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Introduction



Introduction (Statistical / Deep Generative Models)

1. A Generative model (GM) is a probability distribution p(x).
o A statistical GM is a trainable probabilistic model, p,(x).
o A deep GM is a statistical generative model parametrized by a neural network.
2. A generative model needs
o Data (x): Complex, unstructured samples such as images, speech, molecules, text, etc.

o Prior knowledge: parametric form (e.g., Gaussian, mixture, softmax), loss function (e.g.,
maximum likelihood, divergence), optimization algorithm, etc.
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6eM

Model family

1. A Representation: how do we parameterize the joint distribution of many random
variables?

2. A Learning: what is the right way to compare probability distributions?

3. A Inference: how do we invert (or encode) the generation process?

Credit: Aditya Grover
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Autoregressive models




Autoregressive models

1. Suppose we have a dataset S = {x, x2, ..., Xy} of n-dimensional points x.
2. For simplicity, we assume points are binary, i.e., x € {0,1}".

3. Using chain rule, we can factorize the joint distribution as

n

n
p(x) = p(x1, %2, ..., Xn) = HP(X,'|X17X27 cXi1) = HP(Xi|X<i)
i=1 i=1

where x; = [x1, x2, ..., x;—1] denotes vector of random variables with index less than /.

4. The chain rule factorization can be expressed graphically as a Bayesian network.
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. The autoregressive constraint is a way to model sequential data.

. The factorization contains n factors and some of these factors contain many parameters (
O(2") in total).

. It is infeasible to learn such an exponential number of parameters.
. AR models use (deep) neural network to parameterize these factors p(x;|x-;).

. We assume the conditional distributions p(x;|x.;) correspond to Bernoulli random
variables and learn a function that maps the proceeding random variables xi, xo, ..., x;_1
to the mean of this distribution as

po,(xi|x<i) = Bern(fi(x1, %2, ..., Xi—1))

where 0; denotes the set of parameters used to specify the mean function
f; : {0,1} -1 [0,1].

. The number of parameters of an autoregressive generative model equals to >_"_,[6;].
. Tractable exact likelihood computations.
. No complex integral over latent variables in likelihood

. Slow sequential sampling process. 6/41



1. The nth output should only be connected to the previous n — 1 inputs.

2. For example, when computing p(xs|x3, x2, x1) the only inputs that we should consider are
X1, X2, X3 because these are the only variables given to us while computing the conditional
probability.
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Autoregressive models

1. In the simplest case, we can specify the function as a linear combination of the input
elements followed by a sigmoid non-linearity (to restrict the output to lie between 0 and 1).

2. This gives us the formulation of a fully-visible sigmoid belief network (FVSBN).
ﬁ(X17X27~--aXi—1):U 36+ZQJXJ

where o is sigmoid function and ¢; = {a,...,a\ ,}.

3. At the output layer we want to predict n conditional probability distributions while at the
input layer we are given the n input variables.

4. The conditional variables x;|xi, ..., x;_1 are Bernoulli with parameters

i—1
: 0N i i
Ri=pxi=1x1,...,x-1;0;)) =0 aO+E ajx;
Jj=1
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Autoregressive models

1. How to evaluate p(x, ..., X900)?
2. Multiply all the conditionals factors.
3. How to sample from p(xi, ..., xg00)?
o Sample X1 ~ p(x1).
e Sample x> ~ p(x|x1 = X1).

-] Sample )_(3 ~ p(X3|X1 = )_<1,X2 = >_<2).

™

n

4. How many parameters? 1 +2+3+ ...+ n~ %
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FVSBN results (Gan et al.

)

1. Left: Training (Caltech 101 Silhouettes) Right: Samples from the model
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Neural Autoregressive Density Estimator

1. To increase the expressiveness of an autoregressive generative model, we can use more
flexible parameterizations for the mean function such as MLP instead of logistic regression.

2. For example, consider the case of a neural network with one hidden layer.

3. The mean function for variable i can be expressed as
h;, = O'(A,'X<,' + C,')
fi(x1, %2, ..., xi—1) = o (a'h; + b;)

where h; € R is hidden layer activations of MLP.

4. Hence, we have the following architecture
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Neural Autoregressive Density Estimator

1. To improve model, use a neural network with one hidden layer instead of logistic
regression.

h;, = (T(A,'X<i + C,')
Xj = p(X,' = 1|X1, cey Xi—1, 0’) = U((X(i)h,' + b,)
0i = {A,‘,C,‘, a(i)7 bl}
2. h; € RY denotes the hidden layer activations for the MLP.
3. 0; = {A e R¥(-1 ¢; e R, al) € R b; € R} are the set of parameters.
4. Hidden layer parameters are shared and only the relevant columns of A are used for each i.

5. The total number of parameters in this model is dominated by the matrices A; and given
by O(nd + n).
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Neural Autoregressive Density Estimator

1. The Neural Autoregressive Density Estimator (NADE) provides an alternate MLP-based
parameterization that is more statistically and computationally efficient than the given
approach (Larochelle and Murray 2011).

