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NULL CONTROLLABILITY OF DEGENERATE/SINGULAR

PARABOLIC EQUATIONS

M. FOTOUHI and L. SALIMI

Abstract. The purpose of this paper is to provide a full analy-

sis of the null controllability problem for the one dimensional de-

generate/singular parabolic equation ut − (a(x)ux)x −
λ

xβ
u = 0,

(t, x) ∈ (0, T ) × (0, 1), where the diffusion coefficient a(·) is degen-
erate at x = 0. Also the boundary conditions are considered to be
Dirichlet or Neumann type related to the degeneracy rate of a(·).
Under some conditions on the function a(·) and parameters β, λ, we
prove global Carleman estimates. The proof is based on an improved
Hardy-type inequality.

1. Introduction

In the recent years, the study of the controllability for parabolic equa-
tions has become an active research area. After the pioneering works
[9, 12, 13, 17, 18], there has been substantial progress in understanding the
controllability properties of parabolic equations with variable coefficients.
In particular, the null controllability for the following class of nondegenerate
and nonsingular parabolic operators is well-known:

Pu = ut − (a(x)ux)x, x ∈ (0, 1),

where the coefficient a(x) is a positive continuous function on [0, 1].
On the contrary, when the coefficient a(x) is zero at some points, the

equation will be degenerate and few results are known in this case, even
though many problems that are relevant for applications are described by
parabolic equations degenerating at the boundary of the space domain. For
instance, in [2,6,7,16], the reader will find a motivating example of a Crocco-
type equation coming from the study of the velocity field of a laminar flow
on a flat plate. In [5, 15], where the degenerate/nonsingular model

Pu = ut − (a(x)ux)x, x ∈ (0, 1), (1)
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is considered, observability results for the adjoint problem are obtained
using Carleman estimates. Then the null controllability of (1) on [0, 1] is
derived by some standard arguments. Also, in [4] the null controllability on
[0, 1] of the semilinear degenerate parabolic equation

Pu = ut − (a(x)ux)x + f(t, x, u), x ∈ (0, 1),

is studied, where f is locally Lipschitz with respect to u.
Now, consider N ≥ 3 and let Ω ⊂ RN be a bounded open set with the

boundary Γ, of class C2 such that 0 ∈ Ω. The heat equation perturbed by
a singular inverse-square potential, namely

Pu = ut −∆u+
λ

|x|2
u, x ∈ Ω,

arised in quantum mechanics and combustion theory. When λ ≤ (N −
2)2/4, it is proved in [20] that the equation can be controlled to zero with
a distributed control which surrounds the singularity. Next, it is shown
in [10] that this geometric assumption is not necessary, and one can control
the equation from any open subset as for the heat equation. But in the case
λ > (N−2)2/4, there exists a sequence of regularized potentials λ/(|x|2+ε2)
such that one cannot stabilize the corresponding systems uniformly with
respect to ε > 0. Furthermore, Vancostenoble and Zuazua in [20] showed
that in dimension N = 1, the following singular operator is null controllable
for λ ≤ 1/4, m ∈ R and 0 ≤ β < 2,

Pu = ut − uxx +
λ

|x|2
u+

m

xβ
u, x ∈ (0, 1).

Also, new Carleman estimates (and consequently null controllability prop-
erty) were established in [19] for the one dimensional degenerate/singular
operator

Pu = ut − (xαux)x −
λ

xβ
u, x ∈ (0, 1),

with suitable boundary conditions and under the following assumptions α ∈ [0, 2), 0 < β < 2− α, λ ∈ R,

α ∈ [0, 2) \ {1}, β = 2− α, λ ≤ (1− α)2

4
.

Also, it has been proved that the null controllability is false when α ≥ 2, [7].
In this paper, we study the following one dimensional operator that cou-

ples a degenerate diffusion coefficient with a singular potential:

Pu = ut − (a(x)ux)x −
λ

xβ
u, x ∈ (0, 1). (2)

Under suitable condition on a, β and λ, we prove the null controllability for
the operator (2) which completes the results of [4] and [19].
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The paper is organized as follows. Section 2 is devoted to discussing
the assumptions on the coefficient degeneracy a(·) and the parameters β, λ.
Then we state functional setting and well-posedness in Section 3. In Section
4, we state main results, especially Carleman estimates and its applications
to observability and controllability. In Section 5, we study the improved
Hardy inequality which is necessary in the proofs of well-posedness, Carle-
man estimates and observability results. Finally Section 6 is devoted to the
proofs.

2. Assumptions and statement of the problem

2.1. Hypothesis on the degeneracy coefficient. In order to study the
controllability of operator (2), we let some assumption on the degenerate
diffusion coefficient a(x) in the following way.

Hypothesis 1. We suppose that the degeneracy coefficient a(·) satisfies
the following conditions:

(i) a ∈ C([0, 1]) ∩ C1((0, 1]), a(x) > 0 in (0, 1] and a(0) = 0.

(ii) ∃ α ∈ (0, 2) such that xa′(x) ≤ αa(x) for every x ∈ [0, 1].

(iii) If α ∈ [1, 2), there exist m > 0 and δ0 > 0 such that for every x ∈
[0, δ0], we have

a(x) ≥ m sup
0≤y≤x

a(y).

First of all, notice that every function which is nondecreasing near x = 0,
satisfies in condition (iii) for m = 1. Thus Hypothesis 1 is weaker than the
conditions of the coefficient a(·) stated in the paper [4],

Ifα ∈ (1, 2), ∃ θ ∈ (1, α]

such thatx 7→ a(x)

xθ
is nondecreasing nearx = 0,

Ifα = 1, ∃ θ ∈ (0, 1)

such thatx 7→ a(x)

xθ
is nondecreasing nearx = 0.

(3)

In fact, the condition (3) will imply that the coefficient a(x) is nonde-
cresing near x = 0. As stated in [4], in the case α ∈ (1, 2), a sufficient
condition to prove the controllability of the equation ut − (a(x)ux)x = fχω
is that the degeneracy coefficient a(x) satisfies conditions (i) and (ii) of
Hypothesis 1 as well as the Hardy type inequality holds, i.e. there exists
C > 0 such that for any locally absolutely continuous function u on (0, 1]
which

u(1) = 0,

∫ 1

0

a(x)|u′(x)|2dx <∞,



576 M. FOTOUHI and L. SALIMI

we should have ∫ 1

0

a(x)

x2
u2(x)dx ≤ C

∫ 1

0

a(x)|u′(x)|2dx. (4)

In fact, we replace the condition (iii) of Hypothesis 1 instead of Hardy
inequality, however they are not equivalent. The following example shows
us a degenerate coefficient a(x) which satisfies Hypothesis 1, but the Hardy
inequality does not hold for that. We use the following proposition in this
example which was proved in [4].

Proposition 2. Let a, b : [0, 1] → R be in C([0, 1]) ∩ C1((0, 1]), a(0) =
b(0) = 0, a > 0 and b > 0 on (0, 1]. Moreover, assume that there exist two
positive constants c1 and c2 such that

c1b ≤ a ≤ c2b,

in a neighborhood of zero. Then Hardy inequality (4) holds for the function
a(·) if and only if it holds for b(·).

Example 3. Consider a(x) = xe(α−1)x for some α ∈ (1, 2), we will have

xa′(x)

a(x)
= 1 + (α− 1)x ≤ 1 + (α− 1) = α,

for every x ∈ [0, 1]. This type of function satisfies the conditions of Hypoth-
esis 1, but the condition (3) or Hardy inequality does not hold. At first, we

notice that there exists no θ ∈ (1, α] such that the function a∗(x) =
a(x)

xθ
is

increasing near x = 0, because for every θ > 1,

a′∗(x) =
e(α−1)x[1− θ + (α− 1)x]

xθ
,

which is negative near x = 0. Furthermore, if Hardy inequality holds for
a(·), according to Proposition 2 we conclude that Hardy inequality should
hold for the function b(x) = x, because of equivalency c1b(x) ≤ a(x) ≤
c2b(x) on the interval x ∈ [0, 1] for suitable positive constants c1 and c2.
But by substituting the functions u(x) = xr(1− x) in the Hardy inequality
(4) for b(x) = x and let r → 0+, we imply that the inequality can’t hold.
So, by the method used in [4] one can not prove the controllability of the
related equation to a(x) = xe(α−1)x. On the other hand a(·) satisfies the
condition (iii) of Hypothesis 1 because of its increasing property.

Now we state a lemma which is useful along the paper. This shows
1

a
∈ L1(0, 1) in the case of α ∈ (0, 1), and

1√
a
∈ L1(0, 1) for α ∈ [1, 2).

Note that if
1√
a
/∈ L1(0, 1), then the null controllability of (2) fails, see [7].
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Lemma 4. Let a(·) satisfies the Hypothesis 1, then the integral

∫ 1

0

dx

a(x)

is finite for α ∈ (0, 1) and

∫ 1

0

dx√
a(x)

is finite for α ∈ [1, 2).

