a partition that minimizes the value

of the maximum bundle, and it is the optimal partition when xi =
[1, 1, . . . , 1, 0]. Another example is the leximin partition. A leximin

partition first maximizes the minimum bundle, and subject to this



4

4

6

4

4

6

11

6

6

4

4

4

11

4

P1 P2

1 2 3 1 2 3

Figure 3: For xi = [1, 1, 0], minimax (P1) is optimal, and for
xi = [1, 0, 0], maximin (P2) is optimal.

constraint, maximizes the second least valued bundle, and so on.

Real-world applications of leximin allocations are recently studied

by Kurokawa, Procaccia and Shah [21]. For a small enough ϵ , the
optimal partition for vector xi = [1, ϵ, ϵ

2, ..., ϵn−1] is a leximin

partition. See Figure 3 for an illustrative example.

Since none of these partitioning schemes are always optimal,

approximating either of them is not desirable. However, the well-

known greedy algorithm LPT 3
provides a partition

Li = ⟨Li ,1, Li ,2, . . . , Li ,n⟩

for agent i , such that Ui (Wi (Li )) is a constant approximation of

EMMSi . LPT is a simple greedy algorithm in the context of job

scheduling. This algorithm starts with n empty bundles and itera-

tively puts the most valuable remaining item into the bundle with

the minimum total value. It has been previously established that

the partition provided by LPT is a constant approximation for both

maximin and minimax partitions [12, 16].

Theorem 3.2. For the network externalities model, we have

Ui (Wi (Li )) ≥ EMMSi/2. (3)

To prove Theorem 3.2, we label some of the items as huge. Let
∆ = Vi (M)/n, and define Huge items as those items whose values

are at least ∆4
. Denote the set of huge items for agent i byHi .

Lemma 3.3. For an instance with no huge item, we haveVi (Li ,n ) ≥
∆/2.

Proof. Consider Li ,1 (the most valuable bundle of Li for agent
i). Trivially, we have Vi (Li ,1) ≥ ∆, and since there is no huge item,

Li ,1 contains at least two items. On the other hand, according to

method of LPT, the items within a bundle arrive in non-increasing

order. Therefore, the last item added to Li ,1 has a value of at most

Vi (Li ,1)/2 and the total value of Li ,1 just before the last item arrives

must have been at least Vi (Li ,1)/2. Furthermore, whenever an item

is added to a bundle, that bundle has the minimum value among all

the bundles. Therefore, Vi (Li ,n ) ≥ Vi (Li ,1)/2 ≥ ∆/2. �

Since Li ,n is the least valued bundle of Li for agent i ,

Ui (Wi (Li )) ≥
∑
i
xiVi (Li ,n )

≥
∑
i
xiVi (Li ,1)/2 ≥ EMMSi/2

Hence, when there is no huge item, regarding Lemma 3.3, Inequality

(3) holds. Thus, to prove Theorem 3.2, it only suffices to consider

3
Longest processing time

4
Notice that ∆ and the average share are not necessarily equal.
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Figure 4: Switching the subsets

the instances with huge items. Note that, when there are huge items

inM, Vi (Li ,n ) ≥ ∆/2 does not necessarily hold. To deal with such

situations, we consider some properties for Oi .

Definition 3.4. A partition P is regular for agent i , if no item b in

some bundle Pj exists, such that Vi (Pj ) > Vi ({b}) > Vi (Pn ) (recall
that Vi (Pn ) = minj Vi (Pj )).

Lemma 3.5. For any partition P , there exists a regular partition P ′,
such thatUi (Wi (P)) ≤ Ui (Wi (P

′)).

Proof. If P is not regular, there exists an item b in some bundle

Pj , such that

Vi (Pj ) > Vi ({b}) > Vi (Pn ).

We modify P as follows: we remove Pj and Pn from P and add two

new bundles A = {b} and B = Pj ∪ Pn \ {b} to P . Let l and l
′
be the

indices of the newly added bundles in P (note that the bundles are

rearranged by their non-increasing values for agent i), such that

j ≤ l ≤ l ′ ≤ n (see Figure 4). We have:

Vi (Pj ) > max(Vi (A),Vi (B)) ≥ min(Vi (A),Vi (B)) > Vi (Pn ).