2. In NADE, parameters are shared across the functions used for evaluating the conditionals.
3. The hidden layer activations are specified as

h;, = O’(W <iX<i +C)

)

X = p(X,' = ].|X17 ey Xio1; 0') = a(a(i)h; + b,)

4.0 ={W e R¥" c e RY, {al) e RY}"_, {b; € R}"_,} is the full set of parameters.

5. The weight matrix W and the bias vector ¢ are shared across the conditionals.
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Neural Autoregressive Density Estimator

1. Sharing parameters has two benefits:
o The total number of parameters gets reduced from O(n’d) to O(nd).

o Hidden unit activations can be evaluated in O(nd) time via
h; = a(a;)
aip1 =a; + W[, i]x

with the base case given by a; = c.
2. Training of NADE is done by minimizing —+ ,.T:1 log p(x;)

3. Samples from NADE trained on a binary version of MNIST.
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Deep NADE

1. The input to the network (DeepNADE) is the concatenation of the masked data and the

mask itself (Uria, Coté, et al. 2016).

2. This allows the network to identify cases when input data is truly zero from cases when

input data is zero because of the mask.

3. NADE also explored other autoencoder architectures such as convolutional neural networks

4. DeepNade with two hidden layers
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Real-Valued NADE

1. The RNADE algorithm extends NADE to learn generative models over real-valued
data (Uria, Murray, and Larochelle 2013).

2. The conditionals are modeled via a continuous distribution such as mixture of K Gaussian.

x,|X<, § 7TU Kij, O

Output of the network are parameters of a mixture model
for p(x[x<«)

Means are ji;x = bj'} + o} h;

Standard deviations are o = exp (bf’k + aﬂh,-)

o Mixing weights are 7; , = softmax (bf’k + aﬂh,-)

3. Please study DocNADE.
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Autoregressive models vs. Autoencoders

Poos

1. Considering the following models.

Autoencoder

2. FVSBN and NADE look similar to an autoencoder.
3. An encoder computing hidden.
4. A decoder computing densities.

5. A loss function, which is likelihood.
17 /41



Autoregressive Autoencoders

1. An autoencoder is not a generative model: it does not define a distribution over x for

sampling new data points.

\'1.

0'/
lh\
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2. Can we get a generative model from an autoencoder?

3. We need to make sure it corresponds to a valid Bayesian Network, i.e., we need an
ordering. If the ordering is 1, 2, 3, then

e X cannot depend on any input x.
o X» can only depend on x;.

4. We can use a single neural network to produce all the parameters.
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Masked Autoencoder for Distribution Estimation (MADE)

1. MADE is an autoencoder that preserves autoregressive property (Germain et al. 2015).

x €2 z3 T T2 xs3

Autoencoder x Masks —— MADE
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Masked Autoencoder for Distribution Estimation (MADE)

1. MADE is a specially designed architecture to enforce the autoregressive property in the

autoencoder efficiently.

2. MADE removes the contribution of certain hidden units by using mask matrices so that
each input dimension is reconstructed only from previous dimensions in a given ordering in

a single pass.

3. In a multilayer fully-connected neural network, say, we have L hidden layers with weight
matrices W', ..., W’ and an output layer with weight matrix V. The output X has

dimensions X; = p(x;j|x1.;-1)

4. Without any mask, we have

h? = x
h' = activation’(W'h’~1 + b')
% = o(Vht +¢)
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Masked Autoencoder for Distribution Estimation (MADE)

1. Without any mask, we have
h® =x
h' = activation’(W'h'~! + b')
% =o(Vht 4 ¢)

2. To zero out some connections between layers, we can simply element-wise multiply every
weight matrix by a binary mask matrix.

h' = activation’ (W/oMW )/~ 4 b')
% = o((VoMY)h! + ¢)

3. Mask matrix is constructed by a labeling process.

HEEEEEAEERN
8[0]
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Masked Autoencoder for Structured Distribution Estimation (MASDE) ﬂgﬁ

1. This method is used when the structure (Markov random field) of the data is
known (Khajenezhad, Madani, and Beigy 2021).

2. In structured distributions, the graph structure of the variables declares their conditional

dependencies.

3. Therefore, having a graph structure, each of the chain rule conditional terms might be
presentable by a conditional probability on a smaller set of variables.

4. For each i, we assume there is a subset B; C {1,...,7— 1} such that p(x;j|x<;) = p(xi|xs,).

5. Use an auoencoder that has the above autoregressive property and mask matrix is

constructed by a labeling process.

