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PREFLCE

I believe that at this stage, the theory of combinatorics
in general and graph theory in particular are in need of good
tools to simplify the proofs of theorems and, if possible,
cacegorize seemingly divergent proofs of the "same type® of
theorems.

In a survey of the theory of "Ffactors of a graph" (alsc
known as “"spanning subgraphs with specified valencies®) 1
developed a method which seems very useful in proving several
combinatorial theorems involving ecertain inegqualities as
necessary and sufficient conditions. This method is an
outgrowth of one which was first employed by P. R, Halmos
and H. E, Vaughan [HV] to prove P. Hall's theorem on system
of distinct representatives. By the application of this method
I have simplified the proofs of some of the standard theorenms
of combinatorics and graph theory:; which state the necassary

and sufficient conditions for the following:

L. A graph* to have a matching of deficiency a
(a theorem of Derge's [B])
II. A graph* to have a l-factor (Tutte [(T1])

I1I. The existence of a {0,l)-matrix, with given

*Graphs 1In this paper arc undirected and loopless,

ix
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row and column sun vectors (Ryser [R11],
Gale [G])

IV, The existence of a graph* with given degree
segquence (Brdds-Gailai [EG])

V. A set of integers to be the score vector of some

tournament [Landau [M])

In each of these theorems, the stated conditions take
the form of a set of inequalities, whose necessity is always
trivial. To prove sufficiency we use induction and distinguish

between the critical rase when we have equality holding in one

of the conditions and the non-critical case when inequalities

are strict. This splits the proof into two straightforward
cases, The non-critical case can always be handled easily,
In the light of this method, we have found it very casy

to prove a new result involving bipartite realizability.

A degree seguence {dl,d .,dn) is bipartite

TR
realizable if and only if {1} for some p ,
i pul n-1 d. + dsy 4.4+ dr = ds T, 0.+ ds

g. S. H J_l 12 lP :I.P+l ln
and (ii) (ail-i- p-—l,c‘ii2+p-l,...,dip+p-l,di1}+l,...,din]
ig realizable, "

Alsc a theorem by Deinseke and Plummer [BP! which indicates:



wi

"1f an n-connected graph has a l-factor, then it

has at least n JQifferent l-factors"

bacomes 2 corollary of II.

W. T. Tutte [T2] gave a necessary and sufficient
condition for a graph € +o have an f-factor. Fulkerson,
Hoffman, and McAndrew [FHM] by using linear programming,
showed that the conditions can be simplified if the graph &
has a certain cycle condition. We show {by & very simple
calculation) that the' latter is a corollary of the former.

Finally, we also found it very simple to discuss
Kl{GxH], the edge-chromatic number of the cartesian product

of two graphs, in terms of {@) and {H) :
] 'K.l 'K.l

Theorem. If g}aL max deg G , then

xliGEH] = max deg G + max deg H .

I should add that some of the thearems (I-V) already
had nice proofs, but that the most important thing in our

opinion is that the same method proves zll the theorems.



I. INTRODUCTION

The terminology not defined here can be found in the
standard texts. For example, the reader way look at Behzad
and Chartrand ([BC] for graph theory, and Ryser [R 2] for
combinatorics. We try to follow the terminology of these
two books.

Most of the present work (Chapters 1-5) is to develop a

method to be called gritical case method and apply it to

prove several combinatorial theorems involving certain
inequalities as necessary and sufficient conditions. This
method was first employed by Halmos and Vaughan [HV] to prove
P. Hall's theorem on systems of distinct representatives.

We recall this theorem, and give a proof based on [HV].

...,Sn be subsets of a

Hall's Theorem (1.1} . Let Sl,S

2
set X . Then 2 necessary and sufficient conditicn that
there exist distinct elements XyrXgy oo oy X such that
% € Si (1 =1,2,...,n), is that the union of every k sets

from among the Si contain at least k elements. In other

words for any collection {Sil,siz,...,sik] of 5.8 we
have:

k
(1.1} U8, >k

. i,

J=1 7




The set {xl’x2""’xh} is called a system of distinct

rcpresentatives (SDR) of §_,8 5

l? 2}"'! el

roof:;  The necessity of the conditiens (L.1) is triwvial.
For the sufficiency we proceed by induction on n . For

n = 1 the result is trivial. If n > 1 we consider two

casas:

Critical Case: For some &

a collection of k sets,

l >
1l <k <n we have equality in (1.1}, say, 8 = {51’52""’5k}'
k
Then [8'] =k , where |[s']| = jyl S, » and by the induction
hypothesis the collection Sl has an SDR, say
{ Koy oo xk} The collection 3, = {sj—s |for j = X+1,...,n)

also satisfies (1.1}. 1Indeed, let Sé e 32 , say,

g =

3 [sk+l—s',_..,5 -5'). Let 8" = {g

kb 2 Sppy ] then

K+l Rk
by {1.1)

13, U85l < u s
SE31U32
The left side, howevar, equals 131U sél =k + 4 ; the right

side equals

kL 4 k+L
Ju s;i=1ltuspul U (s.-s)|=%+ | u s
i=1 i=1 7 i=k+1 S5E!

2



Hence

| U s8] >~
SES2

By the induction hypothesis 32 has an SDR, say

{yiti = k+1,...,n}, and together with {xl,xz,...,xk} this

S.srer,0

gives an 3DR for & o 8

l’

Hon-oritical Case: For 21l k, 1 <k «n , we have

strict inequality in (1.1). 1In this case take any cne of
H

the Sis - for example Sl - and take any element ¥y of

s to be representative of 5 then the collection

1 1 ¢

"

{Si—bﬁ]]i = 2,...,n} satisfies (1.1); by the induction
hypothesis it will have an SDR, which together with xq will

lve an SDR £ ‘
glv I Dr {Sllszj ?En} E

The elegant method in this procf is the inspiration to
prove most of the remaining theorems in this thesis. The
fellowing result is needed in Chapter 2. We state it as a

corollary of Theorem 1.11

Corollary 1.2, ILet S

1,52,...,Sn be subsets of a set X |

which have an S8DE. Then there exists an 51 such that each

of the elements in &, can be taken as a representative of

§, in some SDR for [51,52,...,5n].



To prove the corollary one nay include this result in
the statement of the theorem and Just carry it along in the
proof, through the hypothesis.

indeed, in the critical case the eocllection 31 has
such a set by induction: in the non-eritical case, the free

choice of X, =shows that every Si has this property.



II. MATCHINGS AND L-FACTORS

We will use the word graph for a finite, undirected,
loopless graph without multiple edges. In other cases we
will specify the kind of graph in the discussion.

Let d be a non-negative integer, and ¥([G] the
vertex set of & graph G , then G 1is said to possess a

matching of deficiency d , if there is a subgraph of G

consisting of non-adjacent edges which together cover
[v(G}|~-d wvertices of G . We state and prove a theorem of

Berge's [B] with the critical case method:

Thecorem 2.1, Let d be a non-negative integer and S5 a

subset of the vertex set WV{(G}) of a graph G , and hG{S}
the numbar of components with an odd number of vertices in
the induced subgraph of G on the vertices V{G)- 5

{this subgraph is denoted by <V{&}-8>). Then ¢ has a

matching of deficiency d if and only if

i) d g [v(g)], and
(2.1} ii) 4+ |v{g)| is even, and

iii)} for all sets 8 £ V(G) we have d + |8| 2 h,(s).