By this modification,Ui (Wi (P)) increases by a value of at least

xi ,l · (max(Vi (A),Vi (B)) −Vi (Pj ))

+ xi ,l ′ · (min(Vi (A),Vi (B)) −Vi (Pn )),

which is non-negative since

Vi (Pj ) +Vi (Pn ) = max(Vi (A),Vi (B)) +min(Vi (A),Vi (B)),

and xi ,l ≤ xi ,l ′ . Let

L(P) = {Pj | Vi (Pj ) = Vi (Pn )}.

After eachmodification, eitherVi (Pn ) increases, or |L(P)| decreases.
Therefore, sequence (Vi (Pn ),Vi (Pn−1), . . . ,Vi (P1)) increases lexico-
graphically by each move, and hence we eventually end up with a

regular partition P ′ after a finite number of modifications.

�

Based on Lemma 3.5, in the rest of this paper we assume that

the optimal partitions are regular. Furthermore, in Lemma 3.6 we

show that Li is also regular.

Lemma 3.6. Li is regular.



Proof. For the sake of contradiction, let b be an item in bun-

dle Li , j such that Vi (Li , j ) > Vi ({b}) > Vi (Li ,n ). Since Vi (Li , j ) >
Vi ({b}), Li , j contains at least one other item, say b ′. Furthermore,

sinceVi ({b}) > Vi (Li ,n ), after adding b to Li , j no other item can be

added to Li , j (recall that in each step of LPT, we add an item to the

least valued bundle). This means that b ′ is added to Li , j before b,
which impliesVi (b

′) ≥ Vi (b). But this is a contradiction, because in
the step that we add b to Li , j , we haveVi (Li , j ) ≥ Vi (b

′) > Vi (Li ,n ),
which means Li , j is not the minimum bundle in that step. �

In a regular partition P for agent i , any bundle Pj containing a
huge item b ∈ Hi has no other item. Otherwise, since

Vi (Pj ) > Vi ({b}) ≥ ∆,

and ∆ > Vi (Pn ), partition P is not regular. This fact about regular

partitions (including Li and Oi ) allows us to deal with huge items.

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. We use induction on the number of

agents. For n = 1, the statement is trivial. For n > 1, we consider

two cases. First, ifM contains no huge items, by Lemma 3.3, we

have Vi (Li ,n ) ≥ ∆/2. Thus,

Ui (Wi (Łi )) =
∑
j
Vi (Li , j ) · xi , j

≥
∑
j
(∆/2) · xi , j

= 1/2
∑
j
∆ · xi , j

= Vi (M)/2
∑
j
xi , j/n (∆ = Vi (M)/n)

= V i (M)/2. (Equation (1))

By Lemma 2.4, we have V i (M) ≥ EMMSi which implies

Ui (Wi (Łi )) ≥ EMMSi/2.

Therefore, it only remains to consider the case thatM contains

at least one huge item. Let BHi (Oi ) and BHi (Li ) be the set of the
bundles containing huge items inOi and Li , respectively. We know

that BHi (Oi ) = BHi (Li ), as the bundles in BHi (Oi ) and BHi (Li )
do not contain anything but huge items, and each huge item is

the only item within its bundle (recall that both Oi and Li are
regular). In addition, BHi (Li ) are the |Hi | most valuable bundles

in Li . Otherwise, a very similar argument as in the proof of Lemma

3.3 yields Vi (Li ,n ) ≥ ∆/2.
LetW ′i (Oi ) be the worst possible allocation of Oi with the con-

straint that allocates |Hi | huge items to the |Hi | agents with the

least influence on agent i . By definition,Ui (W
′
i (Oi )) ≥ Ui (Wi (Oi )).

Moreover, in bothW ′i (Oi ) andWi (Li ), huge items are allocated

to the same set of agents, sayNHi . Now, consider the sub-instance

with items M \ BHi (Oi ) and agents N \ NHi . Note that since

Vi (Li ,n ) < ∆/2, the set M \ BHi (Oi ) (and hence, N \ NHi ) is

non-empty.

By the induction hypothesis, for this sub-instance, Inequality

(3) holds. Now, adding huge items and their corresponding agents

back, increases the utility of agent i by the same amount for both

12 ε

Figure 5: The gap between MMSi and EMMSi may be large,
even with very small externalities

of the allocations. Thus,

Ui (Wi (Li )) ≥ 1/2 ·Ui (W
′
i (Oi )) ≥ 1/2 ·Ui (Wi (Oi )).

