
1

The 4th ACS/IEEE International Conference on
Computer Systems and Applications

d
American Uniersity of Sharjah

Program Chair's Message

General Chair's Message

Conference Papers

©2006

Search this CD-Rom CD-Rom Help

Program and Track Committees

Financial Supporters

Committees

IEEE Catalog Number: 06EX1313C
ISBN: 1-4244-0212-3
Library of Congress: 2006920948

Parallel Online Ranking of Web Pages
Y. Ganji Saffar, K. Sheykh Esmaili, M. Ghodsi, H. Abolhassani

Computer Engineering Department
Sharif University of Technology, Tehran, Iran

{ganji,shesmail}@ce.sharif.edu , {ghodsi,abolhassani}@sharif.edu

Abstract— Modern search engines use link structure of the
World Wide Web in order to gain better results for ranking
the results of users’ queries. One of the most popular ranking
algorithms which is based on link analysis is HITS. It generates
very accurate outputs but because of huge amount of online
computations, this algorithm is relatively slow. In this paper we
introduce PHITS, a parallelized version of the HITS algorithm
that is suitable for working with huge web graphs in a reason-
able time. For implementing this algorithm, we use WebGraph
framework and we focus on parallelizing access to web graph as
the main bottleneck in the HITS algorithm.

I. INTRODUCTION

Search technology is one of the most important reasons for
success of the web. The huge amount of information available
on the web, its high growth rate, and its unstructured nature,
all increase the need for search engines with high performance
and accurate results.

One of the major components of each search engine is
its ranking algorithm. Traditional Information Retrieval (IR)
systems usually use some models like VMS [4] and compute
rank of results using content similarity measures between
user’s query and retrieved documents. But in the context of
the web, there are some problems with these approaches. For
example, spamming may lead to inefficient ranking. Some
methods have been proposed to encounter these problems most
of which uses some implicit information which is embedded
in the web graph. These methods are known as Link-Analysis
based algorithms.

PageRank [5] and HITS (Hyperlink Induced Topic Search)
[1] are the most well known algorithms in this category.
PageRank, which is used by Google for ranking its results,
is an offline and query-independent ranking algorithm. This
means that the ranking is independent of the specific queries
of users and therefore can be done once and used for all of
the upcoming queries. On the other hand, HITS is an online
and query-dependent algorithm. Being query dependent makes
HITS more precise but it has some disadvantages too. In fact,
required online computations for this algorithm is too much
and the response time of the search engine after submitting
queries by users is not acceptable. To overcome this problem,
in this paper we will exploit the parallel processing methods
to improve the execution performance of the algorithm.

The rest of this paper is organized as follows. In section II,
link-analysis based algorithms in general and HITS as a special
case are discussed. At the end of this section, some of the
variations and improvements for the HITS algorithm that are
suggested in the literature are also described. Implementing the

HITS algorithm and its parallel version, PHITS, are discussed
in sections III and IV respectively. Finally, last section of this
paper contains conclusion and some ideas for future work in
this topic.

II. RANKING ALGORITHMS BASED ON LINK STRUCTURE

ANALYSIS

Current popular search engines apply many advanced tech-
niques to improve the user satisfaction and the relevance of the
returned results to the given query. One of the most important
techniques is to exploit the connectivity information (i.e. link
structure) hidden in the web documents to improve the search
results.

Nowadays nearly all commercial web search engines use
one or more algorithms for analyzing the link structure of the
web. The main idea of these methods is using the implicit
information entailed from the link structure of the web. For
example, we can observe that often the pages that are linked
directly to each other have similar contents. As mentioned
in the previous section the most well known algorithms for
analyzing the link structure of the web graph are the HITS
and the PageRank algorithms. The main focus of this paper is
on the HITS algorithm.

A. The HITS Algorithm

In this algorithm pages are divided into two categories: hubs
and authorities. Hub pages are those that have good lists of
links related to a subject. Authority pages are those that are
listed on good hub pages. A good hub page for a subject
links to many authoritative pages for that subject. Similarly,
a good authority page for a subject is linked by many good
hub pages for that subject. Goodness is measured by hub and
authority scores. Due to the circular definition, these scores
are calculated by iteration.