Remark 5. For α ∈ (1, 2), the integral

∫ 1

0

1

a(x)
dx might be finite or

infinite, for example consider the functions a(x) = xre(α−r)x where r ≤ α.

2.2. Assumptions on the singular potential. First note that when α ≥
2, the null controllability might be false. For example consider a(x) = xα

for α ≥ 2. In this case the necessary condition for null controllability which

was proved in [7] does not hold, i.e.
1√
a(x)

does not belong to L1(0, 1). On

the other hand, since α = 1 is a peculiar case in the following “Hardy type”
inequality (which is proved in Lemma 18),∫ 1

0

a(x)u2xdx ≥ λ∗(a, α)

∫ 1

0

u2

x2−α
dx, (5)

this special case is considered separately. Also if α = 0, then the nonnegative
function a(·) is decreasing on [0, 1], therefore a(x) = 0 for every x, which is
impossible since a > 0 in (0, 1]. Now we assume that

α ∈ (0, 2) \ {1}.
For a given singular potential, Cabré and Martel in [3] proved that existence
versus blow-up of positive solutions is connected to the existence of some
Hardy inequality involving the considered potential, like as the following:∫ 1

0

a(x)u2xdx ≥ λ
∫ 1

0

u2

xβ
dx. (6)

Therefore, the inequality (5) implies that the critical exponent could be
β = 2−α, so we assume that β ≤ 2−α. Here, we show well-posedness and
controllability of (2) for{

α ∈ (0, 2), 0 < β < 2− α, λ ∈ R,
α ∈ (0, 2) \ {1}, β = 2− α, λ < λ∗(a, α),

(7)

where λ∗(a, α) is the optimal constant in “Hardy type” inequality (5).

When α = 1, the fact that
√
a(x)ux ∈ L2(0, 1) does not imply that

u/
√
x belongs to L2(0, 1), because λ∗ may be equal to zero. So the case

β = 2− α = 1 is now forbidden. However, we have the following improved
version of the preceding “Hardy type” inequality which is valid for all values
n > 0, γ < 2− α and some positive constant C0 = C0(a, α, γ, n) > 0. (See
Theorem 21) ∫ 1

0

a(x)u2xdx+ C0

∫ 1

0

u2dx ≥ n
∫ 1

0

u2

xγ
dx.
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Applying the above inequality for γ = β, from the fact
√
a(x)ux ∈ L2(0, 1)

one can imply
u

xβ/2
∈ L2(0, 1) for all β < 2 − α. Thus, in this case we

assume
0 < β < 2− α = 1,

and no condition on λ is necessary.

2.3. Statement of the problem. Consider the operator

Au := (a(x)ux)x +
λ

xβ
u (8)

where the coefficient a(·) satisfies Hypothesis 1. As mentioned in the last
subsection, we will study the operator A under one of the two assumptions
(7). Now let ω be a nonempty subinterval of (0, 1) and consider the following
initial-boundary value problem in the domain QT = (0, T )× (0, 1).

ut −Au = hχω, (t, x) ∈ QT ,
u(t, 0) = u(t, 1) = 0, in the case α ∈ (0, 1), t ∈ (0, T ),
(a(x)ux)(t, 0) = u(t, 1) = 0, in the case α ∈ [1, 2), t ∈ (0, T ),
u(0, x) = u0(x), x ∈ (0, 1),

(9)

where the initial condition u0 is given in L2(0, 1) and h ∈ L2(QT ). De-
pending on the value of α, we choose some natural boundary conditions.
The problem is considered in appropriate weighted spaces which will be de-
scribed in the next section. We will see that in these spaces, the Dirichlet
boundary condition makes sense when α ∈ (0, 1). (See Lemma 7). But for
α ≥ 1, the trace at x = 0 does not make sense anymore, so we choose some
suitable Neumann boundary condition in this case. (Lemma 10).

We are interested in the null controllability of (9) in time T > 0 with a
distributed control supported in ω, i.e. for all u0 ∈ L2(0, 1), does there exist
h ∈ L2(QT ) such that u(T, x) = 0 for every x ∈ [0, 1]? In this purpose, we
drive Carleman estimates for operator A in Section 4. But before going any
further, we describe in the following section the functional setting in which
problem (9) is well-posed.

3. Functional setting and well-posedness

In order to investigate the well-posedness of equation (9), the unbounded
operator A : D(A) ⊂ L2(0, 1) → L2(0, 1) has to be studied in appropriate
weighted spaces whose definitions depend on the values of α. Indeed a
natural functional setting involves the space

H1
a(0, 1) := {u ∈ L2(0, 1) ∩H1

loc((0, 1]) :

∫ 1

0

a(x)u2xdx <∞},

which is a Hilbert space for the scalar product

∀u, v ∈ H1
a(0, 1), (u, v)H1

a
=

∫ 1

0

uv + a(x)uxvxdx.
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The elements of H1
a(0, 1) are characterized by the following property.

Lemma 6. For α ∈ (0, 2) and every u ∈ H1
a(0, 1), we have limx→0 xu

2 =
0 and limx→0 xu = 0.

Let us mention that for the well-posedness of boundary conditions in
problem (9), we need to define the trace of u at boundary points x = 0
and x = 1 for any u ∈ H1

a(0, 1). The trace at x = 1 obviously makes sense
which allows to consider the Dirichlet boundary condition at this point.
(Note that the function u ∈ H1

a(0, 1) belongs to the Sobolev space W 1,2 in
a neighborhood of x = 1). On the other hand, if α < 1, the trace of u at
x = 0 is meaningful because of the following lemma.

Lemma 7. If a(·) satisfies Hypothesis 1 and α ∈ (0, 1), then for every
u ∈ H1

a(0, 1) we have u ∈ W 1,1(0, 1) = {u ∈ L1(0, 1) : ux ∈ L1(0, 1)} and
so u(0) is meaningful.

Thus we could introduce the following space H1
a,0(0, 1) depending on the

values of α:

Definition 8. (i) For α ∈ (0, 1), we define

H1
a,0(0, 1) := {u ∈ H1

a(0, 1) : u(0) = u(1) = 0},
(ii) For α ∈ [1, 2), we let

H1
a,0(0, 1) := {u ∈ H1

a(0, 1) : u(1) = 0}.

There exists an important density result for the elements of H1
a,0.

Proposition 9. (i) For α ∈ (0, 1), the space C∞c (0, 1) is dense in
H1
a,0(0, 1).

(ii) In the case α ∈ [1, 2), the subset of C∞([0, 1]) which vanishes at x = 1
is dense in H1

a,0(0, 1).

Before going to define D(A) we state the following lemma which results
that the boundary condition makes sense in the case α ∈ [1, 2).

Lemma 10. Assume that α ∈ [1, 2) and the condition (7) holds. Then

for all u ∈ H1
a(0, 1) such that (aux)x +

λ

xβ
u ∈ L2(0, 1), we have aux ∈

W 1,1(0, 1).

Definition 11. (i) For α ∈ (0, 1), we define

D(A) := {u ∈ H1
a,0(0, 1) ∩H2

loc((0, 1]) : (aux)x +
λ

xβ
u ∈ L2(0, 1)},

(ii) For α ∈ [1, 2), we change the definition of D(A) in the following way

D(A) := {u ∈ H1
a,0(0, 1) ∩H2

loc((0, 1]) : (aux)x+

λ

xβ
u ∈ L2(0, 1), (aux)(0) = 0}.
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Thus, in the case α ∈ (0, 1), if u ∈ D(A), then u satisfies the Dirichlet
boundary conditions u(0) = u(1) = 0 and in the case α ∈ [1, 2), every
u ∈ D(A) satisfies the Neumann boundary condition (aux)(0) = 0 and the
Dirichlet boundary condition u(1) = 0.

For the well-posedness of (9), it suffices to show that for suitable k ≥ 0
the operator −(A− kI) is self-adjoint and positive.

Proposition 12. Assume that the condition (7) holds, then there exists
a constant k ≥ 0 such that the operator (−(A− kI), D(A)) is a self-adjoint
and positive operator.

Remark 13. As one can see in the proof of Proposition 12, the bilinear
form associated to −(A− kI) is coercive in H1

a,0(0, 1).

Consequently, we have the following well-posedness result (see e.g. [8]).

Theorem 14. Assume that the condition (7) holds and consider the
problem (9) with h ≡ 0. Then, for all initial condition u0 ∈ L2(0, 1), the
problem (9) has a unique solution

u ∈ C0([0, T ], L2(0, 1)) ∩ C0((0, T ], D(A)) ∩ C1((0, T ], L2(0, 1)). (10)

Moreover, if u0 ∈ D(A), then

u ∈ C0([0, T ], D(A)) ∩ C1([0, T ], L2(0, 1)). (11)

In addition, the inhomogeneous problem (9) with h ∈ L2(QT ), has a unique
solution u ∈ C0([0, T ], L2(0, 1)) for all initial condition u0 ∈ L2(0, 1).