�

4 α-EMMS ALLOCATION PROBLEM
In this section, we focus on the allocations that guarantee every

agent i an approximation of EMMSi . We start this section by com-

paring EMMSi toMMSi .
LetMi be the maximin partition ofM for agent i . The maximin-

share of agent i is equal to the value of the least valued bundle in

Mi . Moreover, by definition, we have :

EMMSi = Ui (Wi (Oi )) ≥ Ui (Wi (Mi )).

This, together with the fact that Ui (Wi (Mi )) ≥ MMSi (recall that
we have wi ,i = 1) implies that EMMSi ≥ MMSi always holds.
Now, in Lemma 4.1 we show that the gap between EMMSi and
MMSi could be unbounded even for the instances with 3 agents.

Lemma 4.1. For any c ≥ 1, there is an instance with 2 agents,
where EMMS1 > c ·MMS1.

Proof. Simply consider the influence graph depicted in Figure

5 and two items b1 and b2 such that V1({b1}) = 1 and V1({b2}) =
c/ϵ , where ϵ is a small constant less than 1/2. For this instance,

EMMS1 = 1 + c , and MMS1 = 1 which means

MMS1/EMMS1 < 1/(1 + c).

�

The proof of Lemma 4.1 highlights that even for very few exter-

nalities, the gap between EMMS and MMS might be large. Thus,

the external effects are not negligible even if the impacts of the

parties on each other are small.

Our main result is stated in Theorem 4.2. We show that for

the network externalities model when all the agents are α-self-
reliant, an α/2-EMMS allocation always exists. This completely

separates extended maximin-share from average-share, since no

approximation of the average-share can be guaranteed even for

1-self reliant agents.

Theorem 4.2. Let C be an instance such that all the agents are
α-self reliant. Then, C admits an α/2-EMMS allocation.

In the rest of this section, we prove Theorem 4.2 by proposing

an α/2-EMMS allocation algorithm for the network externalities

model with α-self-reliant agents. For brevity, we name our algo-

rithm Bundle Claiming (BC) algorithm. It is worth to mention that

despite some similarities, this method is fundamentally different

from the previous allocation methods for guaranteeing MMS. The
main difference is that, here, for each agent, we must keep track of

the items allocated to the other parties and based on that, update

the utility that each agent must receive to be satisfied. This makes

the analysis much more complex.



4.1 Bundle Claiming Algorithm (BC)
In this section, we present the ideas and a general description

of Bundle Claiming. First, let us review the definition of EMMSi .
With abuse of notations, we suppose thatvi is a vector representing
the values of the bundles in the optimal partition of agent i , i.e.,
vi , j = Vi (Oi , j ). Recall that the bundles in Oi are sorted by their

non-increasing values for agent i . Hence, for all j < n, we have
vi , j ≥ vi , j+1. We have EMMSi =

∑
j xi , jvi , j .

Let Xi =
∑
j xi , j . Observation 2 provides an upper bound on the

value of

∑
j≥k xi , jvi , j .

Observation 2. For every k , we have
∑
j≥k xi , jvi , j ≤ vi ,k · Xi .

For example, in an instance with n = 6, for k = 4, Observation 2

implies:

vi ,4 · Xi ≥ vi ,4xi ,4 +vi ,5xi ,5 +vi ,6xi ,6.

Observation 2 is a direct result of the following two facts: first, for

all j > k , we have vi ,k ≥ vi , j and second,

∑
j>k xi , j ≤ Xi .

Definition 4.3. For every agent i , we define ℓi to be the expec-

tation level of agent i . Agent i with expectation level ℓi , has an

expectation value of vi ,ℓi /2.