The steps of detecting hubs and authorities in this algorithm
are as follows. First the user’s query is sent to a keyword based
search engine and some of the pages (e.g. 200 of them) that
contain the keywords of the user’s query are selected. These
pages are called the root set. The second step of this algorithm
is to expand the root set via adding pages that are directly
linked to these pages by using forward or backward links.
This augmented set is called the base set. Authority and hub
values for base set nodes are maintained in two vectors, x and
y. The elements of these vectors are initialized to 1 and for
computing their final values the following iterative equations

1041-4244-0212-3/06/$20.00/©2006 IEEE

are used:
xi =

∑
j:(j,i)∈E

yj (1)

yi =
∑

j:(i,j)∈E

xj (2)

In these equations, (i, j) ∈ E means that a link from page i
to page j is in the web graph.

In [1], it is proved that the sequences x1, x2, . . . and
y1, y2, . . . converge. But the question is, how many iterations
of the algorithm are required for these sequences to converge.
For answering this question, we ran the algorithm with random
data several times until the results became stable. The average
result is shown in Fig. 1. As this figure shows, HITS algorithm
converges very rapidly.

Fig. 1. Convergence of the HITS algorithm

Some search engines have used the HITS algorithm for
implementing their ranking subsystems. The first of them is
Clever [6], [7], a project sponsored by IBM, which uses a
modified version of HITS. Another well known HITS-based
search engine is DiscoWeb [8]. But the best and the newest
one is TEOMA [9]. Response of this search engine for each
query contains three parts: Relevance pages (authority pages),
Refines (some suggestion to refine query) and Resources (hub
pages). Interested readers can refer to [10] for a comparison
between Google [11], Yahoo Search [12], and TEOMA search
engines.

B. Variations of the HITS algorithm

After proposing HITS in 1998, a lot of variations and
improvement on this algorithm have been suggested in the
literature. Most of these researches focus on the use of web
graph adjacency matrix.

In [1], it is proved that if A denote the web graph adjacency
matrix then x and y vectors will converge to the principal
eigenvectors of AT A and AAT respectively. Most of the
improvements suggested on the HITS algorithm in these
researches use this fact as the base. In general these variations
fall into two different categories:

• Modification on the web graph: main concern of these
methods is to deal with cases that we have repeated eigen-
vector for base matrices. Some types of these algorithms
aim at stabilizing HITS (preventing occurring big changes
in eigenvector when we modify adjacency matrix a little).
Solutions for these problems contain: using path instead
of direct link between nodes [13], maintaining user log
record for web pages [13], assigning negative weight
to some edges in order to decrease their effect [14],
creating pseudo hubs and virtual hubs [14], probability
and random traveling between pages [15].

• Modification on computing vectors: these algorithms
work on computing authority and hub vectors and they
emphasize on managing eigenvectors for base matrices.
The techniques that are usually used for this purpose are:
choosing only a special subset of eigenvector space and
work with them [15], using projection of eigenvectors on
the root set [16], and filtering base root [17], [16].

In our implementation, instead of working with adjacency
matrices, we use adjacency lists.

III. IMPLEMENTATION OF THE HITS ALGORITHM

For implementing the HITS algorithm, we used several
tools and frameworks which are introduced in the following
sections.

The WebGraph Framework

Studying web graphs is often difficult due to their large
sizes. The WebGraph framework is a suite of codes, algorithms
and tools that exploits the inner redundancies of the web
to store a web graph in a limited space of memory. This
framework has a simple API that makes it easy to manipulate
large web graphs. It is an open source package and is publicly
available in [18].

Datasets

In our study, we used the datasets that are publicly available
at [19]. These datasets contain data that are gathered by
a number of crawlers and are compressed and encoded by
the WebGraph compression algorithm [2]. Each dataset is
composed of several files. The most important files are:

• A file which contains the compressed graph, and the
relative property file which contains metadata about the
graph.

• A file which contains the transposed version of the graph,
and the relative property file which contains metadata
about the transposed graph.

• An offsets file, which is used for random access to nodes.
• A URLs file, in which the i-th line contains the URL of

the i-th node.