Proocf: The necessity of the thecrem 1s easily checked. To prove

sufficiency we take o a fixed integer and apply induction



on n = |V(G)]. For n =4d , d+2 the theorem is obvicus.
Let @& be a graph with n vertices which satisfies
(2.1} . We may assume thalt every graph with fewer than n
vertices, and satisfying (2.1} has a matching of deficiency
d
Now we prove that G has a matching of deficiency d .

In the course of the proof we give several lemmas.

Lemma 2.2. @Glven {2.1), for any & , both sides of (iii)}

have the same parities.

Proof of lemma 2.2. Let s = d +]8]- hG{S}, we must -show that

8 is even, Denote the odd components of <V(G}-5> by

01,02,...,0hG(5} and the even components by El,Ez,;‘.,EL.

Then we have modulo 2@

4
s =5+ 2V | = (@+v(e) | + £ |V(E)D] +
(1
hg (8) *
SRR AP N B h,(8)+ 2[5
i=1
h. (8)
= ° (W) ]-n=o0l
j=1

Now to prove the theorem we distinguish two cases:



Critical Case: There exists a non-empty set S5 such

that eguality holds in {iii}. Let =S be maximal, with
d+ 8] = h.(8). Denote the odd components of

<V IG}-5% by 01,02,...,0l5!+d + There are no even components.
Indeed, if E were a non-empty even component and x € V(E),
then [8 U {x}]| +d= hG(S U {x}}, contradicting the

maximality of § .

We say a, €5 is adjacent to Dk if there is an

edge connecting a, to a vertex of Dk .

Lemnma 2.3. For each aiE 5 , let Pi be a set of odd

components of <V (G)-8%» defined as:

P, = {Oklai is adjacent to Dk] i=1,2,...,(8] .

Then the Pi satisfy the conditions of Hall's theorem (1.1).

k
Progf of lemma 2.3: Indeed, let Q= ‘Ul Pj » k> 0 and
j=
suppese  |Q[ ¢ k . Then the vertices in S' = {al,az,...,ak},

all together, are adjacent to at most k-1 odd components.
This implies that the rest of the odd components, of which
there are at least 4 + |5|-(k-1}, are just adjacent to the

elements in & -~ 3' . Therefore:

d+ |8-5'] = a+ |s] - kx «@ +[5]-{k-1) L h,(8-5")



in contradiction to (iii).

Lemma 2.3 implies that there is an SDR, say without
loss of genera;ity; {01,02,...,0ls‘} of the Pi ,voi being
a representative of Pi meaning that there exists a vertex,

say bi , in 0i adjacent tc a, -
Lemma 2.4. Let cie v(oi), and define

H, = <v(oi)-{ci]> i=1,2,...,|s|+4a.

1
Then each of the H,l satisfies the conditions of the theoren,

with d= 0 .

Proof'of lemma 2.4: (i) and (ii) are trivial. Let

S' c V(Hi); We must prove that:

(2.2) |s* | > hy (8.
. 1

But since S is maximal and since both sides of (iii)

have the same parity (lemma 2.2) we have:

d + |sus'y {ci}‘ > nHi(su S'u {ci})+ 2

or



a+ |sf+fstf+ 12 isl-1+a+n s+ 2
i

which implies (2.2}. [J

Now for each i the gragh Hiu X3 c¢learly satisfies
conditions {2.1), (iﬁ is a totally disconnected graph with
d vertices.) This by induction hypothesis implies that

there is a matching of deficiency d for H. U K which is

d !
a l-factor (see definition on page 10) for Hi
Hote that in Lemma 2.4 the vertex ci ¢an e any

vertex of H, . So for i = ljz,...,-lSL1 we take ¢, =k, ,

i i i
and in this manner the edges aibi (i =1,2,...,1s]
together with the 1l-factors of Hi's (i = l,2,...,15]+d}
will cover all but d vertices [one in each of

: a2 . £ : . .
Glsl+l{ 2 1S|+d} of G Therefore, it s a matching of

deficiency d

Honcritical Case: For each non-empty set 5 we have strict

inequality in (iii}). We take any edge .ab of G 'and look
at H = v{@)-{a,bly. H satisfies the conditions of the
theorem.

To see (i) if 4 > [V(H) |, then & = [v(g)|, which is
trivial. As to {ii} obvicusly, d+ W) |=4 + |vie) |- 2

is even. Finally, to show (iii}, take any set T < V(H).
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Then

d + |Tu {a,b}]| > h, (TU {a,b})

and since both sides of (iii) have the same parity (Lemma 2.2)

we have:
d + |tu {a,b}| > h. (TU {a,b})+ 2
S0
d+ |T| +2>h (T)+ 2,
which is (iii). Therefore, by induction, H (and consequently

G ) has a matching of deficiency d . - |

Definition: If a matching for a graph G covers all of the

vertices, then it is called a 1l-factor (or perfect matching).
If in the theorem 2.1 we let d = 0 , then.we will

get a necessary and sufficient condition for a graph to have

a l-factor. This gives the well-known <1l-factor theorem

due to Tutte. We will give a separate proof here for this

theorem, for one may be interested just in the 1l-factor

theorem and its proof, but not in matchings.

Theorem 2.5 [Tl]. Let S and hG(S) be as in Theorem 2.1.



=1

Thegram 2.5 [T1]  Lef &(S)iw‘me awmban T of of 11

AL Conmponenth of pulgraph indeced on Y(Gy-S .

Then the graph ¢ has a l-factor if and only if for all

5 ¢ V(G) the inequality:

(2.3) 5] > b, (s)

holds.

Proof: The necessity is trivial. To prove sufficiency we
apply induction on n = |v(8}]. For graphs with 1 or 2
vertices the theorem is trivial. Let G be a graph with

n vertices, which satisfies (2.3). We may assume that every
graph with fewer than n vertices, and satisfying (2.3),

has a l-factor. Ws now prove that G has a l-factor.

Inegqualities (2.3) imply that hG(ﬂ} =0; 80 G

‘has only even components; G therefore has an even number

of vertices, and |S| and hg{s} have the same parities.

If 5= {a), then (2.3} implies that hG({a]) =1, so
equality holds in (2.3} in this case. Let S5 be maximal
with Is| = h.(s}. Then j8! > 1 . For such an S , denote
the odd components of <V (G)-8> by 01,0 ’

are no even components. Indeed, if E were a non-empty

v e, O «+ There
s

even componegnt and x € V(E), then

I5U (%] | = b (5U [x]),
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contradicting the maximality of § .

Lemna 2.6. There is a 1-1 correspondence between the
elements of 5 and the odd components Oi's, such that if
aj carresponds to Gk . then aj is adjacent to Ok (i.e.,

there is an edge connecting aj to a vertex of Gk}.

Proof of Jemma 2.6: Let Pl,Pz,...,PISl be se¢ts defined as

follows:

P, = {x|x €8 and x is adjacent to 0,1}

({1 =1,2,...,18)).