In the beginning of the algorithm, the expectation level of all the

agents are set to 1. Our algorithm consists ofn steps. In each step, we
find a bundle B with the minimum number of items that meets the

expectation of at least one agent. Bundle B meets the expectation

of agent i , if Vi (B) ≥ vi ,ℓi /2. We allocate B to one of the agents

whose expectation is met (we say this agent is satisfied). Next, we

update the expectation levels of the remaining agents. The updating

process is a fairly complex process which we precisely describe in

Section 4.2. Roughly speaking, we update the expectation levels in

a way that the following property holds during the algorithm:

External-satisfaction property: Let S be the set of cur-

rently satisfied agents. For every remaining agent i with ex-

pectation level ℓi , there is a partition of the agents in S into

ℓi subsets, namely Ni ,1,Ni ,2, . . . ,Ni ,ℓi−1,Ni ,F , such that for

all 1 ≤ j < ℓi , the total set of items allocated to the agents in

Ni , j is worth at least vi , j/2 and at most vi , j to agent i , and
the total set of items allocated to the agents in Ni ,F is worth

less than vi ,ℓi /2 to agent i .

Note that in the updating process, ℓi may increase by more than

one unit. However, for every remaining agent i , ℓi ≤ nmust hold. As

we show in Section 4.2, during our algorithm, ℓi ≤ n always holds

for every agent i . We use this property to show that if the external-

satisfaction property holds for agent i , total amount of externalities

incurred by the satisfied agents is at least

∑
k<ℓi vi ,kxi ,k/2. The

fact that EMMSi is calculated with respect to the worst allocation

of Oi is the key to prove this inequality.

Consider one step of the algorithm and suppose that a set B of

items is allocated to agent i . Since B met the expectation of agent i ,
Vi (B) ≥ vi ,ℓi /2. Furthermore, the utility that agent i gained through
the externalities of the satisfied agents is at least

∑
k<ℓi vi ,kxi ,k/2.

Assuming that agent i is α-self-reliant, his utility is at least

ALGORITHM 1: Bundle Claiming algorithm

forall aj ∈ N do
ℓj ← 1 ◃ Initializing the expectation levels

end
while N , ∅ do

forall aj ∈ N do
Γj ←Minimum sized subset ofM, s.t.

Vj (Γj ) ≥ 1/2 · vj ,ℓj ;

end
i ← argmini |Γi |;

Allocate Γi to agent i ;

N ← N \ i ,M ←M \ Γi ;

forall j ∈ N do
Nj ,F ← Nj ,F ∪ {i}. ;

while Vj (Nj ,F ) ≥ 1/2 · vj ,lj do
Update(Mj ) ◃ (see Section 4.2)

end
end

end

∑
k<ℓi

vi ,kxi ,k/2 +vi ,ℓi /2

≥
∑
k<ℓi

vi ,kxi ,k/2 + (
∑
k≥ℓi

vi ,kxi ,k/Xi )/2 (Observation 2)

≥(1/2Xi )
∑
k

vi ,kxi ,k (Xi ≥ 1)

≥α/2
∑
k

vi ,kxi ,k

=α/2EMMSi . (4)

Inequality (4) ensures that the items allocated to agent i satisfy
him. Furthermore, we use the external-satisfaction property to

prove that the algorithm satisfies all the agents. To show this, it only

suffices to prove that in each step of the algorithm there are enough

items to meet the expectation of the remaining agents. Consider

agent i which has not satisfied yet. The value of the items allocated

to the satisfied agents not in Ni ,F is at most

∑
j<ℓi vi , j . Hence, the

total value of the remaining items plus the items allocated to the

agents in Ni ,F is at least

∑
j≥ℓi vi , j . Moreover, the value of the

items allocated to the agents in Ni ,F is less than vi ,ℓi /2. Thus, the
value of the remaining items is at least vi ,ℓi /2 which is enough

to meet the expectation of agent i . As said before, our algorithm

maintains the property that ℓi ≤ n for every remaining agent i .
The details of the bundle claiming algorithm is demonstrated

in Algorithm 1. In the next section, we show how to maintain the

external-satisfaction property in the algorithm.

Note that, there are only two parts of the BC algorithm whose

implementations in polynomial time are not trivial. One is finding a

minimum-sized set B meeting the expectation of at least one agent,

and the other is the operations we perform in order to maintain

the external-satisfaction property. In Observation 3, we show that

the first part can be implemented in polynomial time.



Observation 3. The minimum-sized set that meets the expec-
tation of at least one remaining agent can be found in polynomial
time.