105

The following table summarizes the properties of the datasets
that we used during our study:

Crawled domain Crawling year Nodes Links

.uk 2002 18520486 298113762

.eu.int 2005 862664 19235140

.it 2004 41291594 1150725436

The pseudo code of our implementation, which is adapted
from [1], is shown in Fig. 2. As it is shown in this pseudo
code, there are a number of input parameters that effect the
results of the algorithm. These parameters are:

t : The size of the root set.
d : Maximum number of pages that have a link to one

of the pages in the root set and can be added to the
base set. There are many popular pages that have
incoming links from many other pages on the web.
This parameter will prevent the size of the base set
from becoming rapidly large.

k : Number of the iterations that must be done before
sending the result to users. As shown in Fig. 1,
typically 5-10 iterations are sufficient.

By tuning these parameters, we can manage the trade off
between the accuracy of the algorithm and its performance.
That means by choosing larger values for these parameters
we can have more accurate results but the time needed for
doing the computations will be larger.

IV. PARALLELIZING THE HITS ALGORITHM

In summary, the HITS algorithm is composed of these steps:
1) Creating the root set. 2) Creating the base set by expanding
the root set. 3) Performing iterations. The most time consum-
ing part of the algorithm is the third step, i.e. performing the
iterations. It is because that during the execution of this part,
the processor must have random access to huge compressed
graphs which are located in a large portion of the memory, to
find incoming and outgoing links of the base set pages. Having
random access to large portions of the memory decreases the
cache hit rate and therefore execution performance reduces sig-
nificantly. For dealing with this problem, instead of accessing
the huge web graph each time the list of successors of a node is
needed, we find the successors and predecessors of each node
once and save them in two adjacency lists: one for successors
of nodes and the other for predecessors. Although having a
little memory overhead, this technique increases the execution
performance significantly. Using this technique when working
with the crawl of .uk domain, which is a relatively large
graph, the avarage response time decreased from 158.4 to 18.2
milliseconds, i.e. it became approximately 8.7 times faster.

So we modified the HITS algorithm as follows: 1) Create
the root set. 2) Create the base set by expanding the root
set. 3) Create the adjacency lists. 4) Perform iterations by
only accessing the adjacency lists. According to our statistical
analysis, after implementing this modification, only about 10
percent of the execution time of the algorithm is elapsed during

the fourth step. This means that the bottleneck of the algorithm
is now changed from the last step to the first three steps. The
reason is clear: during these steps we need to work with huge
graphs that are spanned along a large portion of the memory.
Parellizing steps one and two does not bring any significant
performance improvments, so we have focused on parallelizing
the third step.

The pseudo code of our algorithm is shown in Fig. 3. In
the next section the proposed architecture for implementing
the algorithm is discussed.

A. Proposed Architecture

The proposed architecture is showed in Fig. 4. The main part
of this architecture is the server component, which receives
user’s query and after calculating the result, sends back it
to him. If only one processing node is available, the server
component must do all the calculations individually. But if
cooperator nodes are available, they can register themselves
on the server and the server delegates some parts of the
calculations to them.

When a cooperator registers itself on the server, a delegate
thread on the server is being started for handling the com-
munication with the cooperator. Each cooperator must have a
copy of the dataset on its hard disk. After the registration of
the cooperators on the server, the server component will order
the cooperator to load the web graph or the transposed version
of it on its memory. In our implementation, cooperators with
even ranks are ordered to load the web graph and cooperators
with odd ranks are ordered to load the transposed version of
it. Because of the huge size of the two graphs, this strategy
(loading one of the graphs instead of loading both of them
on each node) lets us to use cooperators that are not very
resource rich. Therefore even nodes construct AL and odd
nodes construct ALT . Size of these two lists is equal to the
number of pages that are in the base set. In AL, each element
of the list contains two data, the ID of one of the pages which
are in the base set and a pointer to the head of a linked list in
which the IDs of pages that this page has links to (outgoing
links) are saved. On the other hand, in ALT , each element
contains the ID of one of the pages which are in the base set
and a pointer to the head of a linked list in which the IDs of
pages that have links to this page (incoming links) are saved.

On receiving queries from users, the server component
creates the root and base sets individually. The reason for
not doing these steps in parallel is that after implementing
the algorithm we found that because of the communication
overhead, parallelizing these steps not only doesn’t increase
the execution performance, but also decreases it. The server
component then commands each cooperator which part of the
adjacency lists is its responsibility to calculate. Then it does its
share of the calculations and waits for all of the cooperators to
finish their jobs. After finishing its job, each cooperator sends
the result to its corespondent delegate thread, and the thread
will put the result in the server memory.