Then the P satisfy P. Hall's conditions {Theorem 1.1l).

k
Indeed, let §' = _Ul Pj » k> 0, and suppose |5'| ¢k ,
j:
then <VI(G)-5'% c¢ontains at least k odd components, namely

o) o040y 1 hence h.(8’) >k > |8'] in contradiction

1’02 x °
to (2.3} . Therefore there is an SDR for {Pl’PE""’Pisi};

these are the ai's of lemma 2.6. [3

Without loss of generality we can assume that
a, {£ 8) is adjacent to Di . Let hi be any point in

V{Di} adjacent to B, s Define the graphs

Hi = @[O'i} - {bi]> -
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We show that each Hy admits a l-factor (i=1,2,...,|8])-
A4 to them the edges Eaibi} {i=1,2,...,18]), then we have

a l-factor for G .

Temma 2.7. Each of the Hi satisfies (2.3).

Proof of lemma 2.7: Let S' ¢ ?{Hi]; take 8% = 3 8'Y }_fbi]JI
since 5 1s maximal and since both sides of (2.3) have the

game parity we have
qs*] 2 n 5%+ 2,
or

jsl+{s' |+ 1 > Isf- 1 + h, (8)+ 2,
i

which implies |S'| > n, ts}. OM
1

Hall's Theorem (l.l) gives a necessary and sufficient
condition for a bipartite graph to have a l-factor. {For,
n
let A = [51,52,...,5n] be one set of vertices and B = igl 8

another set. Join a vertex x € B tao a vertex EiE AAf

and only if x € S, )

A vertex v in a graph ¢ having a l-factor is

called totally covered if each edge of ¢  incident to v

belongs to some 1-factor of G . Now Corcllary 1.2 implies



14

that:

Corollary 2.8. If a bipartite graph G has a  l-factor,
then G has at least one (therefore by symﬁetry at least two)
totally covered vertex. |

The above corollary is not true for an arbitrary

graph. For example,

‘has a unique 1l-factor; therefore no totally covered vertex.
However, if G is an n-connected graph, then it has aE

least n totally covered vertices; [See [Z2] and also [L2].]
A refinement of this statement is the following corollary
which was first proved by Beineke and Plummer [BP)]; we show

that it is an immediate corollary to Tutte's theorem (2.5).

Corollary 2.9: If G is an n-connected graph with a

l-factor, then it has at least n different 1l-factors.

Proof: Since G has a l-factor, it satisfies the conditions
(2.3). Applying the result of corollary 1.2 to the Pi's in

lemma 2.6, there exists a Pi (without loss of generality,
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say Pl} such that each of the elements in P, can be

taken as a representative of P in some SDR of the Pi's.

1

Thus we have at least |P system of distinct representatives

L
for the Pi‘s. As we noticed in the proof of the theocrem
2.5, each BDR of the Pi's gives a l-factor for G .
Removing Pl from VI(G) will disconnect the graph & ,
since & is n-connected, !Pll > n , which implies that we
have at least n GSDR, consequently at least n l-factorsiﬂ
At the last stages of writing the author found
that anderson [A] (and woodal {W, p.237] resp.) have uszed a

similar method to prove Theorem 2.5 (and Theorem 2,1 resp.}.

However, our proofs are shorter.



III. INTEGER VALUED MATRICES WITH GIVEN
ROW AND COLUMN SUM VECTORS
Let A be an (mxn) matrix with integer entries. Let
‘the sum of row i of A be denoted by r, and let the sum

of column j of A Dbe denoted by .sj . We call the vector

R = (rl’ré""’rm) the row sum vec¢ctor and the vector

S = (

sl’sz""’sn) the column sum vector of A .

If A denotes the sum of all entries in A , then it is clear

that

In 1957, Ryser [R 1] and Gale [G] independently found a
theorem giving necessary and sufficient conditions for a
pair of vectors (R,S) of non?negative components, to be
row and column sum Vectors of a matrix A with entries

equal to 0 or 1 (called (0,l)-matrix). We state a more

general theorem concerning the existence of a matrix-with
non-negative entries each less than or equal to a constant
¢ , and we prove it by the critical case method. The

Gale-Ryser theorem will follow if we take ¢ = 1 .

16
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Theorem 3.1. Let R = {rl,rz,...J:m} and § = {51,52,...,5n}

be two vectors whose components are non-negative integers.

Let ¢ he a positive integer. Then there exists a matrix

A with nen-negative integer entries not exceeding ¢ , and
with row sum wector R and column sum vector 8§ if and

only if
m n
i) L x,= L s, =4, and

ii) for any two sets I C M = {1,2,,..,m] and

J =2 N={1,2,...,n}, we have

(3.1} S r,+ I s, < b+ clrllel .
i€T jeg 7

Brogf: The necessibty of the conditions iIs triwvial., Indeed

if

L= | ]

“ijliem,jen ?

with the properties of the theorem,exists, then a permutation

of the rows and the columns yields the matrix

p— -y

Hll l A12

ﬁEl REE

B .

{3.2)

where A = [ . . ete, Now the inegualities in
[ ]1EI,jEJ 7 4

il %13
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{(3.1) are just the interpretation of both sides in termsof
row and column sumsg in somz of the Aij's.

For the sufficiency we apply induction on m and n ,
For m=1, n =1 the theorem is trivial, Assume that the
result holds for each pair of sequences with m - 1 -and
n - 1 components or less, and let R = {rl,rz,...,rm} and
S = {sl,sz,...,sn] be two seguences satisfying the hypothesis

of the thegrem.

For (I =@, J =N) or (I M, J =) equality holds

in {(3.1); we call these trivial cases. We have two cases:

Critical Case: fThare exist I and J {non-trivial)}.

such that egquality holds in (3.1), i.e.,

(3.3) T or.+ L s, =0+ clz]la] .
i€l jeg 3

Then if o exists we must have:

a,., =¢ 1€TI,J¢&€JT and
13

i

0 i€M-I, j€Nn-J.

Hence to find the matrix & we must find two smaller makrices
A, and 321 . Accordingly, define the vector R' with

componants ri (i £ I} and the vector 5' with components

sé {1 € H-J}) such that
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=, - clol i erx
(3.4) .
sy = s, ]l € N-J
J J
Also, similarly define R" and 8" such that
rY = r, if 1 € M-I
1 i
{3.5)
g =8, - ¢|l ;] €T
=8y el 3

We show that each pair of (R',5') and (R",5") satisfy the
conditions of the theorem:
Lemma 3.2. R' and 8' satisfy the conditions of the theorem.

Proof of lemmz 3.2: FPirst note that rﬁ >0, kX €I . For,

let k &€ I , then (3.1} implies that

b r. + & s, <4+ e{|T]-1)|7)
i€1-{k} T Jer

and this together with (3.3) iImplies that I, 2 c|J), hence
rf >0
Now to show (i) by (3.4) we have

i
b
H
|
{3
Lo
L'_

t'= T ri = & (rih cla)
i€X ikI ifl

which is, by (3.3), equal to
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A~ B B, = T s, = o 5!
jer J Jen-~1 7 jew-g

and thus (i) holds for R' and §' .

Let I oI and J' — ¥ - J to show

(3.6) R . ri 4+ % , 53 < A+ ce|Ttllar] .
1el J&J

We write (3.1} for the sets I' and JUJ':

T or, + I s. < A+ clT'floua'y .
ierr ' jeyyre d

1

By {3.4) the left side can be expanded:

[ = ri+ el |]al 1+l & s.+ £ s!j
ier" jeg jeg

L b+ ejrrflaf + elrrilat]

Torl4+ % osigAa- % s, + clrtjle]
ierr v jeg J jeg

and since &' = A -.T Ss s the last inequality implies (3.6).[]

Lemma 3.3. R" and 8" satisfy the conditions of the theorem.