Proof. For every remaining agent i , we find a bundle Γi with the
minimum size which meets the expectation of agent i as follows:
sort the remaining items in their non-increasing values for agent

i , and add the items to Γi one by one until the bundle meets the

expectation of agent i . Finally, it only suffices to select the smallest

bundle among these bundles. �

Furthermore, as we show in the next section, the operations we

perform to preserve the external-satisfaction property can also be

implemented in polynomial time.

Finally, using Li
5
instead of Oi in BC results in an α/4-EMMS

allocation algorithm.

Corollary 4.4. Let C be an instance where for every agent i ,
wi ,i ≥ α . Then, an α/4-EMMS allocation for C can be found in
polynomial time.

4.2 The External-satisfaction Property
Throughout this section, we suppose that S is the set of satisfied

agents. Furthermore, for each agent i in S, we denote the bundle
allocated to him by Bi . We start by giving a detailed explanation

of the updating process. As mentioned in the previous section, the

external-satisfaction condition must hold during the entire algo-

rithm. To maintain this property in the updating process, for every

agent i , we define a mappingMi that represents the partitioning of

S for agent i (recall the definition of external-satisfaction).

Definition 4.5. For every agent i , we define

Mi : S → {Oi ,1,Oi ,2, . . . ,Oi ,n } ∪ {Fi }

as a mapping that corresponds each satisfied agent to a bundle in

the optimal partition of Oi or to Fi . Furthermore, we define Ni , j as

the set of agents that are mapped to Oi , j inMi and Ni ,F as the set

of agents mapped to Fi . During the algorithm, we say mappingMi
is valid, if the following conditions hold:

(i) ∀j < ℓi
∑
k ∈Ni , j Vi (Bk ) ≥ vi , j/2

(ii) ∀j < ℓi
∑
k ∈Ni , j Vi (Bk ) ≤ vi , j

(iii)

∑
k ∈Ni ,F Vi (Bk ) < vi ,ℓi /2

During the entire algorithm, mapping Mi must remain valid for

every unsatisfied agent i . In the beginning, S = ∅ and for every

agent i , ℓi = 1 and hence,Mi is valid. In each step of the algorithm,

we satisfy an agent i by a bundle Bi . Next, for every unsatisfied

agent j, we map agent i to Fj inMj , i.e., we setMj (i) = Fj . In fact,

Nj ,F corresponds to the satisfied agents that are not mapped to any

bundle of O j inMj . We use these agents to update ℓj . Throughout

the algorithm, whenever the total value of the items allocated to

the agents in Nj ,F reaches vj ,ℓj /2,Mj becomes invalid and hence,

we need to update ℓj and Mj to reinstate the validity of Mj . To

do so, we pick a subset δ of the agents in Nj ,F with the minimum

size to map them to O j ,ℓj . Regarding the validity conditions ofMj ,

total value of the items allocated to the agents in δ must be at least

vj ,ℓj /2 and at most vj ,ℓj (we call such subset a compatible set). If

5
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a compatible set δ exists, we map the agents in δ to O j ,ℓj in Mj
and increase ℓj by one. However, there may be some cases that no

subset of Nj ,F is compatible. For such cases, we use the argument

in Lemma 4.6.

Lemma 4.6. Suppose that total value of the items allocated to the
agents in Nj ,F is at least vj ,ℓj /2, but Nj ,F admits no compatible
subset. Then, it is possible to modifyMj such that conditions (i) and
(ii) remain valid for Mj and Nj ,F contains at least one compatible
subset.

Using Lemma 4.6 we can modifyMj and then update the map-

ping. Note that, after increasing ℓj , condition (iii) may still be vio-

lated. In that case, as long as condition (iii) is violated, we continue

updating. Each time we update Mj , value of ℓj is increased by

one. Since at least one agent is mapped to O j ,ℓ for each ℓ < ℓj ,

ℓj never exceeds n. In the appendix (Algorithm 2), you can find a

pseudo-code for this process .

In the last part of this section, we prove Lemma 4.7 which shows

that the value of the externalities imposed to agent i by the satisfied
agents is lower-bounded by

∑
j<ℓi xi , jvi , j/2. As said before, the

fact that EMMSi is defined with regard to the worst allocation of

Oi plays a key role in proving Lemma 4.7.