When all of the cooperators finished their jobs, the server
starts the iterations and after performing them and reaching

106

HITS(q, e, t, d, k, c)
q: a query string
e: a text-based search engine
t, d: natural numbers
R = top t results of e on q.
S = R
For each page p ∈ R

Add to S all of the pages that p points to.
Add to S at most d pages that point to p.

∀i, xi = 1
∀i, yi = 1
For i = 1 to k

Apply operation 1 to (xi−1, yi−1), obtaining new x-weights x′i.
Apply operation 2 to (x′i, yi−1), obtaining new y-weights y′i.
Normalize x′i, obtaining xi.
Normalize y′i, obtaining yi.

Report the pages with the c largest coordinates in xk as authorities.
Report the pages with the c largest coordinates in yk as hubs.

Fig. 2. The HITS Algorithm (adapted from [1])

PHITS(q, e, t, d, k, c)
q: a query string
e: a text-based search engine
t, d: natural numbers
R = top t results of e on q.
S = R
For each page p ∈ R

Add to S all of the pages that p points to.
Add to S at most d pages that point to p.

Create AL, adjacency list of the web graph, in parallel.
// in this list, each page of the base set has a linked list of pages that this page has links to.

Create ALT , adjacency list of the pages which are in the base set, in parallel
// in this list, each page of the base set has a linked list of pages that have links to this page.

∀i, xi = 1
∀i, yi = 1
For i = 1 to k

Apply operation 1 to (xi−1, yi−1), obtaining new x-weights x′i.
// ALT is used for finding pages that have link to each page of the base set.

Apply operation 2 to (x′i, yi−1), obtaining new y-weights y′i.
// AL is used for finding pages that each page in the base set has links to.

Normalize x′i, obtaining xi.
Normalize y′i, obtaining yi.

Report the pages with the c largest coordinates in xk as authorities.
Report the pages with the c largest coordinates in yk as hubs.

Fig. 3. The PHITS (Parallel HITS) Algorithm

to a convergence in the values, it sends the ranked hubs and
authorities back to the user. Because of the separation between
the calculation component of the server and the cooperators,

there must be a way for the server component to detect that
all of the cooperators have finished their jobs. For doing this,
when the calculation for responding to a new query is started,

107

Fig. 5. Calculation time of the PHITS algorithm for t=200, d=50, k=20

Fig. 6. Calculation time of the PHITS algorithm for t=500, d=50, k=20

the number of participating cooperators is saved somewhere on
the server memory. Whenever the job of a cooperator finishes,
its corespondent delegate thread decreases this number. It must
also be mentioned that the access to this place of memory is
done at a critical section, which means only one thread at a
time can access this part of the memory. Now for detecting
whether all of the cooperators have done their jobs, the server
component can check in a loop whether the number is reached
to zero or not.

In figures 5 to 7, the result of running our implementation
on crawl of .uk domain, which contains 18520486 nodes, is
shown. In this study we used a Pentium IV 2.4 GHz with
1GB of RAM as our main server and several Pentium IV 2.4
GHz with 512 MB of RAM as cooperators. The hub which
was used for connecting these nodes was a 1Gbps hub. The
followings can be deduced from these figures:

1) The calculation time decreases when new cooperators
are used to do the calculations. But using more than
four nodes for doing calculations on this dataset doesn’t
improve the calculation time significantly and is not cost

Fig. 7. Calculation time of the PHITS algorithm for t=500, d=50, k=10

effective. Current Google index contains more than 8G
pages, which is approximately 440 times bigger than .uk
data set that we used. It is clear that when working with
the complete web graph, which has more than 8G pages,
using more nodes is cost effective and the speed up will
be better.

2) As can be seen in figures 6 and 7, decreasing the number
of iterations from 20 to 10, doesn’t affect the calculation
time significantly. This shows that the main bottleneck
of the algorithm is in creating the adjacency lists and
not in performing the iterations.