Progf of lemma 3.3: The proof of this lemma is similar to
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the one of lemma 3.2.. In this case we have to prove that
for any two sets I" c M-I and J".c J we have

£oori+ £ st B+ ejrvjlavy.

iEIII jEJﬂ :l )
This follows from the inequality of (3.1} for the sets

IVI" and J" . [j

Now by lemma 3.2 (lemma 3.3, resp.) and by the induction
hypothesis there exists a matrix a' (A* resp.) with the
row sum R' (R" resp,) and with the column sum S' (5"

resp.). Hencog

[C}l Af
Ps”l [G]

where [0] {and [c]) are matrices of all zercsf{all c'a

resp.} of the appropriate sizes,

Non-critical Case: For all I , J (non-trivial} we

have strict ineguality in (3.1}. ILet I and J be such

that

s = A+ cli]jo| - & r., - B 8,
161 je3 7

is minimal (note that s > 0 is the difference of both sides
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in (3.1)). Let r and S1 s without loss of generélity,

be. such that

r. = max r:.L and s1 = max S, .
ieM JEN
Then obviously 1 € I and also 1 € J . Define
R = (rl+l,r2,...,rm) and S = (sl+l,s2,..,,sn) .

In this case R and S satisfy the conditionsof the theorem,
and the minimum difference of both sides of (3.1) for the.
components of R and S is 1 less than s . By induction
on s , there exists a matrix A with the row and column
_sum vectors.'ﬁ and. E (résp.). Then by using K. we can
construct a matrix A with row and cblumn sum vectors R

and. § (resp.;. Indeed, let A = [aij]; if g&l‘ﬁ 0 , then

by changing it to a,.,- 1 we get A ; if aq

11 é,o then

'choose column j such that gij# 0 . The maximality of Sy

implies that there exists a row i with a,, < a

ij i1 - BY

changing the elements of the square submatrix

11 %15
231 %45
b ]
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to

we get a matrix (with non-negative entries not exceeding ¢)
and row and column sum vectors still ecqual to R and §

(resp.) but here the (1,1} entry is nonzero.l‘

If we take c =1 in the theorem 2.1 we will have the

condition {1) and

(3.7) T ox,+ £ s, < 4+ |x)lal
ier *  5ex I

a5 the necessary and sufficient conditions for the existence

of a {0,1}-matrix with row and column sum vector R and 5 .

The conditions for the existence of a {D,lj-matrix,
due to Gale and Ryser, have a different form. Let

R = (r rm} be a vector of non-negative integers: form

l,.-.,

the maximal my¢n matrix & which in row 1 has ones in the

first r. columns (i =1,2,...,m); all other entries are

zexro. Let & = {51,52,...,sn] he the column sum vector of

A . Clearly By 25, 2 «ve 28 . Note that

s; = 106z 1) .
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Theorem 3.4 {[Ryser 1] and [{Gale 1]}, Let R = {rl,rz,...,rm}Er
...,snl be two vectors of non-negative integers
with 81 28, 2 vee 2 5, and A the maximal matrix with

row sum vecker RO oand g its column sum vector. Then there
exists a (0,l}-matrix A with row sum vector R and

column sum vector & if and only if 8§ is dominated f{or

majorized) by 8 , i.e., if

{3.8} S)h Sybeek s, 8k Syt o8,

for i =1,2,.,.,n-1 , while equality holds in (3.8) for

Eyser's praoof of this thecrem is bhased on constructing
A from A by shifting 1's in the rows of A . But Gale
proves the theorem by interpreting it as a flow »roblem. We
ghow directly that (3.7} and (3.8) are eguivalent.

Assuming (3.7) to prove (3.8) take J = [1,2,...,1i}
and I = {j]rj > i1, Then the right side of {3.8) can be
reduced:
m

L[jlrj >kl = £ min(i,»

)
j=1 ’

= % r.+ JIli=4t- & ri+1IH..T|[.
jEM-I iex
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As (3.1) states that this is 2's1+ Syte. ot si; (3.8) is
proved,

Conversely, assume (3.8), and let I , J be non-trivial
such  that

5 =048 + |zllo| - Lor, - % 5
icI JeT

is minimal. We must show &6 > 0 . The minimality implies
r, > |9 for i-€1I and r. < || for ieM-1I.
Otherwiée 6 could be reduced in value by increasing or
rgducing I by one element _ri . Similarly, sy 2 |z for

j € J; s < |T] for j eN-T.

Let i = |J] , then
s.+ s,+...+ s, = T s.,
1 2 : jeT J
while
_ - — i m
s,k s te.+ 5. = T |{jlr, >k}| = § min(i,r)
1 2 ) 3 k=1 k

k€§~l r, + |Il]g] =& - kgx r + |z]lo] .

Hence, (3.8) implies & > O .

The Gale-Ryser conditions for the general theorem (i.e.,
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c not necessarily egual to 1) will become

. m k
{3.9) 2 min{ke,r.) > % s,
Ci=1 S P |

for k = 1,2,...,n-1 , while equality holds in (2.9} for I

e LT

The conditions (3.9) (which are equivalent to (3.1}) for
.m =n are alsc the necesgary and sufficient conditions for
' the existence of a directed graph of n vertices : i
) t a

VyaVorrr sV in which the indegree (cut degree, resp.) of - ﬁﬂ:

the vertex vi is ri (si , resp,), and cij , the number I

of edges from vy to Vj , is at most ¢ {(loops allowed).

‘ The question of existence of a (0,1)-matrix with given E
row and colum sum vectors is closely related to that of [
. : |
i
! hipartite_graphs. We will discuss this at the end of the ;f
- l' following chapter where we also present a new set of conditions EJ%’
i :

for the existence of a bipartite graph with the given degree
Eequenée, which in turn will lead to a corollary concerning
the existence of a {0,1)-matrix with given row and column

K sum vectors!

.
e,

i i




"of a sequence are discussed. In section 4.3 we present a

'IV. CRAPHICAJL, DEGREE SEQUENCES

This chapter is divided into three sections. In section

" 4,1 we discuss the Erdiis-gallai theorem, and in section 4,2

other necessary and sufficient conditions for realizability

new result on the bipartite realizability of a finite seguence.

§4,1., Erdds-gallai Theorem.

Let G be a graph with n wvertices. The degqree of a

vertex Vi o denoted by di ; +8 the number of edges incident .
: , ;

with v o Then the non-negative seguence

{di] = [dl,dz,...,dn] is called the deqree gseguence of G .

n
Obviously 'El di = 2|E(G) | where E(G} is the set of
. i

. edges aof G .

Daefinition: Leat {di] = {dl,d ..,dn] be a sequence of .

27°
non-negative integers. [di] isg called graphical (or-

realizable] if there exists a graph ¢ whose degree seguence

is {di}. Such 2 G 1is called a gonfiguration of {di]“

Exrdos and Gallai[EG] found a theorem giving necessary
and sufficient conditicons for a seguence to be graphical.
We prove this theorem with the critical case method. The

following inegqualities are different from the onesthat Erdds

27




~and Gallai had given. Later in this chapter we discuszs the

relation between these and their conditions.