4. Carleman estimates and Applications to controllability

As it is well-known, in order to get controllability results, we need to
derive some observability inequalities for the adjoint problem

vt + (a(x)vx)x +
λ

xβ
v = 0, (t, x) ∈ QT ,

v(t, 1) = 0, t ∈ (0, T ),
v(t, 0) = 0, in the case α ∈ (0, 1), t ∈ (0, T ),
(avx)(t, 0) = 0, in the case α ∈ [1, 2), t ∈ (0, T ),
v(T, x) = vT (x), x ∈ (0, 1).

(12)

More precisely, we need to prove the following inequality.

Proposition 15. Assume that the coefficient a(·) satisfies Hypothesis 1,
let T > 0 be given and ω be a nonempty subinterval of (0, 1). Then there
exists a positive constant C = C(T, a, α, λ) such that the following observ-
ability inequality is valid for every solution v of (12),∫ 1

0

v2(0, x)dx ≤ C
∫ T

0

∫
ω

v2(t, x)dxdt. (13)

Now, by standard arguments, a null controllability result follows.
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Theorem 16. Assume that (7) holds. Let T > 0 be given, and let ω be
a nonempty subinterval of (0, 1). Then, for all u0 ∈ L2(0, 1), there exists
h ∈ L2((0, T )× ω) such that the solution of (9) satisfies u(T ) ≡ 0 in (0, 1).
Furthermore, we have the estimate

‖h‖L2((0,T )×ω) ≤ C ′‖u0‖L2(0,1),

for some C ′ = C ′(T, a, α, λ) > 0.

Here, we summarisely explain how one can deduce null controllability
from observability. For the complete proof, one can see [11] and [14].

Let us fix T > 0 and u0 ∈ L2(0, 1). We consider for any ε > 0, the
functional vT 7→ Jε(vT ) on L2(0, 1):

Jε(vT ) =
1

2

[∫ T

0

∫
ω

v2(t, x)dxdt

]2
+ ε‖vT ‖L2(0,1) +

∫ 1

0

v(0, x)u0(x)dx,

where v is the corresponding solution of (12). One can see that vT 7→ Jε(vT )
is a continuous and strictly convex function on L2(0, 1). Moreover, Jε is
coercive and achieves its minimum at a unique function v̂ε. From v̂ε, one
can construct a control hε such that

‖uε(T, ·)‖L2(0,1) ≤ ε,

for uε be the corresponding solution of (9). Now, by observaility inequality
(13), we obtain

‖hε‖L2((0,T )×ω) ≤ C‖u0‖L2(0,1).

Therefore, by extracting an appropriate subsequence, we get

hε → h weakly-* in L2((0, T )× ω).

Since it is for all ε > 0, we deduce that h is such that the correspondin
solution u of (9) satisfies u(T ) ≡ 0.

For the proof of the observability inequality (13), we need Carleman
estimates for the degenerate and singular problems

vt + (a(x)vx)x +
λ

xβ
v − rv = h, (t, x) ∈ QT ,

v(t, 1) = 0, t ∈ (0, T ),
v(t, 0) = 0, in the case α ∈ (0, 1), t ∈ (0, T ),
(avx)(t, 0) = 0, in the case α ∈ [1, 2), t ∈ (0, T ),
v(T, x) = vT (x), x ∈ (0, 1),

(14)
where r is a nonnegative fixed constant. To define this estimates, consider
0 < γ < 2− α and σ(t, x) := θ(t)p(x) where

θ(t) :=
1

[t(T − t)]k
, k := 1 +

2

γ
> 1, (15)
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p(x) :=
c1

2− α

(∫ x

0

y

a(y)
dy − c2

)
. (16)

Observe that there exists some c > 0 such that for all t ∈ (0, T )

|θt(t)| ≤ cθ1+
1
k (t), |θtt(t)| ≤ cθ1+

2
k (t). (17)

For the moment we assume c1 > 0 and c2 >
1

a(1)(2− α)
, so that p(x) < 0

for all x ∈ [0, 1]. As we shall see, a nice choice is c1 = 3, and the following
theorem is valid.

Theorem 17. Assume that the function a(·) satisfies Hypothesis 1 and
let T > 0. In the case α ∈ (0, 2), β < 2 − α and λ ∈ R, for every γ <
2 − α there exists R0 = R0(a, α, γ, λ) > 0 such that for all R ≥ R0 and all
solutions v of (14), we have

R3

(2− α)2

∫ T

0

∫ 1

0

θ3+
x2

a(x)
v2e2Rσ(t,x)dxdt+R

∫ T

0

∫ 1

0

θa(x)v2xe
2Rσ(t,x)dxdt

+
a(1)(1− α)2

4
R

∫ T

0

∫ 1

0

θ
v2

x2−α
e2Rσ(t,x)dxdt

+R

∫ T

0

∫ 1

0

θ
v2

xγ
e2Rσ(t,x)dxdt

≤ 1

2

∫ T

0

∫ 1

0

|h|2e2Rσ(t,x)dxdt

+
3Ra(1)

2− α

∫ T

0

θ(t)v2x(t, 1)e2Rσ(t,1)dt. (18)

Also, in the case α ∈ (0, 2) \ {1}, β = 2 − α and λ < λ∗(a, α), for every
γ < 2− α there exists a constant R0 = R0(a, α, γ, λ) > 0 such that, for all
R ≥ R0 and all solutions v of (14), we have

R3

(2− α)2

∫ T

0

∫ 1

0

θ3
x2

a(x)
v2e2Rσ(t,x)dxdt+

RC

2

∫ T

0

∫ 1

0

θ(a(x)v2x

− λ v2

x2−α
)e2Rσ(t,x)dxdt+R

∫ T

0

∫ 1

0

θ
v2

xγ
e2Rσ(t,x)dxdt

≤ 1

2

∫ T

0

∫ 1

0

|h|2e2Rσ(t,x)dxdt

+
3Ra(1)

2− α

∫ T

0

θ(t)v2x(t, 1)e2Rσ(t,1)dt, (19)

where C = min

{
1,
λ∗ − λ
|λ|

}
.
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5. Hardy-Type inequalities

For the proof of Proposition 12, we need to use some “Hardy-type” in-
equalities. One of them is the following.

Lemma 18. Let α ∈ (0, 2). There exists an optimal constant λ∗(a, α)
such that for every u ∈ H1

a,0(0, 1), we have∫ 1

0

a(x)u2xdx ≥ λ∗(a, α)

∫ 1

0

u2

x2−α
dx. (20)

In fact, one has λ∗(a, α) ≥ a(1)(1−α)2/4. Therefore λ∗(a, α) > 0 for every
α ∈ (0, 2) \ {1}, but λ∗(a, 1) might be equal to zero.

Remark 19. Observe that in the case α = 1, the inequality (20) doesn’t

take any estimate for

∫ 1

0

u2

x
dx. However, in a similar way one can prove a

“weaker” Hardy inequality in this case:∫ 1

0

a(x)u2xdx ≥
a(1)

4

∫ 1

0

u2

x(lnx)2
dx, (21)

for every u ∈ H1
a,0(0, 1).

Remark 20. For α ∈ (0, 2), by (20) and (21) we have∫ 1

0

a(x)u2xdx ≥ C
∫ 1

0

u2dx, ∀u ∈ H1
a,0(0, 1).

Then we can consider the new equivalent norm ‖u‖H1
a,0(0,1)

:=(∫ 1

0
a(x)u2xdx

) 1
2

on H1
a,0(0, 1).

Another useful inequality to achieve the desired result is the following
improved Hardy inequality.

Theorem 21. Suppose that the function a(·) satisfies Hypothesis 1 and
let λ < λ∗(a, α) be given. Then for all n > 0 and γ < 2−α, there exists some
positive constant C0 = C0(a, α, λ, γ, n) > 0 such that, for all u ∈ H1

a,0(0, 1),
the following inequality holds:∫ 1

0

a(x)u2xdx+ C0

∫ 1

0

u2dx ≥ λ
∫ 1

0

u2

x2−α
dx+ n

∫ 1

0

u2

xγ
dx. (22)

Proof. For the simplest example of the function a(·), namely xα, Van-
costenoble in [19] proved that if α ∈ [0, 2), then for all n > 0 and γ < 2−α
there exists some positive constant C ′0 = C ′0(α, γ, n) > 0 such that, for all
u ∈ C∞c (0, 1), the following inequality holds:∫ 1

0

xαu2xdx+ C ′0

∫ 1

0

u2dx ≥ (1− α)2

4

∫ 1

0

u2

x2−α
dx+ n

∫ 1

0

u2

xγ
dx. (23)
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Also C ′0(α, γ, n) is explicitly given by

C ′0(α, γ, n) = (n+ 1)
2−α+γ
2−α−γ

2− α− γ
2− α+ γ

(
4γ

(2− α)2 − γ2

) 2γ
2−α−γ

.