V. CONCLUSIONS AND FUTURE WORK

In this paper we used parallel processing methods for
improving the efficiency of accessing compressed web graphs.
After a brief introduction to the HITS algorithm, we used
some techniques to improve its performance in the serial
implementations. Then we proposed an architecture for par-
allelizing this algorithm. In the last section we discussed the
results of the execution of our parallel algorithm on a sample
dataset and showed the improvement gain when parallelizing
the algorithm.

In our proposed architecture, if one of the cooperators fail
or have a long latency in sending results to the server, the
total calculation will be failed or slowed significantly. For
dealing with this problem, in our future work, we intend to
add replicas to the architecture so that when a cooperator fails
or have a long response latency, one of its replicas does its
job. In fact instead of calculating each part of the adjacency
lists with one cooperator, several replicated cooperators can
do the calculations in parallel and the one which finishes first,
will send the result to the corresponding delegate thread in the
server.

Although we used adjacency lists to compute x and y
vectors, as discussed in the literature, these vectors can be
calculated by finding the eigenvectors of the AAT and AT A
matrices. It is intended to implement this method too and
compare the results to the method discussed in the paper.

108

Fig. 4. An Architecture for Implementing the PHITS Algorithm

REFERENCES

[1] J. Kleinberg, “Authoritative sources in a hyperlinked environment,”
Journal of the ACM, vol. 46, no. 5, pp. 604–632, Sep 1999.

[2] P. Boldi and S. Vigna, “The WebGraph framework I: Compression
techniques,” in Proc. of the Thirteenth International World Wide Web
Conference, Manhattan, USA, 2004, pp. 595–601.

[3] P. Boldi and et al., “The WebGraph framework II: Codes for the
world wide web,” in Data Compression Conference, 2004. Proceedings,
Snowbird, Utah, United States of America, 2004.

[4] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
Addison-Wesley, 1999.

[5] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” in Proc. 7th International WWW Conference, 1998.

[6] S. Chakrabarti, B. Dom, P. Raghavan, and S. Rajagopalan, “Automatic
resource compilation by analyzing hyperlink structure and associated
text,” in WWW7 / Computer Networks, 1998.

[7] Clever Project Home Page. [Online]. Available:
http://www.almaden.ibm.com/cs/k53/clever.html/

[8] B. D. Davison, A. Gerasoulis, K. Kleisouris, Y. Lu, H. ju Seo, WeiWang,
and B. Wu, “Discoweb: Applying link analysis to web search,” in
proceedings of the Eighth International World Wide Web, 2000.

[9] Teoma Search Engine. [Online]. Available: http://www. teoma.com/
[10] The best search engines. [Online]. Available: http://www

.lib.berkeley.edu/TeachingLib/Guides/Internet/SearchEngines .html
[11] Google Search Engine. [Online]. Available: http://www. google.com/
[12] Yahoo Search Engine. [Online]. Available: http://www.

search.yahoo.com/
[13] M. J. C., R. G., and S. F, “Modifications of kleinbergs hits algorithm

using matrix exponentiation and web log records,” in Proc. of SIGIR01,
New Orleans, September 2001, pp. 444–445.

[14] R. Lempel and S. Moran, “Introducing regulated bias into co-citation
ranking schemes on the web,” Proceedings of the American Society for
Information Science and Technology, vol. 39, no. 1, pp. 425–435, May
2002.

[15] A. Ng, A. Zheng, and M. Jordan, “Stable algorithms for link analysis,”
in Proc. 24th Annual Intl. ACM SIGIR Conference, 2001.

[16] S. Nomura, S. Oyama, T. Hayamizu, and T. Ishida, “Analysis and
improvement of hits algorithm for detecting web communities,” in
Systems and Computers in Japan, 2004.

[17] R. Lempel and S. Moran, “Salsa: The stochastic approach for link-
structure analysis,” ACM Transactions on Information Systems, vol. 19,
no. 2, pp. 131–160, 2001.