Theorem 4.1. Let {di} = {dl,dz,...,dn] be a segquence of
non-negative integers such that dl > dz 3 oaea E‘dn . Then

{di} is graphical if and only if

n

(i) E.d

. is even, and
i=1 1

(ii) For each pair of integers = , £+ such that

lgrgtgn,

1

91
di < xf{4-1) + Z d -

{4.1) \
1 j=fel

[ I

i

Proof: The necessity of the conditions ig trivial. Indeed,
for a given graph G , look at A, the adjacency matrix of
G i.e., A =[a..] where a,. =1 if the vertex v. is
1] ij i
adijacent to vj and aij = ( optherwise, Then & is

 symmetric and has zercs on the diagonal,

r Fol r 1 r n r
z di = I iooa = L Z a + = E al
| i=] j=1 =1 *7 5=1 i=1 MY geg4l i=1 1)
(4.2)
£ r ol rn
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where &.. =1 and 6., =0 for i f 3
T ii : ij : :

The proof of the sufficiency is by induction on n .
Clearly the result holds for sequences with n =1 or 2
i v  Assume that it holds for sequences with n-1 elements or

less, and let {di} = {dl;dz,...,dn} be a sequence satisfying

the hypothesis of the theorem. We consider two cases:

Critical Case: There exist r and 4 , non-trivial, ?

for which equality holds in (4.1) i.e.,

1

n
di = r(4-1) + ¥ 4, .

) 1 i=4+1

I MK

In this case if {di] is graphical with a configuration & R

thén the adjacency matrix of G looks like this: - v 1

o
N
a1
H
=
o
S
+
H
o]

H
+
!—-I
}_..l
H
o

] .l
] (4.4) A" . . B 0
E' '{/ l l .l
, L+l ~
. ct 0 0
n
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{CT is the transpoze of J. This gives us the following :
. idea to proceed through the proof of the theorem with sevaral if
lemmas. Define the seguence {bi3i=r+l,...,L by
b, =d, - r I=rdl,...,0 .
1 1 1

_ Lemna 4.2. The sequence fhi] satisfies the conditions of

i the theorem.

g !

ﬁ Froof of lemma 4.2: Clearly, & > r , as there is nothing E

t |

F: to prove if L = r . i

n .

4 i} By adding i~§+l di to both sides of (4.3) we see £

that !

i r :’i

T 4 .

> 1 b di = r({i-1) {mod 2),

; : i=r+1

o

;¢ Hence ,

. B ; i
i £ 1 :
i z bi = L d.~-{t-r)r = r{t-1)-{t-r)r = r{¥-1}2 0 (med 2).

-; ler4l. - le=r+l
e
£ ii) We must show that for any r' , L' with ;IJ

¥ 4 | b

. !;. r < ™ ' s _L r S. ,L : '

. rt L

- k) (4.5} L b, g (r'-r){4'-r-1) + n bi . . 37

- 8 : i=rel T i=t4) _

§ 3
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By writing (4.1) for r' and 4' , and using the equality

in {4.3} we find

! £
= di < r' (L' =1)- r{t-1) + z d.
i=rel i={i4l T
or
r' £
z bi +{r'-r)r £ ' {L£'-1})- r{t-1l}+ L b, +{4-1i")r ,
i=rel i=t'+l T

which implies (4.5} by aimple algebra.
Note that hi >0, i=or+&l,...,% . Since {hi} is
decreasing we need to show that hL >0 or dL > r . Write

f4.3) as

T n
- o1 - .
I od {rf{{e~1) =11+ z di] =r-d
i=1 1=
by (4.1) the left side is < 0 .[J
How define ki and sj such that:
ki =di_"l‘+ 1 i =l:2:!ti’r
s, = d, ] = &+1,...,01 .
i . ] 3 3
Lemma 4.3, K = {kl,kz,...,kr] and 5 = {5L+1"“’En}
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satisfy the conditionsof Theorem 3.1.

Proof of lemma 4.3: T¢ show (i) we have

r T r
A= L ki = I {di-L+lJ = L di— r(4-1}
i=1 i=l i=]

which by {4.3) is equal to

n n
X di = X S, .
i=t+l J=4+1 3
To show (ii), since ki and sj are decreasing, we just need
to verify (3.1) for I = {1,2,...,r'} and J = {441,...,4'],
where r' ¢ r and 4 < 4' ¢ n
r' i n

(4.6) E ok, + T s < £ s+ x(2i-1).
i=1 J=i+1 17 4=t41

But {4.1) for r' and 4' implies that

r' n

¥ {k.+4-1) ¢ r'{£'-1) + T S.

i=1 1 j=g 4l J
r' n £
) ki + r'{4-1) ¢ ' {(L'=-1)+( T s, - z 5.)
i=1 j=2+1 4 J=t41

which implies (4.6) immediately.
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Note that ki > 0 and Sj >0 . For (4.3) implies

that

r-a n
L d, - E d. +(r-1){4-1)} = -d + & - 1 .,
i=l b i=tel * *

By (4.1} the left side is ¢ 0 .[Q

Now, by the induction hypothesis, lemma 4.2 implies that

there is a graph 6, with adjacency matrix B , whose degree

1

sequence is {bi} and lemma 4.3 implies that there exists a
(O,1)-matrix ¢ with row sum vector {kl,kg,...,kr} and

column sum vector Then the matrix 2 in

{SL+1,...,5n}.

(4.4) will ke the adjacency matrix of a graph G with the

d d J.

degree sequence {d gyl

lJ‘

Non-critical Caser For all r and ¢ > r we have

strict inequality in {(4.1}.

Let 8 e the deficit

n r
£ = min [r{i-1}+ n di - I di]
r,d i=L+1 i=l
and let it be achieved for r = Ty » 4 o= LD i assume  x, is
maximal; for this rG , assume LG is minimal. Pistinguish

two Ccases:
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Case s ™ 1: Then {d1+2’d2{""dn] satisfies {4.1) and
its deficit is s5-2 . By induction on s , this segquence is
graphical, Let G' be a configuration and let V.o Vj be
two vertices connected to vl but not to each other. This

exists because di R dj < dl+2 » Then ¢ is obtained from
G' by dropping the edges (1,i) and (1,3j) and inserting

(i,3).

Case s = 1: Then LD > Ty - Faor if Lﬂ = I then

O x
$ is even. The extremal conditions imply that

H.Dmlj— drg+l >0, "“‘0_1]"' drﬁ > 0

S0

Now ﬁﬁflidz,...,dra,drﬂ+l+l,drﬂ+2,...,dn] is decreasing,

satisfies (4.1} and is critical; hence is graphiecal. Let

G' be a configuration. We claim that vl is connected to

Vr0+l in G6' ;3 6 is obtained by dropping this edge from
Gl
To prove our claim, suppose not; then a new graph G"

could be formed by joining v, and vrﬂ+l . However, the
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sequance [d,+2,d va,dl ,d

TRLLIL 2,d

1 rD+1+ rn+2""’dn] I:'*'jl::ﬂ+l+2

may have to move to the left to give a decreasing sequence)

is no longer graphlcal, for the minimum deficit is negative:

take r=rx,, L={.G -3

§4.2., Other N. & 5. Conditions for Realizability.