Now, considering Proposition 9, we imply that the inequality (23) is true
for every u ∈ H1

a,0(0, 1) in the case α ∈ (0, 1). For α ∈ [1, 2), we can
prove the inequality (23) for every u ∈ C∞([0, 1]) such that u(1) = 0, by
the similar method used in [19]. Thus the inequality will be true for every
u ∈ H1

a,0(0, 1) and α ∈ (0, 2). On the other hand for every x ∈ [0, 1], we
have a(x) ≥ a(1)xα, so for all n > 0 and γ < 2 − α, there exists some
positive constant C0 = C0(a, α, γ, n) > 0 such that for all u ∈ H1

a,0(0, 1),
the following inequality holds.∫ 1

0

a(x)u2xdx+C0

∫ 1

0

u2dx ≥ a(1)(1− α)2

4

∫ 1

0

u2

x2−α
dx+n

∫ 1

0

u2

xγ
dx. (24)

In fact, C0 = a(1)C ′0(α, γ,
n

a(1)
). Now, suppose that improved Hardy (22) is

true for some µ ≤ λ∗ = λ∗(a, α), i.e. for all n > 0 and γ < 2−α there exists
some positive constant C0 = C0(a, α, γ, n) such that, for all u ∈ H1

a,0(0, 1),∫ 1

0

a(x)u2xdx+ C0

∫ 1

0

u2dx ≥ µ
∫ 1

0

u2

x2−α
dx+ n

∫ 1

0

u2

xγ
dx.

By summation with (20), we obtain∫ 1

0

a(x)u2xdx+
C0

2

∫ 1

0

u2dx ≥ λ∗ + µ

2

∫ 1

0

u2

x2−α
dx+

n

2

∫ 1

0

u2

xγ
dx.

Therefore, if improved Hardy (22) is true for µ, then it is also true for
λ∗ + µ

2
. Now, if we define the sequence {µk} with

µ0 =
a(1)(1− α)2

4
, µk+1 =

λ∗ + µk
2

,

then the improved Hardy inequality is true for every λ < λ∗ = limk→∞ µk.

Remark 22. Clearly, if λ∗ = a(1)(1−α)2/4, Improved Hardy (22) is true
for λ∗. But if λ∗ > a(1)(1− α)2/4, the above proof doesn’t work for λ∗ in
the general case. In fact the constant coefficient C0 in the inequality tends
to infinity in the limit case µk → λ∗. If we let Ck0 = Ck0 (a, α, γ, n) the
constant value in the Improved Hardy (22) for µk, we have

C0
0 (a, α, γ, n) = a(1)C ′0

(
α, γ,

n

a(1)

)
,

Ck+1
0 (a, α, γ, n) =

1

2
Ck0 (a, α, γ, 2n) .
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So, for γ > 0, we obtain

Ck0 (a, α, γ, n) =
1

2k
C0

0

(
a, α, γ, 2kn

)
→∞.

Therefore one can not deduce Improved Hardy for λ∗ in such cases with the
same method used for λ < λ∗.

6. Proofs

6.1. Proof of Lemmas 4, 6, 7 and 10.

Proof of Lemma 4. Since xa′(x) ≤ αa(x) for every x, the function x 7→
a(x)

xα
is decreasing on (0, 1), so a(x) ≥ a(1)xα and for α < 1∫ 1

0

dx

a(x)
≤
∫ 1

0

dx

a(1)xα
< +∞.

Proof of Lemma 6. At first, we show that xu2 ∈W 1,1. It is obvious that
xu2 ∈ L1(0, 1) for every u ∈ H1

a(0, 1). On the other hand

(xu2)x = u2 + 2xuux,

xuux =

(
x√
a(x)

u

)(√
a(x)ux

)
,

and by Hypothesis 1 one can easily see that the function x 7→ x2

a(x)
is

increasing, so

x√
a(x)

≤ 1√
a(1)

⇒ x√
a(x)

u ∈ L2(0, 1)⇒ xuux ∈ L1(0, 1).

Hence xu2 ∈W 1,1(0, 1) and it follows that xu2 → L ≥ 0 as x→ 0. If L > 0,
then one could have

u ∼x→0+

√
L

x
/∈ L2(0, 1),

thus L = 0. Similarly one can see that limx→0 xu = 0.

Proof of Lemma 7. For any u ∈ H1
a(0, 1) we have u ∈ L2(0, 1), so

u ∈ L1(0, 1). We show that ux ∈ L1(0, 1).∫ 1

0

|ux|dx =

∫ 1

0

|
√
a(x)ux

1√
a(x)
|dx ≤

(∫ 1

0

1

a(x)
dx ·

∫ 1

0

a(x)u2xdx

) 1
2

,

But by Lemma 4 the integral

∫ 1

0

1

a(x)
dx is finite, so ux ∈ L1(0, 1).

Now, consider a sequence {un} of smooth functions which converge to u
in W 1,1(0, 1) and let χ be a smooth cut-off function such that χ|[0, 12 ] ≡ 1
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and χ vanishes in some neighbourhood of 1. Then one has χun → χu in
W 1,1. On the other hand for every x, we have

χun(x) = −
∫ 1

x

(χun)x(t)dt,

which means that the limx→0 χun(x) exists, thus limx→0 un(x) exists and
we define u(0) to be equal to this value.

Proof of Lemma 10. Let us denote w = a(x)ux and choose M > 0, such
that a(x) ≤M for every x ∈ [0, 1]. One has∫ 1

0

|w|dx =

∫ 1

0

|a(x)ux|dx ≤

√∫ 1

0

a(x)2u2xdx ≤

√
M

∫ 1

0

a(x)u2xdx < +∞,

since u ∈ H1
a(0, 1). Next we write∫ 1

0

|wx|dx =

∫ 1

0

|(a(x)ux)x|dx ≤
∫ 1

0

|(a(x)ux)x +
λ

xβ
u|dx+

∫ 1

0

| λ
xβ
u|dx

≤

√∫ 1

0

|(a(x)ux)x +
λ

xβ
u|2dx+ |λ|

∫ 1

0

|u|
xβ
dx.

The first integral in the right hand side of the latter inequality is finite since
(a(x)ux)x + λu/xβ ∈ L2(0, 1). Furthermore we have∫ 1

0

|u|
xβ
dx =

∫ 1

0

1

xβ/2
|u|
xβ/2

dx ≤

√∫ 1

0

1

xβ

∫ 1

0

u2

xβ
dx.

Note that β < 1 since 1 ≤ α < 2, thus the first integral in the right hand side
is finite. Also the second one is finite by (22) using the fact that β ≤ 2− α
for α ∈ (1, 2) and β < 2− α for α = 1.

6.2. Proof of Proposition 9 and Lemma 18. We first state the following
lemma which will be useful for the proof of Proposition 9. For the proof
see [4].

Lemma 23. Suppose that α ∈ (0, 1), then for every u ∈ H1
a(0, 1) such

that u(0) = 0, we have∫ 1

0

a(x)

x2
u2(x)dx ≤ 4

(1− α)2

∫ 1

0

a(x)|u′(x)|2dx. (25)

Remark 24. As one can see in [4], the inequality (25) is true for α ∈
(0, 2) \ {1} by the hypothesis on the function a(·) defined in [4]. But our
hypothesis is weaker than one defined in [4] for α ∈ (1, 2) and the inequality
fails in this case (See Example 3). We will prove a similar inequality for
α ∈ (0, 2) in Lemma 18.
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Proof of Proposition 9. (i): Since C∞c (0, 1) is dense in H1
0 (0, 1) and the

embedding of H1
0 (0, 1) into H1

a,0(0, 1) is continuous, it suffices to prove that

H1
0 (0, 1) is dense in H1

a,0(0, 1). Let v ∈ H1
a,0(0, 1) be given and define the

family {vδ}δ≥0, with δ ∈ (0, 1) in the following way

vδ(x) :=


x

δ
v(x), 0 ≤ x ≤ δ,

v(x), δ < x ≤ 1.