[18] WebGraph. [Online]. Available: http://webgraph.dsi.unimi.it/
[19] Laboratory for web algorithms. [Online]. Available:

http://law.dsi.unimi.it/

109

AICCSA 2006 Organizing Committee

Honorary Chair:
Sallie V. Sheppard, Former Vice Chancellor, AUS, UAE
General Chair:
Mohsen Guizani, Western Michigan University, Michigan, USA
Program Chair:
Michael A. Langston, University of Tennessee, USA
Local Arrangements Chairs and committee:
Dr. Eesa Bastaki, Dubai Silicon Oasis, UAE
Dr. Abdul-Rahman Al-Ali, AUS, UAE
Joachim Diederich, AUS, UAE
Rana Ahmed, AUS, UAE
Assim Sagahyroon, AUS, UAE
Fadi Aloul, AUS, UAE
Mohamed El Tarhuni, AUS, UAE
Jihad Mohaidat, AUS, UAE
Jalal Kawash, AUS, UAE
Tairk Ozkul, AUS, UAE
Taha Landolsi, AUS, UAE
Ms . Lalitha Murugan, AUS, UAE
Ms. Haifa Ismail, AUS, UAE
Ms. Yara Aji, AUS, UAE
Track Chairs:
Algorithms and Bioinformatics, Mikhail Atallah, Purdue University, USA
Database and Data Mining, Ghassan Qadah, AUS, UAE
Embedded Systems, Abdul-Rahman Al-Ali, AUS, UAE
e-Learning, Imran Zualkernan, AUS, UAE
Multimedia, Jianping Pan, University of Victoria, British Columbia, Canada
Networking and Wireless Technology, Surong Zeng, Motorola, USA
Security and Information Assurance, Marco Marchetti, SMU, USA
Software Engineering and Applications, Kamel Barkaoui, CNAM/CEDRIC, France
VLSI Circuits, Systems Applications and Signal Processing, Mohamed A. Imam,
Dubai Silicon Oasis, UAE
Poster Chair:
Hossam Hassanein, Queen’s University, Canada
Workshop Chairs:
Ashfaq Khoukar, University of Illinois Chicago, USA
Abdullah Ismail, UAEU, UAE
Tutorials & Panels Chairs:
Nidal Nasser, University of Guelph, Canada
Kassem Saleh, AUS, UAE
Registration and Publication Chairs:
Sherif Yehia, Western Michigan University, USA
E. K. Park, U Missouri Kansas City, USA

International Publicity Chairs:
Mohammad Al-Rousan, AUS, UAE
Omar Al-Jarrah, JUST, Jordan
Said Abu Bakr, Western Michigan University, USA
Abdullah Al-Dhelaan, KSA, Saudi Arabia
Karim Djouani, Universite Paris 12, France
Zohra Sbai, ENIT, Tunisia
ACS Steering Committee:
Hany Ammar, West Virginia University, USA
Salim Hariri, University of Arizona, USA (Chair)
Nashat Mansour, Lebanese American University, Lebanon
Albert Zomaya, University of Sydney, Australia
Hesham El-Rewini, SMU, USA

AICCSA 2006 Program Chair’s

Welcome Message

It is a privilege to serve as Program Chair for AICCSA 2006. The scope of this meeting
is truly international. Contributing authors this year hail from the following 48 countries:
Algeria, Australia, Bangladesh, Brazil, Canada, China, Cyprus, Egypt, Finland, France,
Germany, Greece, Hong Kong, Hungary, India, Iran, Iraq, Italy, Japan, Jordan, Korea,
Kuwait, Lebanon, Malaysia, Mexico, Morocco, the Netherlands, Norway, Oman,
Pakistan, Palestine, Portugal, Qatar, Russia, Saudi Arabia, Singapore, Slovenia, South
Africa, Spain, Switzerland, Taiwan, Tehran, Tunisia, Turkey, the UAE, UK, Ukraine, and
the USA.

Papers were solicited in the following technical areas: Algorithms and
Bioinformatics, Database and Data Mining, Embedded Systems, e-Learning, Multimedia,
Networking and Wireless Technology, Security and Information Assurance, Software
Engineering and Applications, and VLSI Circuits, Systems Applications and Signal
Processing. A total of 405 submissions were received. From these, 150 were selected as
regular papers. Another 50 were accepted as short papers. Authors represent a variety of
academic, industrial and governmental organizations. Thanks go to all those who
contributed their work.

Thanks also go to the General Chair, Mohsen Guizani, and to the Track Chairs:
Abdul-Rahman Al-Ali, Mike Atallah, Kamel Barkaoui, Mohamed A Imam, Marco
Marchetti, Jianping Pan, Ghassan Qadah, Surong Zeng and Imran Zualkernan. Their
leadership has been instrumental in making AICCSA 2006 a success. Thanks go as well
to the Program Committee Members and other reviewers who have made it possible to
craft the final slate of high-quality technical papers. It is only through their tireless
efforts that conferences such as this are possible.