Lemma 4.7. Consider one step of the algorithm, and let agent i be
an arbitrary remaining agent with ℓi > 1. Then, we have∑

j ∈S

w j ,i ·Vi (Bj ) ≥
∑
j<ℓi

xi , j · vi , j/2. (5)

Proof. We want to show that in every step of the algorithm,

for each remaining agent i , Inequality (5) holds. To prove this, we

apply a sequence of exchanges between the bundles allocated to

the agents in

⋃
j<ℓi Ni , j and show that in every exchange, value

of the expression on the left-hand side of Inequality (5) does not

increase
6
. Next, we show that after these exchanges, Inequality (5)

holds, which means that the Inequality was held for the original

allocation.

Let agent j be the agent in Ni ,1 with the least influence on agent

i (i.e., minimizesw j ,i ). First, we allocate the bundles that belong to

the other agents in Ni ,1 to agent j and remove all the agents but

agent j from Ni ,1. Since agent j has the minimumweight (influence)

among the agent in Ni ,1, this operation does not increase the left-

hand side of Inequality (5).

In addition, let agent j ′ be the agent with w j′,i = xi ,1. Since
agent j ′ has the minimum weight among all the agents, we have

w j′,i ≤ w j ,i . Now, let Bj and Bj′ be the current bundles of agents j
and j ′ (if j ′ is not satisfied yet, Bj′ = ∅). IfVi (Bj′) < Vi (Bj ), we swap
the bundles of j and j ′. This operation also does not increase the left-
hand side of Inequality (5) since we havew j′,i ≤ w j ,i . Finally, we

exchange the set that agents j and j ′ belong to: we remove agent j
fromNi ,1, and add agent j

′
toNi ,1. In addition, if agent j

′
previously

belonged to Ni ,r for some r , we add agent j to Ni ,r . This exchange

has no effect on the value of

∑
j ∈S w j ,i ·Vi (Bj ). Furthermore, one

can easily observe that after the exchange, condition (ii) holds.

We repeat the same procedure for Ni ,2,Ni ,3, . . . ,Ni ,ℓi−1. After

this sequence of exchanges, each Ni , j contains one agent j
′
, where

w j′,i = xi , j . Furthermore, after the exchanges, the second condition

6
Note that these exchanges are only to prove this lemma, and not in the algorithm.



for the validity of Mi holds and hence, the value of the items of

agent j ′ for agent i is at least vi , j/2. Therefore, total amount of

externalities of the satisfied agents is at least

∑
j<ℓi xi , jvi , j/2. �

4.3 Proof of Lemma 4.6.
Let δ be a subset of Nj ,F with the minimum size that satisfies

condition (i). Such a set trivially exists. Since no subset of Nj ,F is

compatible, we have

∑
k ∈δ Vj (Bk ) > vj ,ℓj . By minimality of δ , no

proper subset of δ satisfies condition (i). It is easy to observe that

this can only happen when δ contains only one agent, say k , with
Vi (Bk ) > vj ,ℓj . We also show in Lemma 4.8 that |Bk | = 1; but for

now suppose that |Bk | = 1 and b is the only item in Bk .
Since O j is regular

7
, there is an index ℓ < ℓj , such that bundle

O j ,ℓ = {b}. We modifyMj as follows: we map agent k to O j ,ℓ and

map the former agents of Nj ,ℓ to Fj . Clearly, conditions (i) and (ii)

preserve for Mj after this process. Again, if no subset of Nj ,F is

compatible, we repeat this modification. Each time we modifyMj ,

the number of indices ℓ for whichO j ,ℓ is mapped to an agent j with
O j ,ℓ = Bj increases by one. Therefore, the process terminates after

a finite number of modifications. �
Algorithm 2 illustrates an overview of the update procedure,

which completes the BC algorithm.

ALGORITHM 2: UpdateMj

Resolve = 0

while Resolve == 0 do
δ ←Minimum sized subset of Nj ,F , s.t.∑

k ∈δ Vj (Bk ) ≥ 1/2 · vj ,ℓj
if

∑
k ∈δ Vj (Bk ) ≤ vj ,ℓj then
Nj ,ℓj = δ

Nj ,F = Nj ,f \ δ
ℓj ← ℓj + 1

Resolve+ = 1 ◃ Resolved
else

Let ℓ be an index s.t. O j ,ℓ = Bk , where δ = {k}.
Swap δ (which is a subset of Nj ,F ) with Nj ,ℓ . ◃ One

step closer to resolve

end
end

Lemma 4.8. Suppose that the total value of the items allocated to
the agents in Nj ,F is at least vj ,ℓj /2, but Nj ,F admits no compatible
subset, and let δ be the minimal subset of Nj ,F that satisfies condition
(i). Then, δ contains only one agent, say agent k and |Bk | = 1.

Proof. As mentioned in Lemma 4.6, it is easy to observe that

|δ | = 1. Here, we argue that if agent k is the only agent in δ , then
|Bk | = 1. As a contradiction, let z1 be the first step of the algorithm

that δ = {k}, but |Bk | > 1. In addition, let z2 be the step that Bk is

allocated to agent k and let ℓ′j be the expectation level of agent j in

step z2. Trivially, we have z2 ≤ z1.

Claim 1. Either vj ,n ≥ vj ,ℓ′j /2 or we have |O j ,ℓ | = 1 for all
ℓ ≤ ℓ′j .

7
Recall the regularity from Definition 3.4

Proof of Claim 1. If for some ℓ ≤ ℓ′j , O j ,ℓ contains more than

one item, O j ,ℓ has a proper subset s such that Vj (s) ≤ vj ,ℓ/2. By
the same reasoning as Claim 3.5, moving s to bundle O j ,n yields a

new partition which is at least as good as O j (See Figure 4). Hence,

we can assume w.l.o.g. that vj ,n ≥ vj ,ℓ′j /2 holds. �

Regarding Claim 1, we consider two cases.

First, assume that |O j ,ℓ | = 1 for all ℓ ≤ ℓ′j . For this case, at least

one of the items in

⋃
ℓ≤ℓ′j

O j ,ℓ is not allocated to any agent before

step z2, and this item singly meets the expectation of agent j. This
contradicts the fact that at step z2, Bk was the minimal set (Note

that we supposed |Bk | > 1).

Second, assume that vj ,ℓj ≥ vj ,ℓ′j /2. In step z2, the expectation

value of agent j equals vj ,ℓ′/2. Furthermore, Vj (Bk ) > vj ,ℓj which

means Vj (Bk ) > vj ,ℓ′j /2. On the other hand, Vj (Bk ) < vj ,ℓ′j , other-

wise a proper subset of Bk would meet the expectation of agent j
in step z2. Therefore, in step z2, δ = {k} is the only compatible set

for updatingMj and hence, agent k is mapped to O j ,ℓ′j . This also

implies that z2 , z1, since we supposed that no compatible subset

exists in step z1.
Furthermore, notice that since |Bk | > 1, no item could singly

meet the expectation of any agent, including agent j in step z2. This
means that every remaining item in step z2 has the value less than
vj ,ℓj /2. On the other hand, in all the modifications before step z1,

the bundle allocated to the agent in δ consists of only one item (z1
is te first step that the size of the bundle allocated to the agent in

δ is more than 1). This means that after step z2, no modification

affects the agents that are mapped to bundles O j ,ℓ for ℓ ≤ ℓ
′
j . But

this contradicts the fact that agent k is mapped to Fj in step z1,
because agent k is mapped to O j ,ℓ′j and no modification changes

Mj (k). �

5 CONCLUSION
An exciting open direction is to find approximation allocation al-

gorithms for the general externalities model, with no restriction

on the value of Vj ,i ({bk }). Many issues complicate the study of

the general model. For example, the approximation algorithm pre-

sented for computing the value of EMMSi is no longer applicable

to this model. A good starting point is to study the general model

for the cases with a few number of agents, e.g., 3 or 4 agents.

For the network externalities model, one can think of improving

the approximation ratio of the allocation. In particular, it would be

interesting to propose an allocation algorithm with approximation

factor independent of the self-reliance of the agents.

Another interesting open direction that might be of independent

interest is to find a maximum value β , such that there exists a

partition P of the items in whichWi (P) is a β-approximation of

Wi (Oi ) for every agents i . Note that if such a partition exists, any

allocation of it to the agents is a β-EMMS allocation.

Finally, it is very impressive to present a PTAS for finding the

optimal partition for an agent in the network externalities model.
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