We want to show that:
(1) vδ ∈ H1

0 (0, 1) for all δ ∈ (0, 1).
(2) vδ → v in H1

a,0(0, 1) as δ → 0.
One has∫ 1

0

|v′δ(x)|2dx =

∫ δ

0

|1
δ
v(x) +

x

δ
v′(x)|2dx+

∫ 1

δ

|v′(x)|2dx

≤2

∫ δ

0

1

δ2
|v(x)|2 +

x2

δ2
|v′(x)|2dx+

∫ 1

δ

|v′(x)|2dx. (26)

By Hypothesis 1 the function x 7→ a(x)

x2
is decreasing on (0, 1], so a(x) ≥

a(1)x2 for every x ∈ [0, 1]. Therefore for every δ > 0 we have∫ δ

0

x2

δ2
|v′(x)|2dx ≤ 1

a(1)δ2

∫ δ

0

a(x)|v′(x)|2dx. (27)

On the other hand, since a(x) > 0 in (0, 1], there exists Mδ > 0 such that
a(x) ≥Mδ in [δ, 1], So∫ 1

δ

|v′(x)|2dx ≤M−1δ
∫ 1

δ

a(x)|v′(x)|2dx. (28)

Combining (26), (27) and (28) we obtain Cδ > 0 such that∫ 1

0

|v′δ(x)|2dx ≤ Cδ
∫ 1

0

|v(x)|2 + a(x)|v′(x)|2dx

The right part of the last inequality is finite since v ∈ H1
a(0, 1). Then

vδ ∈ H1
0 (0, 1). Also

‖v − vδ‖2H1
a,0

=

∫ 1

0

|v − vδ|2 + a(x)|v′ − v′δ|2dx

=

∫ δ

0

∣∣∣v − x

δ
v
∣∣∣2 dx+

∫ δ

0

a(x)
∣∣∣v′ − v

δ
− x

δ
v′
∣∣∣2 dx

≤
∫ δ

0

v2dx+ 2

∫ δ

0

a(x)|v′|2dx+ 2

∫ δ

0

a(x)
v2

δ2
dx.
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Now
∫ δ
0
v2dx+ 2

∫ δ
0
a(x)|v′|2dx→ 0 as δ → 0, since v ∈ H1

a,0(0, 1). On the
other hand by Lemma 23 we obtain∫ δ

0

a(x)
v2

δ2
dx ≤

∫ δ

0

a(x)
v2

x2
dx ≤ 4

(1− α)2

∫ δ

0

a(x)|v′(x)|2dx.

Indeed, we can rewrite the proof of Lemma 23 in the interval [0, δ] instead of
[0, 1] and derive a new inequality with the same constant 4

(1−α)2 . Now the

right part of the last inequality tends to zero as δ → 0, because v ∈ H1
a,0(0, 1)

and the proof of (i) is complete.
(ii): Similarly in this case, for v ∈ H1

a,0(0, 1) it suffices to construct functions
{vδ}δ≥0 such that

(1) vδ ∈ H1(0, 1) and vδ(1) = 0.
(2) vδ → v in H1

a,0(0, 1) as δ → 0.
Define

vδ(x) :=

 v(2δ − x), 0 ≤ x ≤ δ,

v(x), δ < x ≤ 1.

We have

v′δ(x) :=

 −v
′(2δ − x), 0 < x < δ,

v′(x), δ < x < 1.

Since a is strictly positive on (0, 1] and in the computing of
∫ 1

0
|v′δ|2dx, we

are far from the boundary, it is easy to see that vδ ∈ H1(0, 1). Also

‖vδ − v‖2H1
a(0,1)

= ‖vδ − v‖2H1
a(0,δ)

≤ 2[‖v‖2H1
a(0,δ)

+ ‖vδ‖2H1
a(0,δ)

].

Since v ∈ H1
a(0, 1), the term ‖v‖2H1

a(0,δ)
tends to zero as δ → 0. Also if

δ ≤ δ0/2 where δ0 is the constant introduced in property (iii) of Hypothesis
1, then∫ δ

0

v2δ (x) + a(x)|v′δ(x)|2dx =

∫ δ

0

v2(2δ − x) + a(x)|v′(2δ − x)|2dx

≤
∫ 2δ

δ

v2(x) +
1

m

∫ 2δ

δ

a(x)|v′(x)|2dx,

which tends to zero as δ → 0. Observe that vδ(1) = 0, so the subset of
C∞([0, 1]) which vanishes at x = 1 is dense in H1

a,0(0, 1).

Before proving Lemma 18, we remark that for α ∈ (0, 1) this lemma is
a simple consequence of Lemma 23 and the fact that a(x) ≥ a(1)xα for
x ∈ [0, 1]. But our proof works for α ∈ (0, 2).

Proof of Lemma 18. Note that by Proposition 9 it is enough to prove
(20) for u ∈ C∞c (0, 1) in the case α ∈ (0, 1) and for u ∈ C∞([0, 1]) such that
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u(1) = 0 in the case α ∈ [1, 2). In these two cases we write∫ 1

0

(
x
α
2 ux −

1− α
2

u

x
2−α
2

)2

dx ≥ 0.

Thus we get∫ 1

0

xαu2xdx+
(1− α)2

4

∫ 1

0

u2

x2−α
dx− (1− α)

2

∫ 1

0

1

x1−α
(u2)xdx ≥ 0.

Now, if we use integration by parts, in the case α ∈ (0, 1] there exists no
boundary term, also in the case α ∈ (1, 2), since u ∈ C∞([0, 1]) the term
u2

x1−α
tends to zero as x→ 0. Therefore, we obtain∫ 1

0

xαu2xdx−
(1− α)2

4

∫ 1

0

u2

x2−α
dx ≥ 0.

Note that the function x 7→ a(x)

xα
is decreasing on (0, 1], so a(x) ≥ a(1)xα

for every x ∈ [0, 1] and deducely∫ 1

0

a(x)u2xdx ≥ a(1)
(1− α)2

4

∫ 1

0

u2

x2−α
dx.

Proof of Proposition 12. (i) −(A − kI) is positive: Let k ≥ 0 arbi-
trarily for the moment, then for all u ∈ D(A) we have

〈−(A− kI)u, u〉 =

∫ 1

0

a(x)u2x −
λ

xβ
u2 + ku2.

Now, we distinguish three different cases:

case 1: α 6= 1, β ≤ 2− α, λ < λ∗(a, α),
case 2: α 6= 1, β < 2− α, λ ≥ λ∗(a, α),
case 3: α = 1, β < 2− α, λ ∈ R.

For the first case, we can write∫ 1

0

a(x)u2x − λ
u2

xβ
≥
(

1− λ

λ∗(a, α)

)∫ 1

0

a(x)u2x

+
λ

λ∗(a, α)

∫ 1

0

(
a(x)u2x − λ∗

(
a, α)

u2

xβ

))
.

Therefore, by Lemma 18, we obtain∫ 1

0

a(x)u2x − λ
u2

xβ
≥
(

1− λ

λ∗(a, α)

)
‖u‖2H1

a,0
.
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Hence the result holds with k = 0. In the second and third case, since
β < 2− α, one can use (22) with γ = β and n = 2λ, so there exists C0 > 0
such that ∫ 1

0

(
a(x)u2x − 2λ

u2

xβ

)
+ C0

∫ 1

0

u2 ≥ 0,

then ∫ 1

0

a(x)u2x − λ
u2

xβ
+
C0

2
u2 ≥ 1

2

∫ 1

0

a(x)u2x =
1

2
‖u‖2H1

a,0
.

Therefore the result holds with k = C0

2 .
(ii) −(A − kI) is self-adjoint: Clearly, it is sufficient to show that A is
self-adjoint, i.e. that (A∗, D(A∗)) = (A,D(A)). We have

D(A∗) =
{
v ∈ L2(0, 1) : ∃C > 0,∀u ∈ D(A), |〈v,Au〉| ≤ C‖u‖L2(0,1)

}
.

We first show D(A) ⊆ D(A∗) and A∗|D(A) = A. Suppose that v ∈ D(A),
for every u ∈ D(A), we have

〈v,Au〉 = 〈v, (a(x)ux)x +
λ

xβ
u〉 =

∫ 1

0

−a(x)uxvx +
λ

xβ
uvdx = 〈Av, u〉,

so v ∈ D(A∗) and A∗v = Av. Now we show that D(A∗) ⊆ D(A). If we
define

〈u, φ〉1 :=

∫ 1

0

kuφ+ a(x)uxφx −
λ

xβ
uφdx,

then by the part (i):

〈u, u〉1 =

∫ 1

0

ku2 + a(x)u2x −
λ

xβ
u2dx ≥ C∗‖u‖2H1

a,0
,

and by Lemma 18 there exists C∗ > 0 such that 〈u, u〉1 ≤ C∗‖u‖2H1
a,0

.

Thus 〈 , 〉1 defines a scalar product on H1
a,0 which corresponding norm is

equivalent with ‖ · ‖H1
a,0

, therefore H1
a,0 with the inner product 〈 , 〉1 is a

Hilbert space. So for every f ∈ L2(0, 1) there exists a unique u ∈ H1
a,0 such

that

〈u, φ〉1 =

∫ 1

0

fφdx, ∀φ ∈ H1
a,0.

Thus

ku− (a(x)ux)x −
λ

xβ
u = f,

then u ∈ D(A), and satisfies in the equation (kI − A)u = f . Now suppose
that v ∈ D(A∗), we want to show v ∈ D(A). Let w := kv − A∗v ∈ L2 and
consider the solution (kI −A)u = w. So for every φ ∈ D(A), we will have

〈v, (kI−A)φ〉 = 〈(kI−A∗)v, φ〉 = 〈w, φ〉 = 〈(kI−A)u, φ〉 = 〈u, (kI−A)φ〉,
since u, φ ∈ D(A) and A∗|D(A) = A. Now let φ be the solution of (kI −
A)φ = v − u, we can imply that v = u. Therefore v ∈ D(A) and Av =
A∗v.
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6.3. Proof of the Carleman estimates. In order to prove Theorem 17
we define the function w(t, x) := eRσ(t,x)v(t, x), where v is the solution of
(14) and R > 0 is a positive constant. Then w satisfies

(e−Rσw)t + (a(x)(e−Rσw)x)x + λ
xβ

(e−Rσw)− re−Rσw = h, (t, x) ∈ QT ,
w(t, 1) = 0, t ∈ (0, T ),
w(t, 0) = 0, for α ∈ (0, 1), t ∈ (0, T ),
(awx)(t, 0) = R(σxaw)(t, 0), for α ∈ [1, 2), t ∈ (0, T ),
w(T, x) = w(0, x) = 0, x ∈ (0, 1).

(29)
Thanks to the definitions of p and σ, we have (σxaw)(t, x) =
c1

2−αxθ(t)w(t, x). Since, for t ∈ [0, T ], the function w(t, ·) is in H1
a(0, 1),

we deduce that xw(t, x)|x=0 = 0 for t ∈ [0, T ] using Lemma 6. Thus
(σxaw)(t, x)|x=0 = 0 and the previous problem can be recast as follows.
Set

Lv := vt + (a(x)vx)x +
λ

xβ
v − rv, LRw := eRσL(e−Rσw).

Then (29) becomes
LRw = heRσ, (t, x) ∈ QT ,
w(t, 1) = 0, t ∈ (0, T ),
w(t, 0) = 0, in the case α ∈ (0, 1), t ∈ (0, T ),
(awx)(t, 0) = 0, in the case α ∈ [1, 2), t ∈ (0, T ),
w(T, x) = w(0, x) = 0, x ∈ (0, 1).

(30)

We have the following proposition which implies the Carleman estimates.

Proposition 25. Let T > 0 be given.
(i) In the case α ∈ (0, 2), β < 2 − α, λ ∈ R, for every γ < 2 − α there
exists a constant R0 = R0(a, α, γ, λ) > 0 such that, for all R ≥ R0 and all
solutions w of (30), we have

19R3

(2− α)2

∫ T

0

∫ 1

0

θ3
x2

a(x)
w2dxdt+ 2R

∫ T

0

∫ 1

0

θa(x)w2
xdxdt

+
a(1)(1− α)2

4
R

∫ T

0

∫ 1

0

θ
w2

x2−α
dxdt+R

∫ T

0

∫ 1

0

θ
w2

xγ
dxdt

≤ 1

2

∫ T

0

∫ 1

0

|h|2e2Rσ(t,x)dxdt+
3Ra(1)

2− α

∫ T

0

θ(t)w2
x(t, 1)dt. (31)

(ii) In the case α ∈ (0, 2)\{1}, β = 2−α, λ < λ∗(a, α), for every γ < 2−α
there exists a constant R0 = R0(a, α, γ, λ) > 0 such that, for all R ≥ R0

and all solutions w of (30), we have

10R3

(2− α)2

∫ T

0

∫ 1

0

θ3
x2

a(x)
w2dxdt+

3R

2

∫ 1

0

θ(a(x)w2
x − λ

w2

x2−α
)dxdt
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+R

∫ T

0

∫ 1

0

θ
w2

xγ
dxdt ≤ 1

2

∫ T

0

∫ 1

0

|h|2e2Rσ(t,x)dxdt

+
3Ra(1)

2− α

∫ T

0

θ(t)w2
x(t, 1)dt. (32)

For the proof of this proposition, separate self-adjoint and skew-adjoint
terms. Then one has

LRw = L+
Rw + L−Rw,

where

L+
Rw := (a(x)wx)x −Rσtw +R2a(x)σ2

xw +
λ

xβ
w − rw,

L−Rw := wt − 2Ra(x)σxwx −R(a(x)σx)xw.

Therefore, we have

‖heRσ‖2 = ‖L+
Rw‖

2 + ‖L−Rw‖
2 + 2〈L+

Rw,L
−
Rw〉 ≥ 2〈L+

Rw,L
−
Rw〉, (33)

where ‖ · ‖ and 〈·, ·〉 denote the usual norm and scalar product in L2(QT ),
respectively. The proof of Proposition 25, is based on the computation of
the scalar product 〈L+

Rw,L
−
Rw〉, which comes in the following lemma. The

proof is similar to one stated in [4, 19].

Lemma 26. The scalar product 〈L+
Rw,L

−
Rw〉 may be written as a sum

of a distributed term A and a boundary term B, 〈L+
Rw,L

−
Rw〉 = A + B,

where the distributed term A is given by

A = −2R2

∫ T

0

∫ 1

0

θθtp
2
xa(x)w2dxdt+

R

2

∫ T

0

∫ 1

0

θttpw
2dxdt

+R

∫ T

0

∫ 1

0

θ(2a2(x)pxx + a(x)a′(x)px)w2
xdxdt

+R3

∫ T

0

∫ 1

0

θ3(2a2(x)pxx + a(x)a′(x)px)p2xw
2dxdt

− βλR
∫ T

0

∫ 1

0

θpx
a(x)

xβ+1
w2,

whereas the boundary term B is given by

B =
−Ra(1)c1

2− α

∫ T

0

θ(t)w2
x(t, 1)dt,

where θ(t) and p(x) defined by (15) and (16).

Now we estimate the distributed term A in the following lemma.

Lemma 27. (i) In the case α ∈ (0, 2), β < 2 − α, λ ∈ R for every
γ < 2− α, there exists a constant R0 = R0(a, α, γ, λ) > 0 such that, for all
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R ≥ R0 we have

A ≥ 19R3

(2− α)2

∫ T

0

∫ 1

0

θ3
x2

a(x)
w2dxdt+ 2R

∫ T

0

∫ 1

0

θa(x)w2
xdxdt

+
a(1)(1− α)2

4
R

∫ T

0

∫ 1

0

θ
w2

x2−α
dxdt+R

∫ T

0

∫ 1

0

θ
w2

xγ
dxdt.

(ii) In the case α ∈ (0, 2)\{1}, β = 2−α, λ < λ∗(a, α), for every γ < 2−α,
there exists a constant R0 = R0(a, α, γ, λ) > 0 such that, for all R ≥ R0 we
have

A ≥ 10R3

(2− α)2

∫ T

0

∫ 1

0

θ3
x2

a(x)
w2dxdt+

3R

2

∫ T

0

∫ 1

0

θ(a(x)w2
x − λ

w2

x2−α
)dxdt

+R

∫ T

0

∫ 1

0

θ
w2

xγ
dxdt.

Proof . By Lemma 26, assumption xa′(x) ≤ αa(x) and the fact that px =
c1x

(2− α)a(x)
, one can estimate A in the following way:

A ≥− 2R2c21
(2− α)2

∫ T

0

∫ 1

0

θθt
x2

a(x)
w2dxdt+

R

2

∫ T

0

∫ 1

0

θttpw
2dxdt

+Rc1

∫ T

0

∫ 1

0

θa(x)w2
xdxdt+

R3c31
(2− α)2

∫ T

0

∫ 1

0

θ3
x2

a(x)
w2dxdt

− βλRc1
2− α

∫ T

0

∫ 1

0

θ
w2

xβ
dxdt.

Let

A1 := − 2R2c21
(2− α)2

∫ T

0

∫ 1

0

θθt
x2

a(x)
w2dxdt,

A2 :=
R

2

∫ T

0

∫ 1

0

θttpw
2dxdt,

A3 := Rc1

∫ T

0

∫ 1

0

θa(x)w2
xdxdt+

R3c31
(2− α)2

∫ T

0

∫ 1

0

θ3
x2

a(x)
w2dxdt,

A4 := −βλRc1
2− α

∫ T

0

∫ 1

0

θ
w2

xβ
dxdt.

First, we estimate the term A1. According to the relation (17), we know

that |θθt| ≤ cθ2+
1
k ≤ c̃θ3, and obtain

|A1| ≤
2R2c21c̃

(2− α)2

∫ T

0

∫ 1

0

θ3
x2

a(x)
w2dxdt.

Therefore
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A ≥
(

R3c31
(2− α)2

− 2R2c21c̃

(2− α)2

)∫ T

0

∫ 1

0

θ3
x2

a(x)
w2dxdt

+Rc1

∫ T

0

∫ 1

0

θa(x)w2
xdxdt+A2 +A4. (34)

In the following, we produce estimates of the last two terms A2 and A4

to complete the proof. We distinguish two cases: the case of a sub-critical
exponent β < 2− α and the case of a critical exponent β = 2− α.

First case: α ∈ (0, 2), 0 < β < 2− α and λ ∈ R.
We want to prove the result for all γ satisfying 0 < γ < 2− α. However, if
the result holds for any γ such that β ≤ γ < 2 − α, then it obviously also
holds for all γ such that 0 < γ < 2−α. Therefore, we consider here γ, such
that β ≤ γ < 2− α and we study the term A4. In the case λ > 0, we apply

the improved Hardy inequality (24) with n = λc1 + 3− α ≥ λβc1
2− α

+ 3− α,

which gives:∫ 1

0

a(x)w2
xdx+ C0

∫ 1

0

w2dx ≥ a(1)(1− α)2

4

∫ 1

0

w2

x2−α
dx

+

(
βλc1
2− α

+ 3− α
)∫ 1

0

w2

xγ
dx,

for a suitable C0 = C0(a, α, n, γ) = C0(a, α, λ, γ, c1). Therefore we can write

A4 =− βλRc1
2− α

∫ T

0

∫ 1

0

θ
w2

xβ
dxdt ≥ −βλRc1

2− α

∫ T

0

∫ 1

0

θ
w2

xγ
dxdt

≥a(1)(1− α)2

4
R

∫ T

0

∫ 1

0

θ
w2

x2−α
dxdt−R

∫ T

0

∫ 1

0

θa(x)w2
xdxdt

+R(3− α)

∫ T

0

∫ 1

0

θ
w2

xγ
dxdt− C0R

∫ T

0

∫ 1

0

θw2dxdt.

For λ ≤ 0, we have

A4 = −βλRc1
2− α

∫ T

0

∫ 1

0

θ
w2

xβ
dxdt ≥ 0.

Applying (24) with n = 3− α, that is∫ 1

0

a(x)w2
x + C0

∫ 1

0

w2 ≥ a(1)(1− α)2

4

∫ 1

0

w2

x2−α
+ (3− α)

∫ 1

0

w2

xγ
,

we obtain the same estimate as in the case λ > 0. It follows that

A ≥
(

R3c31
(2− α)2

− 2R2c21c̃

(2− α)2

)∫ T

0

∫ 1

0

θ3
x2

a(x)
w2dxdt

+R(c1 − 1)

∫ T

0

∫ 1

0

θa(x)w2
xdxdt
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+
a(1)(1− α)2

4
R

∫ T

0

∫ 1

0

θ
w2

x2−α
dxdt

+R(3− α)

∫ T

0

∫ 1

0

θ
w2

xγ
dxdt

+A2 − C0R

∫ T

0

∫ 1

0

θw2dxdt. (35)

Finally, we need to estimate the two last terms in the above inequality. By
(17), we have

|θtt|‖p‖∞ ≤ Kθ1+
2
k ,

for some K > 0. It follows that∣∣∣∣∣A2 − C0R

∫ T

0

∫ 1

0

θw2dxdt

∣∣∣∣∣ ≤ RK ′
∫ T

0

∫ 1

0

θ1+
2
kw2dxdt, (36)

for some K ′ = K ′(a, α, λ, γ, c1) > 0. At this stage, we use the special choice
of k, that is

k = 1 +
2

γ
,

and consider q = k
k−1 and q′ = k, so that 1

q + 1
q′ = 1. Then, for all ε > 0,

we have∫ T

0

∫ 1

0

θ1+
2
kw2dxdt =

∫ T

0

∫ 1

0

(
θ
1+ 2

k−
3
q′ a

1
q′ x

−2
q′ w

2
q

)(
θ

3
q′ x

2
q′ a

−1
q′ w

2
q′
)
dxdt

≤ ε
∫ T

0

∫ 1

0

θ
(1+ 2

k−
3
q′ )qa

q
q′ x

−2q
q′ w2dxdt+ C(ε)

∫ T

0

∫ 1

0

θ3
x2

a(x)
w2dxdt,

(37)

where C(ε) = (εq)
−q′
q q′−1. Note that

q

(
1 +

2

k
− 3

q′

)
= 1,

2q

q′
= γ.

Now if K ′′ > 0 be such that a(x)
q
q′ ≤ K ′′ for every x ∈ [0, 1], then we obtain

R

∫ T

0

∫ 1

0

θ1+
2
kw2dxdt ≤ εK ′′R

∫ T

0

∫ 1

0

θ
w2

xγ
dxdt

+ C(ε)R

∫ T

0

∫ 1

0

θ3
x2

a(x)
w2dxdt. (38)

Putting the estimate (38) in (36) and using (35), we obtain

A ≥
(

R3c31
(2− α)2

− 2R2c21c̃

(2− α)2
− C(ε)K ′R

)∫ T

0

∫ 1

0

θ3
x2

a(x)
w2dxdt
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+R(c1 − 1)

∫ T

0

∫ 1

0

θa(x)w2
xdxdt+

a(1)(1− α)2

4
R

∫ T

0

∫ 1

0

θ
w2

x2−α
dxdt

+R(3− α− εK ′′K ′)
∫ T

0

∫ 1

0

θ
w2

xγ
dxdt.

Now take ε = ε(a, α, λ, γ, c1) > 0 such that 3 − α − εK ′′K ′ = 1, also let
c1 = 3. Thus there exists R0 = R0(a, α, λ, γ) > 0 such that for all R ≥ R0

A ≥ 19R3

(2− α)2

∫ T

0

∫ 1

0

θ3
x2

a(x)
w2dxdt+ 2R

∫ T

0

∫ 1

0

θa(x)w2
xdxdt

+
a(1)(1− α)2

4
R

∫ T

0

∫ 1

0

θ
w2

x2−α
dxdt+R

∫ T

0

∫ 1

0

θ
w2

xγ
dxdt.

Second case: α ∈ (0, 2) \ {1}, β = 2− α and λ < λ∗.
Let us fix γ such that 0 < γ < 2− α. In the present case, we observe that

A4 = −λRc1
∫ T

0

∫ 1

0

θ
w2

x2−α
.

Therefore by (34) one has

A ≥
(

R3c31
(2− α)2

− 2R2c21c̃

(2− α)2

)∫ T

0

∫ 1

0

θ3
x2

a(x)
w2

+Rc1

∫ T

0

∫ 1

0

θ

(
a(x)w2

x − λ
w2

x2−α

)
+A2.

Now, if we apply (22) with n = 2, we obtain∫ 1

0

a(x)w2
xdx− λ

∫ 1

0

w2

x2−α
dx ≥ 2

∫ 1

0

w2

xγ
dx− C0

∫ 1

0

w2dx,

for a constant C0 = C0(a, α, γ). Therefore

A ≥
(

R3c31
(2− α)2

− 2R2c21c̃

(2− α)2

)∫ T

0

∫ 1

0

θ3
x2

a(x)
w2dxdt+

Rc1
2

∫ T

0

∫ 1

0

θ(a(x)w2
x

− λ w2

x2−α
)dxdt+Rc1

∫ T

0

∫ 1

0

θ
w2

xγ
dx− Rc1C0

2

∫ T

0

∫ 1

0

θw2dx+A2.

Next we need to estimate the term A2 and the last term in the above
inequality. Proceeding as in the previous case, similar to the relations (36)
and (38), we get∣∣∣∣∣A2 −

Rc1C0

2

∫ T

0

∫ 1

0

θw2dxdt

∣∣∣∣∣ ≤ εK ′K ′′R
∫ T

0

∫ 1

0

θ
w2

xγ
dxdt

+ C(ε)K ′R

∫ T

0

∫ 1

0

θ3
x2

a(x)
w2dxdt,
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for suitable positive K ′ and K ′′. Then as in the previous case, we can set
c1 = 3 and there exists R0 = R0(a, α, γ, λ) such that for every R ≥ R0, one
has

A ≥ 10R3

(2− α)2

∫ T

0

∫ 1

0

θ3
x2

a(x)
w2dxdt

+
3R

2

∫ T

0

∫ 1

0

θ

(
a(x)w2

x − λ
w2

x2−α

)
dxdt+R

∫ T

0

∫ 1

0

θ
w2

xγ
dxdt.

Now from Lemma 26, Lemma 27, the inequality (33) and the fact that
c1 = 3, we can easily imply Proposition 25. On the other hand, since
v = e−Rσw and c1 = 3, one has

v2x ≤ 2e−2Rσ
(
w2
x +

9R2

(2− α)2
θ2

x2

a(x)2
w2

)
.

So, the left hand of (18) is smaller than(
R3

(2− α)2
+

18R3

(2− α)2

)∫ T

0

∫ 1

0

θ3
x2

a(x)
w2dxdt+2R

∫ T

0

∫ 1

0

θa(x)w2
xdxdt

+
a(1)(1− α)2

4
R

∫ T

0

∫ 1

0

θ
w2

x2−α
dxdt+R

∫ T

0

∫ 1

0

θ
w2

xγ
dxdt.

Also, note that wx(t, 1) = vx(t, 1)eRσ(t,1), since v(t, 1) = 0. Now, by Propo-
sition 25 part (i) of Theorem 17 follows immediately.
For the proof of part (ii), note that the left hand of (19) is smaller than

10R3

(2− α)2

∫ T

0

∫ 1

0

θ3
x2

a(x)
w2dxdt+RC

∫ T

0

∫ 1

0

θ(a(x)w2
x − λ

w2)

x2−α
)dxdt

+
λRC

2

∫ T

0

∫ 1

0

θ
w2

x2−α
dxdt+R

∫ T

0

∫ 1

0

θ
w2

xγ
dxdt.

Now, if λ ≤ 0, the above expression is smaller than the left hand of (32)
and similar to (i) we can prove the desired result. But for λ > 0, we use
Lemma 18 to get

λRC

2

∫ T

0

∫ 1

0

θ
w2

x2−α
dxdt ≤ λRC

2(λ∗ − λ)

∫ T

0

∫ 1

0

θ

(
a(x)w2

x − λ
w2

x2−α

)
dxdt

≤ R

2

∫ T

0

∫ 1

0

θ

(
a(x)w2

x − λ
a(x)

x2−α
w2

)
dxdt. (39)

Therefore we can easily complete the proof of part (ii).
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6.4. Proof of the observability inequality. In this subsection we will
prove Proposition 15 as a consequence of the Carleman estimates stated in
Section 4. First, define ṽ(t, x) := ertv(t, x), where v is the solution of (14)
and r will be defined later. Then ṽ satisfies

ṽt + (a(x)ṽx)x + λ
xβ
ṽ − rṽ = 0, (t, x) ∈ QT ,

ṽ(t, 1) = 0, t ∈ (0, T ),
ṽ(t, 0) = 0, in the case α ∈ (0, 1), t ∈ (0, T )
(aṽx)(t, 0) = 0 in the case α ∈ [1, 2), t ∈ (0, T ),
ṽ(T, x) = erT vT (x), x ∈ (0, 1).

(40)
Furthermore, it is obvious that if the observability inequality (13) is true
for ṽ, then it is also true for v. First, let us state the following standard
inequality to be proved later on.

Lemma 28. (Caccioppoli’s inequality) Let ω′ ⊂⊂ ω, then there exist a

positive constant C̃ such that for every solution v of (14),∫ T

0

∫
ω′
ṽ2xe

2Rσdxdt ≤ C̃
∫ T

0

∫
ω

ṽ2dxdt.

Proof of Proposition 15. We consider ω′ = (x′0, x
′
1) ⊂⊂ ω = (x0, x1)

and a smooth cut-off function 0 ≤ ψ ≤ 1 such that ψ = 1 in (0, x′0) and
ψ = 0 in (x′1, 1). Also define w := ψṽ where ṽ is the solution of (40).
Then w satisfies (14) with some right-hand side h explicitly given in term
of ṽ and ṽx and supported in ω′. Applying Theorem 17 with γ = 2−α

2 and
R0 = R0(a, α, λ), we get (note that wx(t, 1) = 0):

R0

∫ T

0

∫ 1

0

θw2e2R0σdxdt ≤ R0

∫ T

0

∫ 1

0

θ
w2

xγ
e2R0σdxdt

≤ Ĉ
∫ T

0

∫
ω′

(ṽ2x + ṽ2)e2R0σdxdt.

According to Lemma 28, we obtain

R0

∫ T

0

∫ 1

0

θw2e2R0σdxdt ≤ C̃
∫ T

0

∫
ω

ṽ2dxdt,

next we use the definition of ψ to obtain a bound for v on (0, x0)∫ T

0

∫ x0

0

θṽ2e2R0σdxdt ≤ C̃

R0

∫ T

0

∫
ω

ṽ2dxdt.

Using the properties of θ(t) and p(x), for a positive constant c(T ) we have

e−c(T )R0

∫ 3T
4

T
4

∫ x0

0

ṽ2dxdt ≤ C̃

R0

∫ T

0

∫
ω

ṽ2dxdt.

Clearly, using a similar cut-off argument, ṽ can be estimated on (x1, 1) in
the same way. In this case, we use the classical Carleman estimates, since
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the operator A is neither degenerate nor singular on (x1, 1). Therefore we
get∫ 3T

4

T
4

∫ 1

0

ṽ2(t, x)dxdt ≤ C̃ec(T )R0

R0

∫ T

0

∫
ω

ṽ2 ≤ C̃ec(T )R0

∫ T

0

∫
ω

ṽ2dxdt.

Now, consider the function t 7→
∫ 1

0
ṽ2(t, x)dx, its derivative is∫ 1

0

2ṽṽtdx = 2

∫ 1

0

ṽ

[
−(a(x)ṽx)x −

λ

xβ
ṽ + rṽ

]
dx

= 2

∫ 1

0

a(x)ṽ2x −
λ

xβ
ṽ2 + rṽ2,

and if let r = C0 where C0 be as defined in (24) when we set n = λ, then
the last term is positive. (Note that this is true in the case β < 2− α. For
β = 2 − α, we can set r = 0 and use Lemma 18). Therefore the function

t 7→
∫ 1

0
ṽ2(t, x)dx is nondecreasing in [0, T ] and we obtain∫ 1

0

ṽ2(0, x)dx ≤ 2

T

∫ 3T
4

T
4

∫ 1

0

ṽ2(t, x)dxdt ≤ 2C̃ec(T )R0

T

∫ T

0

∫
ω

ṽ2dxdt.

Proof of Lemma 28. Let us consider a smooth function ξ : R → R such
that  0 ≤ ξ(x) ≤ 1, ∀x ∈ R,

ξ(x) = 1, x ∈ ω′,
ξ(x) = 0, x < x0 and x > x1,

and ξ > 0 for x > x0 and x < x1. Then

0 =

∫ T

0

d

dt

∫ 1

0

ξ2e2Rσ ṽ2dxdt =

∫ T

0

∫ 1

0

(2Rξ2σte
2Rσ ṽ2 + 2ξ2e2Rσ ṽṽt)dxdt

=2

∫ T

0

∫ 1

0

Rξ2σte
2Rσ ṽ2dxdt (41)

+ 2

∫ T

0

∫ 1

0

ξ2e2Rσ ṽ

(
− λ

xβ
ṽ − (aṽx)x + rṽ

)
dxdt

=2

∫ T

0

∫ 1

0

Rξ2σte
2Rσ ṽ2dxdt− 2

∫ T

0

∫ 1

0

λ

xβ
ξ2e2Rσ ṽ2dxdt

+ 2

∫ T

0

∫ 1

0

(ξ2e2Rσ ṽ)xaṽxdxdt (42)

+ 2r

∫ T

0

∫ 1

0

ξ2e2Rσ ṽ2

=2

∫ T

0

∫ 1

0

Rξ2σte
2Rσ ṽ2dxdt− 2

∫ T

0

∫ 1

0

λ

xβ
ξ2e2Rσ ṽ2dxdt
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+ 2

∫ T

0

∫ 1

0

a(ξ2e2Rσ)xṽṽxdxdt+ 2

∫ T

0

∫ 1

0

aξ2e2Rσ ṽ2xdxdt (43)

+ 2r

∫ T

0

∫ 1

0

ξ2e2Rσ ṽ2.

Hence,

2

∫ T

0

∫ 1

0

ξ2e2Rσaṽ2xdxdt = −2

∫ T

0

∫ 1

0

Rξ2σte
2Rσ ṽ2dxdt

− 2

∫ T

0

∫ 1

0

a(ξ2e2Rσ)xṽṽxdxdt+ 2

∫ T

0

∫ 1

0

λ

xβ
ξ2e2Rσ ṽ2

− 2r

∫ T

0

∫ 1

0

ξ2e2Rσ ṽ2dxdt.

Case1: For λ ≤ 0, we obtain

2

∫ T

0

∫ 1

0

ξ2e2Rσaṽ2xdxdt ≤ −2

∫ T

0

∫ 1

0

Rξ2σte
2Rσ ṽ2dxdt

− 2

∫ T

0

∫ 1

0

a(ξ2e2Rσ)xṽṽxdxdt ≤ −2

∫ T

0

∫ 1

0

Rξ2σte
2Rσ ṽ2dxdt

+

∫ T

0

∫ 1

0

(
√
aξeRσ ṽx)2dxdt+

∫ T

0

∫ 1

0

(
√
a

(ξ2e2Rσ)x
ξeRσ

ṽ)2dxdt.

Thus,∫ T

0

∫ 1

0

ξ2e2Rσaṽ2xdxdt ≤ −2

∫ T

0

∫ 1

0

Rξ2σte
2Rσ ṽ2dxdt

+

∫ T

0

∫ 1

0

(√
a

(ξ2e2Rσ)x
ξeRσ

ṽ

)2

dxdt ≤ C̃
∫ T

0

∫
ω

ṽ2dxdt.

Therefore

min
ω′

a(x)

∫ T

0

∫
ω′
e2Rσ ṽ2xdxdt ≤ C̃

∫ T

0

∫
ω

ṽ2dxdt.

Case 2: For λ > 0, since the support of ξ is located in ω, then∫ T

0

∫ 1

0

ξ2e2Rσ
λ

xβ
ṽ2dxdt ≤ Ĉ

∫ T

0

∫
ω

ṽ2dxdt,

for some suitable Ĉ > 0. So, rewriting the relations of the case 1, we get

min
ω′

a(x)

∫ T

0

∫
ω′
e2Rσ ṽ2xdxdt ≤ (C̃ + Ĉ)

∫ T

0

∫
ω

ṽ2dxdt.
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