Finally, special thanks go to Suzanne Baktash and Bobby Maisnam. Suzanne has
been the consummate Conference Coordinator. Her skill in seamlessly managing diverse
requirements has been indispensable, and has made my job so much easier. Bobby has
been the ideal Conference Webmaster. His technical ability has kept the automated
system responsive to user needs, and ensured that the reviewing machinery has run
smoothly and continuously.

Michael A. Langston
Program Chair, AICCSA 2006
The University of Tennessee, USA
January, 2006

AICCSA 2006, Track and Workshop Program

Committees

TRACKS

Algorithms and Bioinformatics

Chair:
Mike Atallah, Purdue University, USA

TPC Members:
Faisal Abu-Khzam
Tatsuya Akutsu
Jarallah AlGhamdi
Ahmed Belal
Halima Bensmail
Fouad Chedid
Yasser Elsonbaty
Wael Elwasif
Ahmed Fadiel
Michael Fellows
Teofilo Gonzalez
Haidar Harmanani
Malak Kotb

Hon Wai Leong
Ali Mili
Ian Munro
Rolf Niedermeier
Fran Rosamond
Carla Savage
Jay Snoddy
David Swayne
Jan Arne Telle
Etsuji Tomita
Lonnie Welch
Moawia Elfaki Yahia
Si Qing Zheng

Database and Data Mining

Chair:
Ghassan Qadah, AUS, UAE

TPC Members:
Esma Aimeur
Zaher Al Aghbari
Reda Alhajj
Bellaachia Abdelghani
Ahmet Cosar
Margaret H. Dunham
Mohamed El-Sharkawi
Said Elnaffar

Aris Ouksel
Thomas Risse
Yucel Saygin
Pinar Senkul
Ismail Toroslu
Mudasser Wyne
Adnan Yahya

Embedded Systems

Chair: Abdul-Rahman Al-Ali, AUS, UAE

TPC Members:
W. Adi
A. Al-Khalili
Y. Assaf
H. Barada
Nabil Bastaki
M. Jarrah
O. Jarrah
M. Kassas

Jose Valentin Laverde
Z. Lingling
M. Mohandes
T. Ozkul
K. Qaraqe
B. Tilli
H. Yamaguchi

e-Learning

Chair: Imran Zualkernan, AUS, UAE

TPC Members:
Irfan Ahmed
Yacine Atif
Hesham Azmi
Gerassimos Barlas
Linda Hunt
David Ross

Demetrios G. Sampson
Katerina Sinitsa
Erkki Sutinen
Maomi Ueno
Milton Villegas-Lemus

Multimedia

Chair: Jianping Pan, University of Victoria, British Columbia, Canada

TPC Members:
Mostafa Bassiouni
Nihan Cicekli
Le Gruenwald
Sumi Helal
Ryoichi Kawahara
JongWon Kim
Peter Langendoerfer
Mahnhoon Lee
S. Masoud Sadjadi
Andreas Meissner

Emad Mohamed
Jianping Pan
Richard Rabbat
Mona Rizvi
Tamer Shanableh
Agma Traina
Chi Zhang
Honggang Zhang

Networking and Wireless Technology

Chair: Surong Zeng, Motorola, USA

TPC Members:
Ozgur B. Akan
Najib Badache
Abdelfettah Belghuith
Jalel Ben-Othman
Xiaodong Cai
Periklis Chatzimisios
Feihong Chen
Gang Cheng
Karim Djouani
Guangbin Fan
Meimei Gao
Nan Guo
Bin He
Jiongkuan Hou
Zhigang Jing
Jalal Y Kawash
Chengzhou Li
Qun Li

Wei Lou
Wenjing Lou
Haiyun Luo
Wenchao Ma
Daniela Maniezzo
Sebnem Ozer
Antonio Pescapè
Bo Sun
Mizhou Tan
Ying Tang
Haobo Wang
Sheng Xu
Jie Yang
Xi Yang
Jian Ye
Jun Yin
Zheng Zhang