The original thecrem of Erd8s-Gallai had the following
inequalities as necessary and sufficient conditions for

n
thegrem 4.1 (of course besides the conditicon ig diE 0 {mod 2)):

1

for each integer r , 1 £Lr Ln-l,

r n

(4.7) Z 4, g x{r-1) + I min [r,4,} .
. i ] i
1=1 i=r+l

The conditions (4.1} were alsoc found by D. R. Fulkerson
et.al.[FHM]. We will discuss this paper later in chapter 6.
To see directly that {4.1l) and (4.7) are equivalent for given

r , let L be the smallest integer such that L > r and

L

dL&l < r . Then the right side of (4.7) equals

I . n
r{r=1) + & r + z di = r{L-1) + E di .
r+l i=I41 i=I+1

This shows that (4.1) implies (4.7). Conversely, for every

£ > r we have
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r n £ n
L d. rir-1)+ & min{r,di] Lrir-1)+ I r+ I d,
i=1 fer+l f=r+l i=til *
n
= r{r-1}+ r{l-x)+ L d.
i=t+L T

which implies (4.1).
We can alsc show that the Erdds-Gallai conditions

{4.7) are equivalent to:

for any partition (5,T,U) of the set

{1,2,...,n} we have
{4.8) L 4, ¢ E dj + 7| ¢lri+lul-1).

i€T J€s

Actually we show that (4.8} is equivalent to {4.1). Indeed,
in {4.8} let T = {1,2,,..,r) and U= {r+l,,..,L}; this
shows that {4.8) implies (4.1). Conversely, since di is

decreasing (by applying (4.1)) we have

|7 n
£ d g I d. .« z a. + |rj(jel+|ul-1)
igT i=1 t 7 g=jri+|Ul+1

< Eodg+ || tjr]+lu]-1)
j€8

which implies {4.8).

¥ote that in (4.8} the sequence {di] does not need to
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be decreasing. Sometimes the inequalities of (4.8) are
easier to apply than those of (4.7). For example, let G

-

be a graph with degree sequence {di}. Then & , the
complement of G , has degree sequence {nﬂl—di}.

Therefore .

Corallary 4.4. The sequence {di] satisfies (4.8} if and

only if {nul—di] does.
But we prove this coyocllary directly.
Proof: The conditions (4.8) for {n—l—di] ares

for any partlition (8,T,U} of {1,2,...,n]

we hawve

(4.9} I [(n~1)-4,]1<-% [{n-1)-a ]+ jT|iT]|+|U}-2).
ieT jes ]

But this can be written as

(- 7] - ¥ a, -2 a4, +(n-1) [si+]|T] (n-[5]~1)
i€T jes I

or

Lod, < 3 od; 4 [8je-l-leh = = a4+ [sif]sl+lu|-1).
JES i, ieT LET



This shows that any inequality of (4.9} with a partition
{S,T.U0) will lead to an inecuality of (4.8) with the

partition (70,5,U} and vice versa.g

A proof of rorcllary 4.4 using the conditions (4.7)

is not straightforward.

84,3, Bipartite Realizable Segquences.

One may ask the following ¢questicn: What are the

conditions for a sequence {di} to be the degree sequence

38

of a bipartite graph? One necessary condition is that there

exists a set I o N = {1,2,...,n} such that

i%l di = iEE—I di . With subseripts renumbered this
condition 1s: £or some integer X

n

P di .
i=k+1

i

d

i=]l

Then the question will be the same as in chapter 3, i.e.,
What are the conditions for the sequences {dl,dz,...,dk}
and (dk+l""’dn} to be the row {and coclumn resp.} sum

veator of a {0,l)-matrizx A ? Indeed, if A exists then



39

will be the adjacency matrix of a bipartite graph with degree
sequence  {d.}.

A, J., Hoffman has found some conditions for a more
general guestion {H]. aApplying his conditions to this case
wa get eXactly the conditions {3.7) of Chapter 3.

Now we state and prove a recent result concerning this
cquestion for which the critical case method gave inspiration

for an easy proof.

Theorem 4.5, Lot {di] = {d d } be a sequence of

179009y

non-negative integers (not necessarily decreasing), Then
there is a bipartite graph with degree sequence [di] if
and only if there exists a set T = N = {1,2,...,n} with
say Kk elements,such that
i) . d. = I 4., and
i€T T jen-1

ii} the seguence {ei] defined as

e, = d.+ k-1 i €T
L

2, = d, i & K-T
i 3

is graphical.
Indead, any graph configuration of [ei} will lead to

a bipartite graph with degree sequence {di} and vice wversa.
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Proof: Mssume that thexre is a bhipartite graph with adiacency

matyix

whose degree sequence is {di}, where A is ({kxn-k}) matxix,

1
Then take

J* A
A = .
T
A] ©

where J* 15 a {(kxk) matrix, whose entries are all 1
except the diagenal elements which are all 0 , A% represents
the adjacency matrix of a graph with degree sequence {ei}.
Thig shows the necesgity of the conditicns.

To prove sufficlency, let & be a graph with degree
sequence {ei]. Then, by the definition of {ei} and

condition (1}

L e, = I (d+k-I)= I d+ k(k-U= = a+ k(k-1).
igr i€x ier ¢ i€N-T

Therefore,

{4.10) T e = E e +k(k-1}.

igr T i€N-I
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But this indicates that in B = [b_j], the adjacency
i

matrix of G , we must have

‘Sbij =1 for i and j €I, if]

lb,.
ij

(i.e., the matrix B looks like A*). Indeed, if we have

i

O for i1 and Jj € N-I

bij =0 for some i and j (i #3J; i, Jj € 1I) or brs =1

for some r and s (r#s ; r, s € N-I), then in either

case we have

I e,= 1 b+ I b.<k(k1)+ I e
i€T jer M jer 4 - ieN-1 *
jEI JEN-T

which is in contradiction with (4.10). Now in B by changing

all of the elements bij (i , j € I) to zero we get

which is an adjacency matrix of a bipartite graph with degree

sequence {dj}.ﬂﬂ



V. TOURNAMENTS

In this chapter we state and prove a theorem on

tournaments. We define a toutrnament 'I'n ; to consist of n
vertioces v_,v,_, ...,V such that each pair of distinct
172 n

vertices £ and Vj is joined by one and only one of the

oriented ares v .v. or wv,v, . If wv.v. is in T ; then
| ] 1 1 ] n
we say v, dominates vj + For a discussion on tournaments

we refer the reader to a book by John W. Moon [M].

The score of a vertex vi iz the number Ei of

vertices that vi dominates. The score vector of Tn is

the eordered n-tuple (s ,...,sn]- The following theorem

17 %2
can be found in (M, page 6l1] with a proof due to Ryser. But

we will prove it by the critical case method.

Theorem 5.1. A set of integers (s_,s +++,5 ), where
1’727 n
N 5_52 Lo L8, 5 1s the score vector of some tournament

Trl if and only if

x k
(5.1) £ s, 2 ()
i=1 *
Ior k= 1,4,...,n~1 with equality holding when %k = n
. i o k
Proof: BAny %k vertices of a tournament are joined by (2]

arcs, by definition. Consequently, the sum of scores of any

k wvertices of a2 tournament must be at least {k}- This

2
42
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shows the necessity of (5.1}

The sufficiency of (5.1) when n =1 is chvious. The

proof for the general case will be by induction. Assume that

the result holds for sequences with n-1 elements or less,

and let {51,52,...,sn} be a sequence satisfying (5.1).

We consider two cases;

Critical Case: There exists %k

;5 1L £k £ n-1. such
that

(5, 2)

(i.e2., equality holds in 5.1).

{17 {sl,sz,...,sk} satlsfies {5.1) and by the induction

nypothesis there exists a tournament Tk with the score

vector {sl,sz,...,sk]. Let the adjacency matrix of T be

k

Ml .

(ii) Define

s'! = 5, - k

3 4 ;, J=k+1l,...,n

Clearly sé >0 . Indeed, (5.1) implies

Kt
(5.3) £ s, % r,k”;l}

. 1
1= 1
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and by subtracting (5-2) from (5.3) we get

(ktl})k  fk-1)k _

Sx4l 27 32 2 k-

Therefore, since Ej is inereasing, sé >0 {(J=%k+1,...,0).

Now we prove the following lemma.

Lemma 5.2. The sis defined in (ii) satisfy (5.1).

Proof of lemma 5.2; We must show that:

r

(5.4) 2 osl > (5%, r=k,...ne1
J=k+1
and
I
(5,5} n os! = [n;k}-
G+l
n
For (5.5) we subtract fiom 151 s, = (2} the egquality (S.2):
ot
k
ros = (-
i=l+l
but also
n n n
o8, = no{sl+k) = ¥ si + k{n-k}

isktl b =kt f=k+1
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which implies (5.5Y.

Ta show {5.4) we write

r
7 :si >
i=1

Again, subtract {5.2) . Then we find

r
r k . r-k
iz}fﬂsi > {2}—E2} = [r-k}k + { , )

which implies (5.4) immediately.[]

Now by the induction hypothesis, Lemma 5.7 implies that
there exists a tournament, say Tn K ? Wwith score vector &'

d

and adjacency matrix ME

Let A be a matrix such that

where (0] (ang [1]}) are matrices of all zercos (all ones,
respectively) of the appropriate sizes. fThen A is the
adjacency matrix of a tournament with score vector

{511521 e :SI.‘] '
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Non-critical Case: For all k # n s

{5-6)

Ao w

k
si >' (2]“

i=1

Then S, 21 and s, < n-1 . Let

¥
& = min { I s, - {gl]-
1¢kgn-1 i=1 *
Then = » 0 . Among all seguences {si} satisfying (5.6),
we take the one with the smallest s . We define a new

sequence, namely

{5.7) {s. -1

*ron + r
1T BB 58 Th)

This sequence satisfies (5.1) and has a spaller s - therefore,

I

it is = score vector of some tournament Tn « If, in Tn ’

v, dominates Ve, (i.e., vlvnE Tn) then, since S, S

I

there exists +w, such that v.v1E T and v v, €T
i il n n i I
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If we change the direction of the arcs ViV 7 vV and

ViV, in Tn wa get another tournament Tﬁ with the same
score vector as that of Th +  But heare vnle Tﬂ + Therefore
without loss of generality we can assume that vnvlﬁ Tn .
The tournament with score wvector {51,32,-..,sn} can be

constructed from Tn just by changing the direction of

VoV .
nl M

Here thé author wishes to thank Professor Saul Stahl
who menticned Theorem 5.1 as a candidate to prove with the
critical case method.

This chapter ends a series of theorems which are proved
by the critical case method. We should alsc add that
Roy B. Levow [Ll] proved a thecrem of Hardy, Littlewood, and
Polya relating vecter majorizatlon and doubly stochastic

matrices, using this same method.



VI. £f£-FACTORS

Let G be a graph with multiple edges. Let £ Te a
function from the vertex set V(G of ¢ to the non-
negative integers. We define an f-factor of & as a
spanning subgraph F of ¢ such that the degree {(valence)
of each vertex x in F is £(x). The gquestion of the
necessary and sufficient condition for f{x), such that @
¢ontains an  f-factor is answerad by Tutte in an excellent
article [T 3] which is a short proof of a theorem he
discovered earlier [T 2). Tutte recently has further
developed his work on this subject [T 4]. This is a very
important theorem bacause it generalizes several others,
For exapple, if we take for G the complete graph kn on
n vertices, then it will give us the Erdds-¢allai theorem
(4.1). If we take f(x) = 1 for all vertices x in @& ,
then Tutte's l-factor theorem (2.5) follows from this
theorem. The theorem of Berge's (2.1) is alsc a result of
this theorem. Tutte has shown that his conditions will
produce the conditlons of these theorems in each case. The
f-factor theorem of Tutte with a slight modification in

notations and formuwlation is

48
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Theorem 6.1. Let G be a graph with maltiple edges, and

let £ %o a non-negative fupction defined on viG}. ¢
contains an f-factor if and only if for every partition

(8,T,U) of vertices of ¢ ; we have

(6.1} L ffla) « T f£(a) + = cab - gi{5,T)
agT aEs acT
beTUlr

where b is the number of edges joining a to b , and
g{S,T} is the number of components ¢ of <U»>  f{the induced
subgraph of G on the vertices U ) such that [we write

a € ¢ Iinstead of a € v(c))

{5.2) B(C,T) = Z £f{a) - T cab
aEeC asd
hEeT
is odd,

In [T 3], Tutte proves this theorem by constructing a
larger graph &' , from the graph G . Then &' Hhas a
l-factor if and only if G has an f-factor. Then the
conditions for G' having a 1-factor will lead to (6.1).
We iillustrate a proof for necessity of the conditions

(6.1) in order to understand the quantity q(5,T}.
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Necgssily of the conditions (6.1). Let ¥ ke an

f-factor of G , and define the matrix [fab]’ such that

:Eab is the number of edges joining a to b in the

subgraph [ . CObviousiy, fah < SR for all a and b

Therefcre,

T f{a) = £ f£._<¢< L £_.+ T ¢ .,

AET acr P T qer W aep P

LEV (G} beg beTUU
Hence,
(6.3) z ffa) £ ¥ ff{a) + L €1 *
atT ats acT
belUg

Fow, let C Dbe a component of (U>. We expand B(C,T} (mod 2)

{mod 2}
n f(al + £ ¢ = L {c.~-f Y+ & £ = g{C);
a€C agc 2P agc 20 A oo @
heT beT beEs

the "missing" surmand is

r £ = L £ 5 0 (mod 2)
acc P pec AP
Ley bec

because C is a component of the induced subgraph of ¥

on the vertices 1f



Now we redefine ¢(3,T) to be the number of companent s
C for which 0Q{C} is odd. But if Q{C) iz odd for some
C , then ecither for some a 8 C and b € 7T » the quantity

(c_ .~ f

b ab} 1s odd, or for some a € C and b £ S

sy fT_. is
abh

odd, But in the first case there is at least one edge in @G

and in the second case there is at least one edge in ¥

which contribute 1 to the right side of (6.3) but not to the

left side. Therefore, if we subtract g{5,T), i.e., the

number of such components, from the right side of (6.3), we

5till will have inequality.pH

Define &(8,T) to be the difference of both sides

in (6.1}, i.e.,

4(8,T) = £ f{(a)- & f(a)+ % Sy = ais,T).
a€Es acT agm
bETUT

Substituting from (6.2)

5(8,T) = ¥ £{a)~ I f£fa)+ L S
aes acET akT
LeT
+ T {-B{C,T)+ £ f(a)i- q{5,T)
CcU aed

i

L f(a)- & f(a)+ ¢ Sy L B{C,T)~ g{(s,T)
aeslu acT acT O
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or

(6.4) &(S,T)

il

T f(a)- 2L flal¢d T e. - T 2r§i24211
oy 2

acv(g) a€T acp 2P
beT

where [x] = minimal integer > X

Note that if (6.1) holds, then by taking T =85S = f we

get ¢(5,T7) =0 ; hence B{C,#) = a%c f{a) is even for every
component C of G . Therefore b f{z) is even. That
acv{g)

is if (6.1) holds, then by (6. 4) 5{5,T) i=s alwavs even
for all partitions (s,T,U).

Asg the quantity ¢{S,T) in (6.1) is hard to caleulate,
it is interesting to note that the g¢(S,T) may be deleted

from (6.1) if & has the odd-cyecle property: i.e., if @G

has the property that any two of its odd (simple) cyeles
either have a common vertex, or there exists a pair of
vertices, one from each cycle, which are joined by an edge.
This was proved by Fulkerson, et.al., [FHM] using integer
programming technigques.

We give a new proof of this fact:

Corollaxy 6.2, Assume that G satisfies the cdd-cycle

rondition. Then & has an £f-factor if and only if
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i) E f{a) 1is even, and
acvV(G)

ii} for every partition (§,T,U¥) of VI(G)

(6.3) I ffa) « & £{z) + 5 Cah .
akT ages agT
e

Progf: We showed the necessity of the condition in the proof

of the necessity of (6.1). To prove sufficiency, we show

that if G satisfies the hypothesis, then there exists a

partition (5,T,U) for which §(5,T) iz minimal and

gfs, Ty £ 1 . 1If i £{a) 4is even, then (6.4) implies
agv({a)

that 5(8,%) is even; hence (6.1} is satisfied,

Let {5,T,U} be any partition of V{G) £for which
§{8,T) 1s minimal. Then at most one of the components of
£U» ¢an have any odd cycles; all the other components are
bipartite graphs. Let C be one such; V(Q} = ClLJC2 3
where {Cl> and <C2> are totally disconnected subgraghs.

Let €' be any component of <«U», C' £ C : then

B{C',TUCl} - B{C",T) =-X e, =0

aEc!
bECl

Hence,
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a(stmz,mucl) - 6(5,T) =

~2Xf(a)+ Teo, + Le,+ I c_ + 2%BlC,T].
aECl agl, acm a,bECla
BhET =L

Sinece C is totally disconnected, =0 . b

by
1 a,bEClch

gimilar relation holds with Cl replaced by Cz » Adding

those two we find

[5{suc2,TUcl}—5{s,T}}+[6{suc Tucz}—a(s,T]] =

l!

=-2B(C,TI+ 475B(C,T) .

The right side is O if B{C,T} 1is even, and 2 if B{C,T)

is odd., As all §'s are even, either & ({5UC Tuczl or

l?

&{5JC TUCl} equals  &(5,T}, i.e., is also minimal.

21
In this manner all bipartite caomponents of <U> can
be removed, leaving a partition (S*%,T*,U*%) in which u*

has at most one component. Hence g{S*,T*} ¢ 1 , while

§(5%,T*) 1s minimal.|g

The interested reader will find a logical sequence of
thoorems on factors by starting with the 1-factor theorem

in chapter 2 and then following this diagram:
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i-factor Theorem (Z.5)

l

see [T 3)

}

f-factor Theorem (6.1)

/ \
See [T 4] See the proof in Chapter VI
/ \
A Theorem of Berge's {2,1) Corcllary {6.2)
Teke G = K Take G = K
m, 1 n
v Y
Theorem on bipartite graphs Erdds-gallai
{Chapter 1IV) Theorem (4.1)
Trivial

\

Gale-Ryser Theorem (3,1)



VII. |--FACTORABILIYY AND CARTESIAN PRODUCTS OF GRAFPHS

A graph (without loops or lultiple edges) is

A-factorable if it can be expressed as a union of edga -

disjoint l-factors. There is no Xnown characterization of
t~factorable graphs. In this sectian first we discuss the
relation between l1-factorability and edge—culorability of a
graph and then investigate the l-Zactorability of Cartesian
product of graphs.

An assignment of n  colers to the edges of a nonempty
gravh G sc that adjacent 2dges are colored differently is

an sdge-coloring of 6 . The minimum n  for which a graph

G is n-edge-calorable is its edge-chromatic numher xl[G}.
By a theorem of Vizing (see (Qre) p- 243) the edge-chromatic

numbexr Kl(G} of &8 graph G is bounded by

AlG) < ';LliGJ £ 4G+ 1

where A(G) is the maximum degree of ¢ . Now, it is cleax
that G is 1-factorable if and only if G is a regular
graph of degree A(@) anad 11{G} = A(G). Hence any theorem
concerning the l-factorability of regular graphs has as an
imrediate corollary a result concerning edge-colorability,

which is useful since there is also no known characterization

56
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of those araphs which are 4(G} -edge-colorable.

Definition: The cgartesian product {or product) of two graphs

G and H , denoted by GxH, is defined by:

V{GxH) = V(@) x V{H);

EfGeH)= [[ (u,v},{u*,v'}]]lu=wu" and wvv'€ E{H) or

v=v' and un'€ E(g)].

Theorem 7.1. If xl{G} = 4(G), then xl{GxH] = A{GEY)+ A(HD) .

Proof: GxH, which is isomorphic with HXG , contains [V{H) |

d' 3 3 In 2 n 3 PR

1sjoint "horizontal" copies Gl’GE’ ,GlV{H}i of G and
|lv{c)] disjoint "vertical" copies Hl’HE""’H|V{G}1 of
H + A horizontal copy Gi and a vertical copy Hj have

only one vertex {ui,vj] in common.

By the above theorem of Vizing we have

A{GxH) < Xy (GxH) < A{GxH) + 1 .

But, A{GxH} = A{G) + A(H). Therefore it is enough to show
that xl{Gx}ﬂ < A(G) + AR .

To see this, color the edges of each horizontal copy
properly with colors {1,2,...,5(G) = xl[G}} and each

vertical cepy properly with colors
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{MGHJ._,MG}+2,-.-,MG}+H{HJ}. If y, (H) = 4(H) then we
are done. I1f xl(H} = A{H}+ 1 , then take any edge

e = [(ui,vk},(uj,vk}] in any horizontal copy I which is
colorad in color nurber 1. Each end point of e in the
coplies Hi or Hj is joined to at most A(H) vertical
edges. Therefore there is at least one color missing at

both ends. We color the edge e the missing color. In this
manner, color 1l is removed, and we have colored GyxH in

just  A(G)+ A(H) colors {2,3,...,4(G)+ a{)+ 1]-@

In [BM] Behzad and the author discussed the topological
invariants of GxH in terms of those of ¢ and H . In
that article (page 159), we showed that if both xl{G}
an<l xl{H} assume the right side of the Vizing inegqualities
{i1-e., ﬁlEG} = 4{G)+ 1 , 11{H} = A(H)}+ 1) then xI[GxH}
can assume either side of the inequalities with the proper
G and H . The ahove theorem shows that if at least one of
xl{G] or 11[H} assumes the left side of the Vizing

inegualities then so does KI{GXHJ-

Theorem 7.1 implies the following corollary which was

proved by Himelwright and Williamson [HW] Qirectly.

Coxollary V.2. If G is a l-factorable graph and H is a




regular graph, then GxH is a l-factorable graph.

Proof: "The l-fagctorability of G implies gl{g) = A{G).
Then by Theorem 7.1 11[GK}H = A(GxH), and since GxH is

regular, it is l-factorable.
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