6. MASDE needs a smaller training set in comparison with its counterparts.

KL Divergence

Size of the
Hidden Layers = 100
KL Divergence

.1 1
100 200 300 100 500 100 200 300 400 500
Train Size Train Size 2/4



PixelRNN

1. PixelRNN is a deep generative model for images (Oord, Kalchbrenner, and Kavukcuoglu
2016).

2. Dependency on previous pixels modeled using an RNN (LSTM).
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PixelCNN

1. The main drawback of PixelRNN is that training is very slow.

2. PixelCNN uses standard convolutional layers to capture a bounded receptive field and

compute features for all pixel positions at once (Oord, Kalchbrenner, Espeholt, et al.
2016).

3. In PixelCNN, pooling layers are not used.

4. Masks are adopted in the convolutions to restrict the model from violating the conditional
dependence.

Masked convolution

PixelCNN

5. Please also PixelCNN-++ (Salimans et al. 2017).
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PixelCNN

1. The training set (CIFAR-10 (left)) and the samples generated by the PixelCNN (right).
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WaveNet

1. WaveNet is very similar to PixelCNN but applied to 1-D audio signals (Oord, Dieleman,
et al. 2016).

2. WaveNet consists of a stack of causal convolution which is a convolution operation
designed to respect the ordering.

3. Causal convolutions used for temporal data which ensures the model cannot violate the
ordering in which we model the data: the prediction p(x:y1|xi, ..., X¢).

4. The causal convolution in WaveNet is simply to shift the output by a number of
timestamps to the future so that the output is aligned with the last input element.

© 0 0 0 06 06 0 O O O O Output

O O O O O O O O O O O Hidden Layer
O O O O O O O O O O O Hidden Layer
O O O 0 O O O O O O O Hidden Layer
© © © 6 ©¢ © 6 ¢ 0 o o Input
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WaveNet

1. One big drawback of convolution layer is a very limited size of receptive field.

2. WaveNet therefore adopts dilated convolution, where the kernel is applied to an
evenly-distributed subset of samples in a much larger receptive field of the input.

© 06 0 6 6 6 6 6 6 6 06 0 0 0 o Output
Dilation = 8
O O O O O O O O O O O O O Hidden Layer

/ / Dilation = 4
O O O @) O O O Hidden Layer
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27 /41



Autoregressive Transformers




Transformers model

1. The attention make it possible to do sequence to sequence modeling without recurrent
network units (Vaswani et al. 2017).

2. The transformer model is entirely built on the self-attention mechanisms without using
sequence-aligned recurrent architecture.
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Figure: Jay Alammar

3. The encoding component is a stack of six encoders.

4. The decoding component is a stack of decoders of the same number.
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Transformers training

1. The Transformers works slightly differently during training and inference.
2. Input sequence: You are welcome in English.

3. Target sequence: De nada in Spanish
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Transformers inference

1. During Inference, we have only the input sequence and don't have the target sequence to

pass as input to the Decoder.

2. The goal is to produce the target sequence from the input sequence alone
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nsformers decoder

1. The Decoder passes its input into a Multi-head Self-attention layer.

2. This operates in a slightly different way than the one in the Encoder.

3. It is only allowed to attend to earlier positions in the sequence. This is done by masking

future positions.
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nsformers decoder attention la

1. The attention layers of Transformers decoder are
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GPT uses only the Transformers decoder blocks (Radford et al. 2018):
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Transformers decoder self-attention and masking

1. The Decoder Self-Attention works just like the Encoder Self-Attention, except that it

operates on each word of the target sequence.
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Transformers decoder encoder-decoder attention and masking

1. The Encoder-Decoder Attention takes its input from two sources.

2. The Encoder-Decoder Attention computes the interaction between each target word with
each input word.

3. The Masking masks out the Padding words in the target sequence.
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Transformers decoder

1. At the time step n, we have input xi, ..., x, tokens to the decoder.

2. The output attention tensor Y, from the masked self-attention head is computed as
follows.

-
Y, = softmax (Mask (Q"K" >> V,
Vi

3. In the time step n + 1, we have next token x,.; and

Qn

Qn+1 - Xn+1WQ -
dn+1
Ka

Kn+1 - Xn+1WK -
kn+1

V,

v n

Vn+1 = Xn+1W -
Vn+1

where gn41, knt1, Var1 are new attention tokens.
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Transformers decoder

Yy Qn+1 ,;:.1
ne1 = softmax [ Mask NGh Vi

1
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Transformers decoder

Hence, the new attention tensor y,.1 can be computed using

1
Ynt+1 = softmax (\/d—k%ﬂ KnT+1> Vit

1 V,
= softmax { —=q, { K] | k| D "
( vV dk o ‘ i Vn+1
1 V
= softmax [ —==x, 1 W©® [ KT | WEx], }) !
(\/dk o | Wit Xn+1 Wy

Computing the new attention tensor y,.1 for the new attention token x,.1 is a operation O(n).
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Reading

1. Chapter 22 of Probabilistic Machine Learning: Advanced Topics (Murphy 2023).

2. Chapter 2 of Deep Generative Modeling (Tomczak 2022).
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