Security and Information Assurance

 Chair: Marco Marchetti, SMU, USA

TPC Members:

Piyush Agarwal
Bill Bolick
Ebru Celikel
Eric Cole
Taz Daughtrey
Hesham El-Sayed
Stacey Elliott
Satoshi Fushimi
Mike Harper
Rhonda Henning
John Hopkinson
Brad Jensen
Khaled Mahmud
F. Marco Marchetti
Gerald M. Masson
Tommy Morris
Padmaraj Nair
Suku Nair

Saeed Abu Nimeh
Michael Panczenko
Krish Pillai
Eddy Smith
Dalia Soliman
Mayank Trivedi
Philip Tucker
Peter Wells

Software Engineering and Applications

Chair:
 Kamel Barkaoui, CNAM/CEDRIC, France

TPC members:
Hassane Alla
Ali Abdallah
Gul Agha
Mehmet Aksit
Rahma Ben Ayed
Mohamed Bettaz
Manfred Broy
Dalila Chaidmi
Christine Choppy
José-Manuel Colom
Jean Michel Couvreur
Narayan Debnath
Jorg Desel
Khalil Drira
Khaled El-Fakih
Amal El Fallah Seghrouchni
Jean-Marc Farinone
Serge Haddad
Mohamed Jmaïel

Guy Juanole
Fabrice Kordon
Nashat Mansour
Ali Mili
Fatma Mili
Roland Mittermeir
Mohamed Mosbah
Ahmed Nacer
Elisabeth Pelz
Stacy Prowell
Mike Reed
Riadh Robbana
Zaïdi Sahnoun
Toufik Taibi
Jim Woodcock
Dmitry Zaitsev

VLSI Circuits, Systems Applications and Signal Processing

Chair:
Mohamed A. Imam, Dubai Silicon Oasis, UAE
TPC Members:
Hasan Al-Nashash
Mahmoud Al-Qutayri
Rami Al-Zanoon
Ali Assi
Karen Bartleson
Mohamed Khalil Bin Hani
Adnan Harb
Deuk Heo

Kahtan Mezher
Jihad Mohaidat
Novat Nintunze
Mohammed Osman
Ashraf Osman
Assim Sagahyroon
Bassel Soudan

Adeel Sultan
Osama il Yassin

WORKSHOPS

International Workshop on Databases for Mobile Communications
System

Co-chairs:
Shakil Akhtar, UAE University, UAE
Mudasser F. Wyne, University of Michigan-Flint, USA

Workshop on Ad hoc and sensor networks

Co-Chairs:
Walaa Hamouda, Concordia University, Montreal, Canada
Amr Youssef, Concordia University, Montreal, Canada

International Workshop on Pervasive Computing Systems &
Application

Co-chairs:
Sheikh Iqbal Ahamed, Marquette University, USA
Mohammad Zulkernine, Queens University, Kingston, Canada

 TPC Members:
Umesh Bellur, IIT Bombay, India
Anwar Haque, Bell Canada
Gour Karmakar, Monash University, Australia
Mujtaba Khambatti, Microsoft Corporation, USA
Gopi Kolli, Intel Corporation, USA
Kiran Mudiam, Motorola Corporation, USA
Nanjangud C Narendra, IBM Corporation , India
Miroslav Velev, Reservoir Labs, USA
Wang Yu, Auburn University, USA

The 5th International Workshop on Software Stability: Methodologies,

Applications and Tools

Co-chairs:
Mohamed E. Fayad, San José State University, USA
Imran A. Zualkernan, American University of Sharjah, UAE
Haitham S. Hamza, University of Nebraska-Lincoln, USA

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print
	org_committee.pdf
	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	program_chair.pdf
	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	track_committee.pdf
	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print
	--
	Tracks
	Algorithms and Bioinformatics
	Database and Data Mining
	Embedded Systems
	e-Learning
	Multimedia
	Networking and Wireless Technology
	Security and Information Assurance
	Software Engineering and Applications
	VLSI Circuits, Systems Applications and Signal Processing

	Workshops
	International Workshop on Databases for Mobile Communications System
	Workshop on Ad hoc and sensor networks
	International Workshop on Pervasive Computing Systems & Application
	The 5th International Workshop on Software Stability: Methodologies, Applications and Tools

	Search:

