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Introduction



Generative models categories
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Generative models

1. Assume that the observed variable x is a random sample from an underlying process,

whose true distribution pdata(x) is unknown.

2. We attempt to approximate this process with a chosen model, pθ(x), with parameters θ

such that x ∼ pθ(x).

3. Learning is the process of searching for the parameter θ such that pθ(x) well approximates

pdata(x) for any observed x, i.e.

pθ(x) ≈ pdata(x)

4. We wish pθ(x) to be sufficiently flexible to be able to adapt to the data for obtaining

sufficiently accurate model and to be able to incorporate prior knowledge.

Credit: Aditya Grover
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Deep generative models

Autoregressive models

1. Tractable density

2. Density is estimated as

p(x; θ) =
m∏

j=1

p(xj | x<j ; θ)

3. Tractable likelihood

4. No inferred latent factors

Latent variable models

1. Approximated density

2. Density is estimated as

p(x; θ) =

∫
p(x, z; θ)dz

3. Intractable likelihood

4. Latent feature representation

Normalizing flow models

1. Exact density

2. Density is estimated as

pθ(x) = pz(z)|det (Jf )|
where z = f (x)

3. Tractable likelihood

4. Latent feature representation

Generative adversarial networks

1. Implicit density

2. Can optimize f-divergences and Wasserstein distance

min
G

max
D

Ex∼ pdata(x)
[logD(x)] + Ez∼ pz(z)

[log(1− D(G (z)))]

3. Intractable likelihood

4. Latent feature representation

5. Very flexible model architectures, unstable training, hard

evaluation, mode collapse
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Energy-based models



Energy-based models

1. Very flexible model architectures

2. Stable training

3. Relatively high sample quality

4. Flexible composition
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Representing probability distributions

1. Probability distributions pθ(x) are a key building block in generative modeling.

2. They have the following properties

Non-negative: pθ(x) ≥ 0

Sum to one:
∑

x pθ(x) = 1 or
∫
x
pθ(x)dx = 1

3. Making non-negativeness is easy and we can choose any of the following function:

gθ(x) = fθ(x)
2

gθ(x) = exp(fθ(x))

gθ(x) = |fθ(x)|
gθ(x) = log(1 + exp(fθ(x)))

4. In general Zθ =
∑

x gθ(x) ̸= 1.

5. Hence, gθ(x) is not a valid probability mass function or density.
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Representing probability distributions

1. The maintaining gθ(x) ≥ 0 is easy but making
∑

x pθ(x) = 1 is a hard problem.

2. A solution is to normalize gθ(x) by its volume as

pθ(x) =
gθ(x)

Volume(gθ)
=

gθ(x)∫
x gθdx

3. Then, by definition we have
∫
x pθ(x)dx = 1.

4. We can calculate the volume analytically if we choose some analytical functions such as

Density function Volume

g(µ,σ)(x) = e−
(x−µ)2

2σ2
∫
x
e−

(x−µ)2

2σ2 dx =
√
2πσ2

gλ(x) = e−λx
∫∞
0

e−λxdx = 1
λ

gθ(x) = h(x) exp(θT (x)) exp(log
∫
h(x) exp(θT (x))dx)

5. The above functional forms seem to be restrictive but they are very useful as building

blocks for more complex distributions.
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Energy-Based Models

1. The density function given by an EBM is

pθ(x) =
exp(−Eθ(x))

Zθ

2. Eθ(x) (the energy) is a nonlinear regression function with parameters θ.

3. Alternatively, happiness, H(x) = −E (x), is used to avoid multiple minus signs.

4. Zθ denotes the normalizing constant (partition function):

Zθ =

∫
exp(−Eθ(x))dx

5. Zθ is constant w.r.t x and is a function of θ.

6. Evaluation and differentiation of log pθ(x) w.r.t. its parameters involves a typically

intractable integral.

7. Here, we don’t care about the exact density (which needs to compute the partition

function Zθ ), but only interested in the relative order of densities.
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Energy-Based Models

1. We can fit pθ(x) to pdata(x) by maximizing the expected log-likelihood function over the

data distribution, defined by

Ex∼ pdata(x)
[log pθ(x)]

2. Here the expectation can be easily estimated with samples from the dataset.

3. Maximizing likelihood is equivalent to minimizing the KL divergence between pdata(x) and

pθ(x), because

−Ex∼ pdata(x)
[log pθ(x)] = DKL( pdata(x) || pθ(x))− Ex∼ pdata(x)

[log pdata(x)]

= DKL( pdata(x) || pθ(x))− constant

4. We cannot directly compute the likelihood of an EBM as in the maximum likelihood

approach due to the intractable normalizing constant Zθ.

5. Nevertheless, we can still estimate the gradient of the log-likelihood with MCMC

approaches, allowing for likelihood maximization with gradient ascent.
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Maximum Likelihood of EBMs

1. The density function given by an EBM is

pθ(x) =
exp(−Eθ(x))

Zθ

2. The gradient of negative log-likelihood (NLL) is decomposed to:

∇θ log pθ(x) = −∇θEθ(x)−∇θ logZθ

3. The first gradient term, −∇θEθ(x), is straightforward to evaluate with automatic

differentiation.

4. The challenge is in approximating the second gradient term, ∇θ logZθ, which is

intractable to compute exactly.
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Maximum Likelihood of EBMs

∇θ logZθ an be rewritten as follows:

∇θ logZθ = ∇θ log

∫
exp(−Eθ(x))dx

=

(∫
exp(−Eθ(x))dx

)−1

∇θ

∫
exp(−Eθ(x))dx

=

(∫
exp(−Eθ(x))dx

)−1 ∫
∇θ exp(−Eθ(x))dx

=

(∫
exp(−Eθ(x))dx

)−1 ∫
exp(−Eθ(x))(−∇θEθ(x))dx

=

∫ (∫
exp(−Eθ(x))dx

)−1

exp(−Eθ(x))(−∇θEθ(x))dx

=

∫
exp(−Eθ(x))

Zθ
(−∇θEθ(x))dx

=

∫
pθ(x)(−∇θEθ(x))dx = Ex∼ pθ(x)

[−∇θEθ(x)]

Thus, we can obtain an unbiased one-sample Monte Carlo estimate of the log-likelihood

gradient by

∇θ logZθ ≈ −∇θEθ(x̃)

where x̃ ∼ pθ(x) is a random sample from the distribution over x given by the EBM.
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Gradient-based MCMC methods

1. As long as we can draw random samples from the model, we have access to an unbiased

Monte Carlo estimate of the log-likelihood gradient, allowing us to optimize the

parameters with stochastic gradient ascent.

2. Since drawing random samples is far from being trivial, much of the literature has focused

on methods for efficient MCMC sampling from EBMs.

3. Some efficient MCMC methods make use of the fact that the gradient of the

log-probability w.r.t. x (score) is equal to the (negative) gradient of the energy, therefore

easy to calculate:

∇x log pθ(x) = −∇xEθ(x)−∇x logZθ︸ ︷︷ ︸
=0

= −∇xEθ(x)

4. For example, Langevin MCMC initially draws a sample x0 from a simple prior distribution,

and then uses a process for K steps with step size ϵ > 0:

xk+1 ← xk +
ϵ2

2
∇x log pθ(x) + ϵzk

where zk ∼ N (0, I) is a Gaussian noise term.
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Boltzmann Machine (BM)

1. BMs are fully connected networks of binary units.

2. BM is an undirected symmetric network of binary units that are divided into visible and

hidden units.

Fig. 1. A Boltzmann Machine with 5 visible units (in blue) and 5 hidden
units (in red).

learn complex distributions. However, they have not proven
useful on a practical level. Similar to Hopfield networks,
Boltzmann machines are fully connected networks of binary
units that use the same energy function. However, unlike
Hopfield networks, Boltzmann machines are not memory
driven and try to capture the inner structure and regularities
instead. The power of the binary Boltzmann Machine lies
in the hidden units that allow it to extend the simple linear
interactions to higher-order ones and give it the possibility to
model virtually any probabilistic distribution. The Energy of
the binary Boltzmann Machine is given by:

E(x) = −(
1

2

∑

ij

wijxixj +
∑

i

bixi) (1)

Where x = (x1, x2, . . . , xd) ∈ {0, 1}d, W = (wij)ij is the
weight matrix and B = (b1, x2, . . . , bd) is the bias vector.

The joint probability of the network is given by:

P (x) =
1

Z(b)
exp(−E(x)) (2)

Where Z(b) is the partition function that ensures P (x) ≤ 1.
Boltzmann machines are theoretically capable of learning

any given distribution simply by being shown examples sam-
pled from it. Essentially, the network sets the strengths of
the connections between the units to capture the correlations
that tie them together in order to build a generative network
capable of, among other things, producing new examples of
the same distribution. And since not all the variables (units)
in a Boltzmann machine are directly observed, it gives us a
handle to control the sampling of new examples. Furthermore,
the model can take in an incomplete example and use it to
output the complete version.

Learning in Boltzmann machines is of a Hebbian nature,
meaning to update a weight, we only need information
from the neighboring neurons. This means that learning in

Boltzmann machines is more biologically plausible. Hebbian
learning is one of the oldest learning algorithms. It can be
summarized as “Cells that fire together wire together.” [12]
In practice, neurons choose to either strengthen their link or
weaken it based on how often they agree in their outputs.
If two neurons would more often than not have the same
output, the learning algorithm puts more weight on their link.
Similarly, if they disagree most often, the link between them is
weakened. This learning process is said to be more biologically
plausible because it does not require any backlinks to be
maintained by the network to receive gradient information,
and every weight update relies only on the neighboring units.

2) Restricted Boltzmann Machine: The tractability of the
joint distribution is one of the biggest drawbacks of Boltzmann
machines. Restricted Boltzmann Machines (formally Harmo-
nium) [13] are a special type of Boltzmann machines with two
layers: One visible and one hidden layer, that was designed to
solve this problem. The RBM is a graphical model of binary
units. However, real-valued generalization is straightforward
[14] [15]. The connections in an RBM are undirected and
there are no visible-visible or hidden-hidden connections (fig.
2). Among other things, this bipartite architecture allows us
to have more control over the joint distribution by casting it
into a sum of conditional probabilities. RBMs are a powerful
replacement for fully connected Boltzmann machines when
building a deep architecture because of the independence of
units within the same layer, which allows for more freedom
and flexibility.

Fig. 2. A Restricted Boltzmann Machine with 3 visible units (in blue) and 4
hidden units (in red).

RBMs can be trained using the traditional techniques of
maximum likelihood [16]. Sampling from an RBM can be
done using Gibbs sampling method or any other Markov Chain
Monte Carlo (MCMC) [17] method.

3) Deep Boltzmann Machine: Deep Boltzmann Machine
(DBM) [18] is an undirected deep network of several hidden
layers. In DBMs every unit is connected to every unit from
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Boltzmann Machine (BM)

1. BMs are theoretically capable of learning any given distribution.

2. The network sets the strengths of the connections between the units to capture the

correlations between them to build a generative network capable of producing new

examples of the same distribution.

3. Since all variables in a BM are not directly observed, it gives us a handle to control the

sampling of new examples.

4. The model can take in an incomplete example and use it to output the complete version.
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Boltzmann Machine (BM)

1. BM is a network with an energy defined for the overall network.

2. For a BM with only observed units, the energy is defined as

Eθ(x) = −
∑

ij

wijxixj −
∑

i=1

bixi

= −x⊤Wx− b⊤x

x = (x1, x2, . . . , xd) ∈ {0, 1}d is the input vector.

W = (wij) is the weight matrix

b = (b1, b2, . . . , bd) ∈ {0, 1}d is the bias vector.

3. The joint probability distribution defined as

pθ(x) =
exp(−Eθ(x))

Zθ

Zθ is Partition function that ensures
∑

x pθ(x) = 1.
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Boltzmann Machine (BM)

1. BM becomes more powerful when not all the variables are observed.

2. The latent variables can act similarly to hidden units in a MLP.

Fig. 1. A Boltzmann Machine with 5 visible units (in blue) and 5 hidden
units (in red).

learn complex distributions. However, they have not proven
useful on a practical level. Similar to Hopfield networks,
Boltzmann machines are fully connected networks of binary
units that use the same energy function. However, unlike
Hopfield networks, Boltzmann machines are not memory
driven and try to capture the inner structure and regularities
instead. The power of the binary Boltzmann Machine lies
in the hidden units that allow it to extend the simple linear
interactions to higher-order ones and give it the possibility to
model virtually any probabilistic distribution. The Energy of
the binary Boltzmann Machine is given by:

E(x) = −(
1

2

∑

ij

wijxixj +
∑

i

bixi) (1)

Where x = (x1, x2, . . . , xd) ∈ {0, 1}d, W = (wij)ij is the
weight matrix and B = (b1, x2, . . . , bd) is the bias vector.

The joint probability of the network is given by:

P (x) =
1

Z(b)
exp(−E(x)) (2)

Where Z(b) is the partition function that ensures P (x) ≤ 1.
Boltzmann machines are theoretically capable of learning

any given distribution simply by being shown examples sam-
pled from it. Essentially, the network sets the strengths of
the connections between the units to capture the correlations
that tie them together in order to build a generative network
capable of, among other things, producing new examples of
the same distribution. And since not all the variables (units)
in a Boltzmann machine are directly observed, it gives us a
handle to control the sampling of new examples. Furthermore,
the model can take in an incomplete example and use it to
output the complete version.

Learning in Boltzmann machines is of a Hebbian nature,
meaning to update a weight, we only need information
from the neighboring neurons. This means that learning in

Boltzmann machines is more biologically plausible. Hebbian
learning is one of the oldest learning algorithms. It can be
summarized as “Cells that fire together wire together.” [12]
In practice, neurons choose to either strengthen their link or
weaken it based on how often they agree in their outputs.
If two neurons would more often than not have the same
output, the learning algorithm puts more weight on their link.
Similarly, if they disagree most often, the link between them is
weakened. This learning process is said to be more biologically
plausible because it does not require any backlinks to be
maintained by the network to receive gradient information,
and every weight update relies only on the neighboring units.

2) Restricted Boltzmann Machine: The tractability of the
joint distribution is one of the biggest drawbacks of Boltzmann
machines. Restricted Boltzmann Machines (formally Harmo-
nium) [13] are a special type of Boltzmann machines with two
layers: One visible and one hidden layer, that was designed to
solve this problem. The RBM is a graphical model of binary
units. However, real-valued generalization is straightforward
[14] [15]. The connections in an RBM are undirected and
there are no visible-visible or hidden-hidden connections (fig.
2). Among other things, this bipartite architecture allows us
to have more control over the joint distribution by casting it
into a sum of conditional probabilities. RBMs are a powerful
replacement for fully connected Boltzmann machines when
building a deep architecture because of the independence of
units within the same layer, which allows for more freedom
and flexibility.

Fig. 2. A Restricted Boltzmann Machine with 3 visible units (in blue) and 4
hidden units (in red).

RBMs can be trained using the traditional techniques of
maximum likelihood [16]. Sampling from an RBM can be
done using Gibbs sampling method or any other Markov Chain
Monte Carlo (MCMC) [17] method.

3) Deep Boltzmann Machine: Deep Boltzmann Machine
(DBM) [18] is an undirected deep network of several hidden
layers. In DBMs every unit is connected to every unit from

3. By decomposing units into two subsets: visible v and hidden units h, we obtain.

Eθ(v,h) = −v⊤Rv − v⊤Wh− h⊤Sh− b⊤v − c⊤h

4. The joint probability distribution defined as

pθ(v,h) =
exp(−E (v,h)))

Zθ

Zθ is Partition function that ensures
∑

x pθ(x) = 1.
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Boltzmann Machine (BM)

Boltzmann Machines

Example:

x1 x2 x3 w12x1x2 w13x1x3 w23x2x3 b2x2 H(x) exp(H(x)) p(x)
-1 -1 -1 -1 -1 2 -1 -1 0.368 0.0021
-1 -1 1 -1 1 -2 -1 -3 0.050 0.0003
-1 1 -1 1 -1 -2 1 -3 0.368 0.0021
-1 1 1 1 1 2 1 5 148.413 0.8608
1 -1 -1 1 1 2 -1 3 20.086 0.1165
1 -1 1 1 -1 -2 -1 -3 0.050 0.0003
1 1 -1 -1 1 -2 1 -1 0.368 0.0021
1 1 1 -1 -1 2 1 1 2.718 0.0158

Z = 172.420

Roger Grosse CSC321 Lecture 19: Boltzmann Machines 6 / 24
Figure: Roger Grosse
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Boltzmann Machine (BM)

Boltzmann Machines

Marginal probabilities:

p(x1 = 1) =
1

Z
X

x:x1=1

exp(H(x))

=
20.086 + 0.050 + 0.368 + 2.718

172.420

= 0.135

x1 x2 x3 w12x1x2 w13x1x3 w23x2x3 b2x2 H(x) exp(H(x)) p(x)
-1 -1 -1 -1 -1 2 -1 -1 0.368 0.0021
-1 -1 1 -1 1 -2 -1 -3 0.050 0.0003
-1 1 -1 1 -1 -2 1 -3 0.368 0.0021
-1 1 1 1 1 2 1 5 148.413 0.8608
1 -1 -1 1 1 2 -1 3 20.086 0.1165
1 -1 1 1 -1 -2 -1 -3 0.050 0.0003
1 1 -1 -1 1 -2 1 -1 0.368 0.0021
1 1 1 -1 -1 2 1 1 2.718 0.0158

Z = 172.420

Roger Grosse CSC321 Lecture 19: Boltzmann Machines 7 / 24Figure: Roger Grosse
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Boltzmann Machine (BM)

Boltzmann Machines

Conditional probabilities:

p(x1 = 1 | x2 = �1) =

P
x:x1=1,x2=�1 exp(H(x))P

x:x2=�1 exp(H(x))

=
20.086 + 0.050

0.368 + 0.050 + 20.086 + 0.050

= 0.980

x1 x2 x3 w12x1x2 w13x1x3 w23x2x3 b2x2 H(x) exp(H(x)) p(x)
-1 -1 -1 -1 -1 2 -1 -1 0.368 0.0021
-1 -1 1 -1 1 -2 -1 -3 0.050 0.0003
-1 1 -1 1 -1 -2 1 -3 0.368 0.0021
-1 1 1 1 1 2 1 5 148.413 0.8608
1 -1 -1 1 1 2 -1 3 20.086 0.1165
1 -1 1 1 -1 -2 -1 -3 0.050 0.0003
1 1 -1 -1 1 -2 1 -1 0.368 0.0021
1 1 1 -1 -1 2 1 1 2.718 0.0158

Roger Grosse CSC321 Lecture 19: Boltzmann Machines 8 / 24Figure: Roger Grosse

19 / 73



Boltzmann Machine Learning

1. Learning algorithms for BMs are usually based on maximum likelihood.

2. All BMs have an intractable partition function, so the maximum likelihood gradient must

be approximated.

3. An interesting property of BMs is that the update for a particular wij depends only on the

statistics of xi and xj .
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Boltzmann Machine Learning

1. A BM admits the following likelihood for points x (1), . . . , x (n).

L(x(1), . . . , x(n)) =
n∏

i=1

p(x(i))

2. We will work with the log-likelihood instead of the true likelihood.

logL(x(1), . . . , x(n)) =
n∑

k=1

log
exp(H(x(k))

Zθ

=
n∑

k=1

log
(
exp(H(x(k)))

)
− logZθ

=
n∑

k=1

H(x(k))− logZθ

3. The aim is to maximize Ex∼ pdata(x)
[L(x)]

E
x∼pdata

[
L(x)

]
=

n∑

k=1

pdata(x = x(k))L(x(k))
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Boltzmann Machine Learning

1. Now, deriving the gradient with respect to the weights (∇wi,j logL)

∇wi,j

[
n∑

k=1

pdata(x = x(k))
(
H(x(k))− logZ

)]
=

n∑

k=1

pdata(x = x(k))∇wi,jH(x(k))

−
n∑

k=1

pdata(x = x(k))∇wi,j logZθ

2. The first term equals to

n∑

k=1

pdata(x = x(k))∇wi,jH(x(k)) =
n∑

k=1

pdata(x = x(k))∇wi,j


∑

i ̸=j

wi,jx
(k)
i x

(k)
j

+
∑

i

pdata(x = x(k))bix
(k)
i

]

=
n∑

k=1

pdata(x = x(k))x
(k)
i x

(k)
j

= E
x∼pdata

[xixj ]
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Boltzmann Machine (BM)

1. The second term equals to

∇wi,j logZθ = ∇wi,j log
∑

x

exp(H(x))

=
1∑

x exp(H(x))
∇wi,j

∑

x

exp(H(x)) =
1

Zθ
∇wi,j

∑

x

exp(H(x))

=
1

Zθ

∑

x

exp(H(x))∇wi,jH(x) =
∑

x

exp(H(x))

Zθ
∇wi,jH(x)

=
∑

x

pθ(x)∇wi,jH(x)

=
∑

x

pθ(x)[xixj ]

= Ex∼pθ [xixj ]

2. By combining the above equations, the gradient w.r.t weights becomes

∇wi,j logL = Ex∼ pθ(x)
[xixj ]− Ex∼ pθ(x)

[xixj ]

3. By combining the above equations, the gradient w.r.t biases becomes

∇bi logL = Ex∼pθ [xi ]− Ex∼pθ [xi ]

23 / 73



Generating a sample by Boltzmann Machine

1. In BM, we generate in two steps:

Pick the hidden states from p(h).

Pick the visible states from p(v|h).How a causal model generates data

• In a causal model we generate data in
two sequential steps:
– First pick the hidden states from p(h).
– Then pick the visible states from p(v|h)

• The probability of generating a visible
vector, v, is computed by summing
over all possible hidden states.

This slide has been adopted from Hinton lectures, “Neural Networks for Machine Learning”, coursera, 2015.

2. The probability of generating a visible vector, v, is computed by summing over all possible

hidden states.

p(v) =
∑

h

p(h)p(v|h)
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Gibbs sampling

1. Given an ordered set of variable, x1, . . . , xd , and a starting configuration x0 = (x01 , . . . , x
0
d ),

Gibbs sampling uses the following procedure

Repeat until convergence for t = 1, 2, . . . ,

Set x← xt−1.

For each variable xi in the order we fixed:

1) Sample x ′i ∼ p(xi | x−i ).

2) Update x← (x1, . . . , x ′i , . . . , xd ).

Set xt ← x.

We use x−i to denote all variables in x except xi .

2. It is often very easy to performing each sampling step, since we only need to condition xi
on other variables.

3. Note that when we update xi , we immediately use its new value for sampling other

variables xj .
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Gibbs sampling (example)

1. We drive p(xi |x−i ) using probability of axioms and discarding bias terms

p(xi = 1|x−i ) =
p(xi = 1, x−i )

p(xi = 1, x−i ) + p(xi = 0, x−i )

=
exp(

[∑
i ̸=j wijxj

]
)

1 + exp(
[∑

i ̸=j wijxj
]
)

=
1

1 + exp(
[
−∑j ̸=i wijxj

]
)

= σ


∑

j ̸=i

wi,jxj
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Gibbs sampling (example)

1. Let d = 3, we need to define

x ′0 ∼p(x0|x1, x2)
x ′1 ∼p(x1|x ′0, x2)
x ′2 ∼p(x2|x ′0, x ′1)

2. Each dimension is binary, the above 3 models must necessarily return the probability of

observing a 1.

3. Note that when we update xi , we immediately use its new value for sampling other

variables xj .
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Gibbs sampling (example)

1. We drive p(x0|x1, x2) using probability of axioms

p(x0 = 1|x1, x2) =
p(x0 = 1, x1, x2)

p(x1, x2)
=

p(x0 = 1, x1, x2)∑
x0∈{0,1} p(x0, x1, x2)

=
p(x0 = 1, x1, x2)

p(x0 = 0, x1, x2) + p(x0 = 1, x1, x2)

=
1

1 + p(x0=0,x1,x2)
p(x0=1,x1,x2)

=
1

1 + exp(H(x0=0,x1,x2)))
exp(H(x0=1,x1,x2)))

=
1

1 + exp(H(x0 = 0, x1, x2)− H(x0 = 1, x1, x2))

=
1

1 + exp(
∑

i ̸=j wijxixj +
∑

i bixi − (
∑

i ̸=j wijxixj +
∑

i bixi ))

=
1

1 + exp(−∑j ̸=i=0 wijxj − bi )

= σ


∑

j ̸=i=0

wi,jxj + bi
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Likelihood Based Methods

Restricted Boltzmann Machine (RBM)



Restricted Boltzmann Machine (RBM)

1. The tractability of the joint distribution is one of the biggest drawbacks of BMs.

2. RBMs are a special type of BMs with two layers: One visible and one hidden layer.
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3. The connections in an RBM are undirected and the graph is a bipartite graph.

4. The probability density is calculated by

p(v,h) =
1

Zθ
exp(−Eθ(v,h))

Eθ(v,h) = −v⊤Wh− b⊤v − c⊤h

Zθ =
∑

v∈{0,1}D

∑

h∈{0,1}F

exp(−Eθ(v,h))
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Restricted Boltzmann Machine (RBM)

1. This bipartite architecture allows us to have more control over the joint distribution.

2. RBMs are a powerful replacement for fully connected BMs when building a deep

architecture because of the independence of units within the same layer, which allows for

more freedom and flexibility.

3. The latent variables can act similarly to hidden units in a MLP.

4. RBMs can be trained using the techniques of maximum likelihood.

5. Sampling from an RBM can be done using Gibbs sampling method or any other Markov

Chain Monte Carlo (MCMC) method.
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Restricted Boltzmann Machine (RBM)

1. Hidden units are conditionally independent given the visible units and vice versa.

p(vi = 1|h) = σ


∑

j

wijhj + bi




p(hj = 1|v) = σ

(∑

i

wijvi + cj

)

2. Given visible v, we can sample each h independently.

3. Given hidden h, we can sample each vj independently.
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Restricted Boltzmann Machine (RBM)

1. The model assigns the following probability to a visible vector v

p(v) =
∑

h

p(v,h)

2. The hidden variables can be explicitly marginalized out

p(v) =
1

Zθ

∑

h

exp(−E (v,h))

=
1

Zθ

∑

h

exp(v⊤Wh+ b⊤v + a⊤h)

=
1

Zθ
exp(b⊤v)

F∏

j=1

∑

hj∈{0,1}
exp(ajhj +

∑

i

Wijvihj)

=
1

Zθ
exp(b⊤v)

F∏

j=1

(
1 + exp(aj +

∑

i

Wijvi )

)
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Restricted Boltzmann Machine (RBM)

1. Bipartite graph structure of RBM has the following property.

2. Conditionals p(h|v) and p(v|h) are factorized and easy computed.

p(h|v) = p(h, v)

p(v)
=

1

p(v)

1

Zθ
exp(b⊤v + c⊤h+ v⊤Wh)

=
1

Z ′ exp(c
⊤h+ v⊤Wh)

=
1

Z ′ exp(
∑

j

cjhj +
∑

j

v⊤W:jhj)

=
1

Z ′
∏

j

exp(cjhj + v⊤W:jhj)

3. Normalizing the distributions over individual binary h

p(hj = 1|v) = p̃(hj = 1|v)
p̃(hj = 0|v) + p̃(hj = 1|v)

=
exp(cj + v⊤W:j)

exp((0)) + exp(cj + v⊤W:j)
= σ

(
cj + v⊤W:j

)

4. Similarly

p(vi = 1|h) = σ (ci +Wi :h)
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Restricted Boltzmann Machine (RBM)

1. Given a set of observations {v1, . . . , vm}, the derivative of the log-likelihood with respect

to the model parameters is

1

m

m∑

k=1

∂ log p(vk)

∂wij
= Epdata [vihj ]− Epθ [vihj ]

1

m

m∑

k=1

∂ log p(vk)

∂cj
= Epdata [hj ]− Epθ [hj ]

1

m

m∑

k=1

∂ log p(vk)

∂bi
= Epdata [vi ]− Epθ [vi ]

2. Exact maximum likelihood learning in this model is intractable because exact computation

of the expectation of pθ takes time that is exponential in min{D,F}.

3. In practice, learning is done by following an approximation to the gradient of a different

objective function, called the Contrastive Divergence (CD) algorithm

∆W = α
(
Epdata [vh

⊺]− EpT [vh
⊺]
)

where α is the learning rate and pT represents a distribution defined by running a Gibbs

chain initialized at the data for T full steps.
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Restricted Boltzmann Machine Training (Contrastive Divergence)

Step 1 Initialize model parameters

Step 2 Take input vector to the visible nodes

Step 3 Compute probabilities of hidden nodes

Step 4 Sample hidden configuration

Step 5 Reconstruction visible nodes

Step 6 Update model parameters

Step 7 Repeat steps 2-6 for multiple iterations
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Gaussian–Bernoulli Restricted Boltzmann Machine (RBM)

1. For modeling real-valued vectors, we extend RBMs to Gaussian–Bernoulli variant

2. Let v ∈ RD , and h ∈ {0, 1}F . The energy of the joint state {v,h} of the Gaussian RBM is

defined as follows:

Eθ(v,h) =
D∑

i=1

(vi − bi )
2

2σ2
i

−
D∑

i=1

F∑

j=1

wijhj
vi
σi
−

F∑

j=1

cjhj

3. The marginal distribution over the visible vector v takes the following form:

pθ(v) =
∑

h

exp(−Eθ(v,h))

Zθ

4. The conditional distributions are

p(vi = x | h) = 1√
2πσi

exp


−

(
x − bi − σi

∑
j hjwij

)2

2σ2
i




p(hj = 1 | v) = σ

(
1 +

∑

i

wij
vi
σi

)

5. Each visible unit is modeled by a Gaussian distribution, the mean of which is shifted by

the weighted combination of the hidden unit activations.
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Restricted Boltzmann Machine

1. The learned receptive fields of Bernoulli–Bernoulli RBM

ST02CH15-Salakhutdinov ARI 14 March 2015 8:3
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a b

Figure 2
A random subset of the training images along with the learned receptive fields. (a) The binary restricted
Boltzmann machine (RBM) trained on the Handwritten Characters data set (resolution is 28 × 28). (b) The
Gaussian–Bernoulli RBM trained on the CIFAR-100 data set (resolution is 32 × 32). Each square displays
the incoming weights from all of the visible variables into one hidden unit.

Specifically, let K be the dictionary size, M be the number of words appearing in a document,
and h ∈ {0, 1}F be stochastic binary hidden topic features. Let V be an M × K observed binary
matrix with vik = 1 if visible unit i takes on value k (meaning the ith word in the document is the
kth dictionary word). The energy of the state {V, h} can be defined as follows:

E(V, h) = −
M∑

i=1

F∑

j=1

K∑

k=1

Wi jkh j vik −
M∑

i=1

K∑

k=1

vikbik −
F∑

j=1

h j a j , (15)

where {W, a, b} are the model parameters. Wijk is a symmetric interaction term between visible
variable i that takes on value k and hidden variable j, bik is the bias of unit i that takes on value
k, and aj is the bias of hidden feature j. The model assigns the following probability to a visible
binary matrix V:

P (V ; θ ) = 1
Z(θ )

∑

h

exp(−E(V, h; θ )), Z(θ ) =
∑

V

∑

h

exp(−E(V, h; θ )). (16)

Now suppose that for each document, we create a separate RBM with as many softmax units
as there are words in the document. Assuming we can ignore the order of the words, all of these
softmax units can share the same set of weights connecting them to binary hidden units. In this
case, the energy of the state {V, h} for a document that contains M words is defined as follows:

E(V, h) = −
F∑

j=1

K∑

k=1

W jkh j v̂k −
K∑

k=1

v̂kbk − M
F∑

j=1

h j a j , (17)

W1

W1 W2

W2

h

v

h

v

W1
W1

W1

W2
W2

W2

W1 W2

Latent topics Latent topics
a b

Observed softmax visibles Multinomial visible

Figure 3
The replicated softmax model. The top layer represents a vector h of stochastic binary hidden topic features, and the bottom layer
consists of softmax visible variables, v. All visible variables share the same set of weights, connecting them to the binary hidden
variables. (a) Two members of a replicated softmax family for documents containing two and three words. (b) A different interpretation
of the replicated softmax model, in which M softmax variables with identical weights are replaced by a single multinomial variable that
is sampled M times.
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2. The learned receptive fields of Gaussian–Bernoulli RBM

ST02CH15-Salakhutdinov ARI 14 March 2015 8:3

Training samples Learned receptive !elds
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Figure 2
A random subset of the training images along with the learned receptive fields. (a) The binary restricted
Boltzmann machine (RBM) trained on the Handwritten Characters data set (resolution is 28 × 28). (b) The
Gaussian–Bernoulli RBM trained on the CIFAR-100 data set (resolution is 32 × 32). Each square displays
the incoming weights from all of the visible variables into one hidden unit.

Specifically, let K be the dictionary size, M be the number of words appearing in a document,
and h ∈ {0, 1}F be stochastic binary hidden topic features. Let V be an M × K observed binary
matrix with vik = 1 if visible unit i takes on value k (meaning the ith word in the document is the
kth dictionary word). The energy of the state {V, h} can be defined as follows:

E(V, h) = −
M∑

i=1

F∑

j=1

K∑

k=1

Wi jkh j vik −
M∑

i=1

K∑

k=1

vikbik −
F∑

j=1

h j a j , (15)

where {W, a, b} are the model parameters. Wijk is a symmetric interaction term between visible
variable i that takes on value k and hidden variable j, bik is the bias of unit i that takes on value
k, and aj is the bias of hidden feature j. The model assigns the following probability to a visible
binary matrix V:

P (V ; θ ) = 1
Z(θ )

∑

h

exp(−E(V, h; θ )), Z(θ ) =
∑

V

∑

h

exp(−E(V, h; θ )). (16)

Now suppose that for each document, we create a separate RBM with as many softmax units
as there are words in the document. Assuming we can ignore the order of the words, all of these
softmax units can share the same set of weights connecting them to binary hidden units. In this
case, the energy of the state {V, h} for a document that contains M words is defined as follows:

E(V, h) = −
F∑

j=1

K∑

k=1

W jkh j v̂k −
K∑

k=1

v̂kbk − M
F∑

j=1

h j a j , (17)
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Figure 3
The replicated softmax model. The top layer represents a vector h of stochastic binary hidden topic features, and the bottom layer
consists of softmax visible variables, v. All visible variables share the same set of weights, connecting them to the binary hidden
variables. (a) Two members of a replicated softmax family for documents containing two and three words. (b) A different interpretation
of the replicated softmax model, in which M softmax variables with identical weights are replaced by a single multinomial variable that
is sampled M times.
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Deep Belief Networks (DBN)

1. A single layer of binary features is not the best way to capture the structure in

high-dimensional input data.

2. DBN is a hybrid PGM involving both directed and undirected connections.

3. Deep belief networks consisting of many hidden layers.

Connections between top two layers are undirected

Connections between all other layers is directed, pointing towards data.

the adjacent layers. Similar to RBMs, there are no connections
between units of the same layer (fig. 3). DBMs can also be
viewed as a group of RBMs stacked together (fig. 4).

Fig. 3. A Deep Boltzmann Machine with 1 visible layer (in blue) and 3
hidden layers (in red).

Fig. 4. The same DBM from fig. 3 decomposed into 3 RBMs. Every two
consecutive layers, when taken together, will form an RBM.

Training of DBMs is often done in two stages: a pre-
training stage where every RBM is trained independently and
a fine tuning stage where the network is trained at once using
backpropagation. [19]

4) Deep Belief Networks: Deep belief networks are another
deep architectures consisting of many hidden layers that
revolutionized the deep learning scene when they were first
introduced in 2006. [20]. Similar to DBMs, DBNs do not have
connections within the same layer. The difference between the
two is that in DBN only the top two layers have directed
connections pointing towards the visible layer, the rest all
have undirected connections (fig. 5). The most widely used
method to train a DBN is a greedy layer-wise fast algorithm
introduced by Hinton et al. [21]. Similar to the algorithm
described above for training DBMs, this algorithm consists
of two stages: an initialization (fast) stage where every layer

is trained independently, and a fine tuning (slow) stage where
the network as a whole is trained using a variation of the
wake-sleep algorithm [22].

Fig. 5. A Deep Belief Network with a similar architecture to The DBM in
fig. 3. In DBNs, all connections are undirected except for the top two layers.

Sampling from a DBN is done by first running multiple
steps of Gibbs sampling on the two hidden layers with directed
connections. We then use the sampled latent variables to draw
samples from the visible units by running a step of ancestral
sampling through the network.

B. Autoencoders
An autoencoder is a neural network trained for the purpose

of recreating its input as the output. It is a feedforward non-
recurrent network of which the aim is to continually reduce
the dimensionality to a smaller hidden layer often called the
code representative of the input. In a similar but mirroring
process, the network then recreates the same input structure
from the code layer. The first part is called the encoder and
the second decoder (fig. 6).

The goal of an autoencoder is not to perfectly copy the input
to the output. Therefore, we must prevent it from learning a
trivial identity function which comes easily if the autoencoder
is not properly “restrained”. The aim is for our model to
pick up the underlying patterns and characteristics of the data
distribution to be able to generate new never seen before
examples of the same distribution as the examples provided
during the training phase. Formally, an autoencoder can be
written in a deterministic way (although, it is not usually the
case) as a composition of two functions:

x = fd(h) where h = fe(x)

Where fe is the encoder, fd is the decoder, x is the input
variable and h is the code.
Since an autoencoder is a particular case of neural networks,
it can be trained using the standard techniques for training
feedforward neural networks, such as mini batch gradient
descent and back-propagation.

p(v,h(1),h(2), . . . ,h(k)) = p(v|h(1))p(h(1)|h(2)) . . . p(h(k−2)|h(k−1))p(h(k−1),h(k))

4. p(h(k−1),h(k)) (the marginal distribution over the top two layers) is an RBM.
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Deep Belief Networks

1. Now obtain the joint distribution over {v,h(1)} of the DBN (drive the following):

pθ(v,h
(1)) = pθ(v | h(1))

∑

h(2)

pθ(h
(1),h(2))

=
∏

i

pθ(vi | h(1))×
1

Z
(2)
θ

∏

i


1 + exp
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j
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ji h
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j
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w
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ij vih
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which is identical to the joint distribution over {v,h(1)} defined by an RBM.

weight matrices W(1), . . . ,W(k).

2. It contains k + 1 bias vectors b(0), . . . ,b(1), where b(0) is bias vector for visible layer.
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Deep Belief Networks

1. Probability distribution represented by DBN is

p(h(k−1),h(k)) ∝ exp(
[
b(k)⊤h(k−1) + b(k−1)⊤h(k) + h(k−1)⊤W(k)h(k)

]
)

p(h
(j)
i = 1|h(j+1)) = σ

(
b
(j)
i +W

(j+1)
:i h(j+1)

)

p(vi = 1|h(1)) = σ
(
b
(0)
i +W

(1)
:i h(1)

)

2. For generating a sample from a DBN, do

Use several Gibbs sampling steps from top two hidden layers.

Use a single pass of ancestral sampling through rest of model.
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Deep Belief Networks Training

1. Deep belief networks training

1.1 We first train the bottom RBM with parameters W(1).

1.2 We then initialize the second layer weights to W(2) = W(1), ensuring that the

two-hidden-layer DBN is at least as good as our original RBM.

1.3 Improve the fit of the DBN to the training data by untying and refitting parameters W(2).

2. Find the variational lower bound of the log-likelihood of the two-hidden-layer DBN.41 / 73
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Deep Boltzmann Machine (DBM)

1. DBM is an undirected deep network of several hidden layers (Salakhutdinov and Larochelle

2010).

2. Every unit is connected to every unit from the adjacent layers.

3. There are no connections between units of the same layer.

the adjacent layers. Similar to RBMs, there are no connections
between units of the same layer (fig. 3). DBMs can also be
viewed as a group of RBMs stacked together (fig. 4).

Fig. 3. A Deep Boltzmann Machine with 1 visible layer (in blue) and 3
hidden layers (in red).

Fig. 4. The same DBM from fig. 3 decomposed into 3 RBMs. Every two
consecutive layers, when taken together, will form an RBM.

Training of DBMs is often done in two stages: a pre-
training stage where every RBM is trained independently and
a fine tuning stage where the network is trained at once using
backpropagation. [19]

4) Deep Belief Networks: Deep belief networks are another
deep architectures consisting of many hidden layers that
revolutionized the deep learning scene when they were first
introduced in 2006. [20]. Similar to DBMs, DBNs do not have
connections within the same layer. The difference between the
two is that in DBN only the top two layers have directed
connections pointing towards the visible layer, the rest all
have undirected connections (fig. 5). The most widely used
method to train a DBN is a greedy layer-wise fast algorithm
introduced by Hinton et al. [21]. Similar to the algorithm
described above for training DBMs, this algorithm consists
of two stages: an initialization (fast) stage where every layer

is trained independently, and a fine tuning (slow) stage where
the network as a whole is trained using a variation of the
wake-sleep algorithm [22].

Fig. 5. A Deep Belief Network with a similar architecture to The DBM in
fig. 3. In DBNs, all connections are undirected except for the top two layers.

Sampling from a DBN is done by first running multiple
steps of Gibbs sampling on the two hidden layers with directed
connections. We then use the sampled latent variables to draw
samples from the visible units by running a step of ancestral
sampling through the network.

B. Autoencoders
An autoencoder is a neural network trained for the purpose

of recreating its input as the output. It is a feedforward non-
recurrent network of which the aim is to continually reduce
the dimensionality to a smaller hidden layer often called the
code representative of the input. In a similar but mirroring
process, the network then recreates the same input structure
from the code layer. The first part is called the encoder and
the second decoder (fig. 6).

The goal of an autoencoder is not to perfectly copy the input
to the output. Therefore, we must prevent it from learning a
trivial identity function which comes easily if the autoencoder
is not properly “restrained”. The aim is for our model to
pick up the underlying patterns and characteristics of the data
distribution to be able to generate new never seen before
examples of the same distribution as the examples provided
during the training phase. Formally, an autoencoder can be
written in a deterministic way (although, it is not usually the
case) as a composition of two functions:

x = fd(h) where h = fe(x)

Where fe is the encoder, fd is the decoder, x is the input
variable and h is the code.
Since an autoencoder is a particular case of neural networks,
it can be trained using the standard techniques for training
feedforward neural networks, such as mini batch gradient
descent and back-propagation.

4. Derive the conditional probability of each layer given its above layer.

5. Derive derivative of the log-likelihood with respect to the model parameters.
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Deep Boltzmann Machine (DBM)

1. DBMs can also be viewed as a group of RBMs stacked together.

the adjacent layers. Similar to RBMs, there are no connections
between units of the same layer (fig. 3). DBMs can also be
viewed as a group of RBMs stacked together (fig. 4).

Fig. 3. A Deep Boltzmann Machine with 1 visible layer (in blue) and 3
hidden layers (in red).

Fig. 4. The same DBM from fig. 3 decomposed into 3 RBMs. Every two
consecutive layers, when taken together, will form an RBM.

Training of DBMs is often done in two stages: a pre-
training stage where every RBM is trained independently and
a fine tuning stage where the network is trained at once using
backpropagation. [19]

4) Deep Belief Networks: Deep belief networks are another
deep architectures consisting of many hidden layers that
revolutionized the deep learning scene when they were first
introduced in 2006. [20]. Similar to DBMs, DBNs do not have
connections within the same layer. The difference between the
two is that in DBN only the top two layers have directed
connections pointing towards the visible layer, the rest all
have undirected connections (fig. 5). The most widely used
method to train a DBN is a greedy layer-wise fast algorithm
introduced by Hinton et al. [21]. Similar to the algorithm
described above for training DBMs, this algorithm consists
of two stages: an initialization (fast) stage where every layer

is trained independently, and a fine tuning (slow) stage where
the network as a whole is trained using a variation of the
wake-sleep algorithm [22].

Fig. 5. A Deep Belief Network with a similar architecture to The DBM in
fig. 3. In DBNs, all connections are undirected except for the top two layers.

Sampling from a DBN is done by first running multiple
steps of Gibbs sampling on the two hidden layers with directed
connections. We then use the sampled latent variables to draw
samples from the visible units by running a step of ancestral
sampling through the network.

B. Autoencoders
An autoencoder is a neural network trained for the purpose

of recreating its input as the output. It is a feedforward non-
recurrent network of which the aim is to continually reduce
the dimensionality to a smaller hidden layer often called the
code representative of the input. In a similar but mirroring
process, the network then recreates the same input structure
from the code layer. The first part is called the encoder and
the second decoder (fig. 6).

The goal of an autoencoder is not to perfectly copy the input
to the output. Therefore, we must prevent it from learning a
trivial identity function which comes easily if the autoencoder
is not properly “restrained”. The aim is for our model to
pick up the underlying patterns and characteristics of the data
distribution to be able to generate new never seen before
examples of the same distribution as the examples provided
during the training phase. Formally, an autoencoder can be
written in a deterministic way (although, it is not usually the
case) as a composition of two functions:

x = fd(h) where h = fe(x)

Where fe is the encoder, fd is the decoder, x is the input
variable and h is the code.
Since an autoencoder is a particular case of neural networks,
it can be trained using the standard techniques for training
feedforward neural networks, such as mini batch gradient
descent and back-propagation.

the adjacent layers. Similar to RBMs, there are no connections
between units of the same layer (fig. 3). DBMs can also be
viewed as a group of RBMs stacked together (fig. 4).

Fig. 3. A Deep Boltzmann Machine with 1 visible layer (in blue) and 3
hidden layers (in red).

Fig. 4. The same DBM from fig. 3 decomposed into 3 RBMs. Every two
consecutive layers, when taken together, will form an RBM.

Training of DBMs is often done in two stages: a pre-
training stage where every RBM is trained independently and
a fine tuning stage where the network is trained at once using
backpropagation. [19]

4) Deep Belief Networks: Deep belief networks are another
deep architectures consisting of many hidden layers that
revolutionized the deep learning scene when they were first
introduced in 2006. [20]. Similar to DBMs, DBNs do not have
connections within the same layer. The difference between the
two is that in DBN only the top two layers have directed
connections pointing towards the visible layer, the rest all
have undirected connections (fig. 5). The most widely used
method to train a DBN is a greedy layer-wise fast algorithm
introduced by Hinton et al. [21]. Similar to the algorithm
described above for training DBMs, this algorithm consists
of two stages: an initialization (fast) stage where every layer

is trained independently, and a fine tuning (slow) stage where
the network as a whole is trained using a variation of the
wake-sleep algorithm [22].

Fig. 5. A Deep Belief Network with a similar architecture to The DBM in
fig. 3. In DBNs, all connections are undirected except for the top two layers.

Sampling from a DBN is done by first running multiple
steps of Gibbs sampling on the two hidden layers with directed
connections. We then use the sampled latent variables to draw
samples from the visible units by running a step of ancestral
sampling through the network.

B. Autoencoders
An autoencoder is a neural network trained for the purpose

of recreating its input as the output. It is a feedforward non-
recurrent network of which the aim is to continually reduce
the dimensionality to a smaller hidden layer often called the
code representative of the input. In a similar but mirroring
process, the network then recreates the same input structure
from the code layer. The first part is called the encoder and
the second decoder (fig. 6).

The goal of an autoencoder is not to perfectly copy the input
to the output. Therefore, we must prevent it from learning a
trivial identity function which comes easily if the autoencoder
is not properly “restrained”. The aim is for our model to
pick up the underlying patterns and characteristics of the data
distribution to be able to generate new never seen before
examples of the same distribution as the examples provided
during the training phase. Formally, an autoencoder can be
written in a deterministic way (although, it is not usually the
case) as a composition of two functions:

x = fd(h) where h = fe(x)

Where fe is the encoder, fd is the decoder, x is the input
variable and h is the code.
Since an autoencoder is a particular case of neural networks,
it can be trained using the standard techniques for training
feedforward neural networks, such as mini batch gradient
descent and back-propagation.

2. Training of DBMs is often done in two stages:

A pre-training stage where every RBM is trained independently.

a fine tuning stage where the network is trained at once using backpropagation.
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Deep Boltzmann Machine (DBM)

1. Considering two architectures for MNIST dataset.
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Figure 4: Left: Two deep Boltzmann machines used in experiments. Right: Random samples from the training set, and samples gen-
erated from the two deep Boltzmann machines by running the Gibbs sampler for 100,000 steps. The images shown are the probabilities
of the binary visible units given the binary states of the hidden units.
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Figure 3: After learning, DBM is used to initialize a multilayer
neural network. The marginals of approximate posterior q(h2

j =
1|v) are used as additional inputs. The network is fine-tuned by
backpropagation.

3.3 Discriminative Fine-tuning of DBM’s
After learning, the stochastic activities of the binary fea-
tures in each layer can be replaced by deterministic, real-
valued probabilities, and a deep Boltzmann machine can be
used to initialize a deterministic multilayer neural network
in the following way. For each input vector v, the mean-
field inference is used to obtain an approximate posterior
distribution q(h|v). The marginals q(h2

j = 1|v) of this
approximate posterior, together with the data, are used to
create an “augmented” input for this deep multilayer neu-
ral network as shown in Fig. 3. Standard backpropagation
can then be used to discriminatively fine-tune the model.

The unusual representation of the input is a by-product of
converting a DBM into a deterministic neural network. In
general, the gradient-based fine-tuning may choose to ig-
nore q(h2|v), i.e. drive the first-layer connections W2 to
zero, which will result in a standard neural network net.
Conversely, the network may choose to ignore the input by
driving the first-layer W1 to zero. In all of our experi-
ments, however, the network uses the entire augmented in-
put for making predictions.

4 Experimental Results
In our experiments we used the MNIST and NORB
datasets. To speed-up learning, we subdivided datasets into

mini-batches, each containing 100 cases, and updated the
weights after each mini-batch. The number of fantasy par-
ticles used for tracking the model’s statistics was also set to
1002. For the stochastic approximation algorithm, we al-
ways used 5 Gibbs updates of the fantasy particles. The ini-
tial learning rate was set 0.005 and was gradually decreased
to 0. For discriminative fine-tuning of DBM’s we used
the method of conjugate gradients on larger mini-batches
of 5000 with three line searches performed for each mini-
batch in each epoch.

4.1 MNIST
The MNIST digit dataset contains 60,000 training and
10,000 test images of ten handwritten digits (0 to 9), with
28×28 pixels. In our first experiment, we trained two deep
Boltzmann machines: one with two hidden layers (500 and
1000 hidden units), and the other with three hidden lay-
ers (500, 500, and 1000 hidden units), as shown in Fig. 4.
To estimate the model’s partition function we used 20,000
βk spaced uniformly from 0 to 1.0. Table 1 shows that
the estimates of the lower bound on the average test log-
probability were−84.62 and−85.18 for the 2- and 3-layer
BM’s respectively. This result is slightly better compared
to the lower bound of−85.97, achieved by a two-layer deep
belief network (Salakhutdinov and Murray, 2008).

Observe that the two DBM’s, that contain over 0.9 and
1.15 million parameters, do not appear to suffer much from
overfitting. The difference between the estimates of the
training and test log-probabilities was about 1 nat. Fig. 4
shows samples generated from the two DBM’s by ran-
domly initializing all binary states and running the Gibbs
sampler for 100,000 steps. Certainly, all samples look
like the real handwritten digits. We also note that without
greedy pretraining, we could not successfully learn good
DBM models of MNIST digits.

2It may seem that 100 particles is not nearly enough to rep-
resent the model’s distribution which may be highly multimodal.
However, experience has shown that the fantasy particles move
around rapidly because the learning algorithm increases the en-
ergy at the location of each fantasy particle.

2. The results using Gibbs sampling.
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Figure 3: After learning, DBM is used to initialize a multilayer
neural network. The marginals of approximate posterior q(h2
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1|v) are used as additional inputs. The network is fine-tuned by
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3.3 Discriminative Fine-tuning of DBM’s
After learning, the stochastic activities of the binary fea-
tures in each layer can be replaced by deterministic, real-
valued probabilities, and a deep Boltzmann machine can be
used to initialize a deterministic multilayer neural network
in the following way. For each input vector v, the mean-
field inference is used to obtain an approximate posterior
distribution q(h|v). The marginals q(h2

j = 1|v) of this
approximate posterior, together with the data, are used to
create an “augmented” input for this deep multilayer neu-
ral network as shown in Fig. 3. Standard backpropagation
can then be used to discriminatively fine-tune the model.

The unusual representation of the input is a by-product of
converting a DBM into a deterministic neural network. In
general, the gradient-based fine-tuning may choose to ig-
nore q(h2|v), i.e. drive the first-layer connections W2 to
zero, which will result in a standard neural network net.
Conversely, the network may choose to ignore the input by
driving the first-layer W1 to zero. In all of our experi-
ments, however, the network uses the entire augmented in-
put for making predictions.

4 Experimental Results
In our experiments we used the MNIST and NORB
datasets. To speed-up learning, we subdivided datasets into

mini-batches, each containing 100 cases, and updated the
weights after each mini-batch. The number of fantasy par-
ticles used for tracking the model’s statistics was also set to
1002. For the stochastic approximation algorithm, we al-
ways used 5 Gibbs updates of the fantasy particles. The ini-
tial learning rate was set 0.005 and was gradually decreased
to 0. For discriminative fine-tuning of DBM’s we used
the method of conjugate gradients on larger mini-batches
of 5000 with three line searches performed for each mini-
batch in each epoch.

4.1 MNIST
The MNIST digit dataset contains 60,000 training and
10,000 test images of ten handwritten digits (0 to 9), with
28×28 pixels. In our first experiment, we trained two deep
Boltzmann machines: one with two hidden layers (500 and
1000 hidden units), and the other with three hidden lay-
ers (500, 500, and 1000 hidden units), as shown in Fig. 4.
To estimate the model’s partition function we used 20,000
βk spaced uniformly from 0 to 1.0. Table 1 shows that
the estimates of the lower bound on the average test log-
probability were−84.62 and−85.18 for the 2- and 3-layer
BM’s respectively. This result is slightly better compared
to the lower bound of−85.97, achieved by a two-layer deep
belief network (Salakhutdinov and Murray, 2008).

Observe that the two DBM’s, that contain over 0.9 and
1.15 million parameters, do not appear to suffer much from
overfitting. The difference between the estimates of the
training and test log-probabilities was about 1 nat. Fig. 4
shows samples generated from the two DBM’s by ran-
domly initializing all binary states and running the Gibbs
sampler for 100,000 steps. Certainly, all samples look
like the real handwritten digits. We also note that without
greedy pretraining, we could not successfully learn good
DBM models of MNIST digits.

2It may seem that 100 particles is not nearly enough to rep-
resent the model’s distribution which may be highly multimodal.
However, experience has shown that the fantasy particles move
around rapidly because the learning algorithm increases the en-
ergy at the location of each fantasy particle.
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Deep Boltzmann Machine (DBM)

1. Considering the following architecture for NORB dataset.
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Figure 5: Left: The architecture of deep Boltzmann machine used for NORB. Right: Random samples from the training set, and
samples generated from the deep Boltzmann machines by running the Gibbs sampler for 10,000 steps.

Table 1: Results of estimating partition functions of BMmodels,
along with the estimates of lower bound on the average training
and test log-probabilities. For all BM’s we used 20,000 interme-
diate distributions. Results were averaged over 100 AIS runs.

Estimates Avg. log-prob.

ln Ẑ ln (Ẑ ± σ̂) Test Train

2-layer BM 356.18 356.06, 356.29 −84.62 −83.61
3-layer BM 456.57 456.34, 456.75 −85.10 −84.49

To estimate how loose the variational bound is, we ran-
domly sampled 100 test cases, 10 of each class, and ran
AIS to estimate the true test log-probability3 for the 2-layer
Boltzmann machine. The estimate of the variational bound
was -83.35 per test case, whereas the estimate of the true
test log-probability was -82.86. The difference of about
0.5 nats shows that the bound is rather tight.

For a simple comparison we also trained several mix-
ture of Bernoullis models with 10, 100, and 500 compo-
nents. The corresponding average test log-probabilities
were −168.95, −142.63, and −137.64. Compared to
DBM’s, a mixture of Bernoullis performs very badly. The
difference of over 50 nats per test case is striking.

Finally, after discriminative fine-tuning, the 2-layer BM
achieves an error rate of 0.95% on the full MNIST test
set. This is, to our knowledge, the best published result
on the permutation-invariant version of the MNIST task.
The 3-layer BM gives a slightly worse error rate of 1.01%.
This is compared to 1.4% achieved by SVM’s (Decoste and
Schölkopf, 2002), 1.6% achieved by randomly initialized
backprop, and 1.2% achieved by the deep belief network,
described in Hinton et al. (2006).

3Note that computationally, this is equivalent to estimating
100 partition functions.

4.2 NORB
Results on MNIST show that DBM’s can significantly out-
perform many other models on the well-studied but rela-
tively simple task of handwritten digit recognition. In this
section we present results on NORB, which is consider-
ably more difficult dataset than MNIST. NORB (LeCun
et al., 2004) contains images of 50 different 3D toy ob-
jects with 10 objects in each of five generic classes: cars,
trucks, planes, animals, and humans. Each object is cap-
tured from different viewpoints and under various lighting
conditions. The training set contains 24,300 stereo image
pairs of 25 objects, 5 per class, while the test set contains
24,300 stereo pairs of the remaining, different 25 objects.
The goal is to classify each previously unseen object into
its generic class. From the training data, 4,300 were set
aside for validation.

Each image has 96×96 pixels with integer greyscale values
in the range [0,255]. To speed-up experiments, we reduced
the dimensionality of each image from 9216 down to 4488
by using larger pixels around the edge of the image4. A ran-
dom sample from the training data used in our experiments
is shown in Fig. 5.

To model raw pixel data, we use an RBM with Gaussian
visible and binary hidden units. Gaussian-binary RBM’s
have been previously successfully applied for modeling
greyscale images, such as images of faces (Hinton and
Salakhutdinov, 2006). However, learning an RBM with
Gaussian units can be slow, particularly when the input di-
mensionality is quite large. In this paper we follow the
approach of (Nair and Hinton, 2008) by first learning a
Gaussian-binary RBM and then treating the the activities
of its hidden layer as “preprocessed” data. Effectively, the
learned low-level RBM acts as a preprocessor that converts

4The resulting dimensionality of each training vector, repre-
senting a stereo pair, was 2×4488 = 8976.

2. The results using Gibbs sampling.
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Figure 5: Left: The architecture of deep Boltzmann machine used for NORB. Right: Random samples from the training set, and
samples generated from the deep Boltzmann machines by running the Gibbs sampler for 10,000 steps.

Table 1: Results of estimating partition functions of BMmodels,
along with the estimates of lower bound on the average training
and test log-probabilities. For all BM’s we used 20,000 interme-
diate distributions. Results were averaged over 100 AIS runs.

Estimates Avg. log-prob.

ln Ẑ ln (Ẑ ± σ̂) Test Train

2-layer BM 356.18 356.06, 356.29 −84.62 −83.61
3-layer BM 456.57 456.34, 456.75 −85.10 −84.49

To estimate how loose the variational bound is, we ran-
domly sampled 100 test cases, 10 of each class, and ran
AIS to estimate the true test log-probability3 for the 2-layer
Boltzmann machine. The estimate of the variational bound
was -83.35 per test case, whereas the estimate of the true
test log-probability was -82.86. The difference of about
0.5 nats shows that the bound is rather tight.

For a simple comparison we also trained several mix-
ture of Bernoullis models with 10, 100, and 500 compo-
nents. The corresponding average test log-probabilities
were −168.95, −142.63, and −137.64. Compared to
DBM’s, a mixture of Bernoullis performs very badly. The
difference of over 50 nats per test case is striking.

Finally, after discriminative fine-tuning, the 2-layer BM
achieves an error rate of 0.95% on the full MNIST test
set. This is, to our knowledge, the best published result
on the permutation-invariant version of the MNIST task.
The 3-layer BM gives a slightly worse error rate of 1.01%.
This is compared to 1.4% achieved by SVM’s (Decoste and
Schölkopf, 2002), 1.6% achieved by randomly initialized
backprop, and 1.2% achieved by the deep belief network,
described in Hinton et al. (2006).

3Note that computationally, this is equivalent to estimating
100 partition functions.

4.2 NORB
Results on MNIST show that DBM’s can significantly out-
perform many other models on the well-studied but rela-
tively simple task of handwritten digit recognition. In this
section we present results on NORB, which is consider-
ably more difficult dataset than MNIST. NORB (LeCun
et al., 2004) contains images of 50 different 3D toy ob-
jects with 10 objects in each of five generic classes: cars,
trucks, planes, animals, and humans. Each object is cap-
tured from different viewpoints and under various lighting
conditions. The training set contains 24,300 stereo image
pairs of 25 objects, 5 per class, while the test set contains
24,300 stereo pairs of the remaining, different 25 objects.
The goal is to classify each previously unseen object into
its generic class. From the training data, 4,300 were set
aside for validation.

Each image has 96×96 pixels with integer greyscale values
in the range [0,255]. To speed-up experiments, we reduced
the dimensionality of each image from 9216 down to 4488
by using larger pixels around the edge of the image4. A ran-
dom sample from the training data used in our experiments
is shown in Fig. 5.

To model raw pixel data, we use an RBM with Gaussian
visible and binary hidden units. Gaussian-binary RBM’s
have been previously successfully applied for modeling
greyscale images, such as images of faces (Hinton and
Salakhutdinov, 2006). However, learning an RBM with
Gaussian units can be slow, particularly when the input di-
mensionality is quite large. In this paper we follow the
approach of (Nair and Hinton, 2008) by first learning a
Gaussian-binary RBM and then treating the the activities
of its hidden layer as “preprocessed” data. Effectively, the
learned low-level RBM acts as a preprocessor that converts

4The resulting dimensionality of each training vector, repre-
senting a stereo pair, was 2×4488 = 8976.
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Score-Based Generative Models



Maximum Likelihood Training

1. The density function given by an EBM is

pθ(x) =
exp(−Eθ(x))

Zθ

2. The gradient of negative log-likelihood (NLL) is decomposed to:

∇θ log pθ(x) = −∇θEθ(x)−∇θ logZθ

3. The first gradient term, −∇θEθ(x), is straightforward to evaluate with automatic

differentiation, but the exact computation of the second term is interactable.

∇θ logZθ = Ex∼ pθ(x)
[−∇θEθ(x)]

4. Sampling converges slowly in high dimensional spaces and is thus very expensive, yet we

need sampling for each training iteration in contrastive divergence.

5. The goal is training without sampling

Score Matching

Noise Contrastive Estimation

Adversarial training
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Score Matching (SM)

1. Let f (x) and g(x) be two continuously differentiable real-valued functions.

2. If f (x) and g(x) have equal first derivatives everywhere, then f (x) = g(x) + Constant.

3. When f (x) and g(x) are log-pdfs with equal first derivatives, the normalization

requirement implies that
∫

exp(f (x))dx =
∫

exp(g(x))dx = 1 and f (x) ≡ g(x).

4. We can approximately learn an EBM by matching the first derivatives of its log-pdf to the

first derivatives of the log-pdf of the data distribution.

5. If they match, then the EBM captures the data distribution exactly.

6. The first-order gradient function of a log-pdf is also called the score of that

distribution.

7. For training EBMs, it is useful to transform the equivalence of distributions to the

equivalence of scores, because the score of an EBM can be easily obtained.
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Score Matching (SM)

1. The score of an EBM can be easily obtained by ∇x log pθ(x) = −∇xEθ(x), which does not

involve the typically intractable normalizing constant Zθ.

2. The basic score matching objective minimizes a discrepancy between two distributions

called the Fisher divergence:

DF ( pdata(x) || pθ(x)) = E pdata(x)

[
1

2
∥∇x log pdata(x)−∇x log pθ(x)∥2

]

3. The first term admits a trivial unbiased Monte Carlo estimator using the empirical mean

of samples x ∼ pdata(x).

4. The second term is generally impractical to calculate since it requires knowing

∇x log pθ(x).

5. Under certain regularity conditions, the Fisher divergence can be rewritten using

integration by parts, with second derivatives of Eθ(x) replacing the unknown first

derivatives of pdata(x):

DF ( pdata(x) || pθ(x)) = E pdata(x)

[
1

2

D∑

i=1

(
∂Eθ(x)

∂xi

)2

+

(
∂2Eθ(x)

∂x2i

)2
]
+ Constant

6. Computation of full second derivatives is quadratic in the dimensionality D, thus does not

scale to high dimensionality. 48 / 73



Score Matching (SM)

1. The Fisher divergence can be rewritten as:

DF ( pdata(x) || pθ(x)) = E pdata(x)

[
1

2

D∑

i=1

(
∂Eθ(x)

∂xi

)2

+

(
∂2Eθ(x)

∂x2i

)2
]
+ Constant

2. SM only requires the trace of the Hessian, but it is still expensive to compute even with

modern hardware and automatic differentiation packages.

3. For this reason, the implicit SM formulation has only been applied to relatively simple

energy functions where computation of the second derivatives is tractable.

4. Score Matching assumes a continuous data distribution with positive density over the

space, but it can be generalized to discrete or bounded data distributions.
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Denoising Score Matching (DSM)

1. The Score Matching objective requires several regularity conditions for log pdata(x):

it should be continuously differentiable

it should be finite everywhere

2. These conditions may not always hold in practice, such as distribution of gray level of

pixels in images.

3. The distribution of digital images is typically discrete and bounded.

4. Therefore, log pdata(x) is discontinuous and is negative infinity outside the range, and

therefore SM is not directly applicable.

5. To alleviate this difficulty, one can add a bit of noise to each data point: x̃ = x+ ϵ

6. As long as the noise distribution p(ϵ) is smooth, the resulting noisy data distribution

q(x̃) =
∫
q(x̃ | x) pdata(x)dx is also smooth.

7. Thus the Fisher divergence DF ( q(x̃) || pθ(x̃)) is a proper objective.
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Denoising Score Matching (DSM)

1. It has been shown that the objective with noisy data can be approximated by the

noiseless Score Matching objective plus a regularization term.

2. This regularization makes Score Matching applicable to a wider range of data

distributions, but still requires expensive second-order derivatives.

3. One elegant and scalable solution to the above difficulty, is to show

DF ( q(x̃) || pθ(x̃)) = E q(x̃)

[
1

2
∥∇x log q(x̃)−∇x log pθ(x̃)∥22

]

= E q(x̃,x)

[
1

2
∥∇x log q(x̃ | x)−∇x log pθ(x̃)∥22

]
+ Constant

4. The above expectation is again approximated by the empirical average of samples, thus

completely avoiding both the unknown term pdata(x) and computationally expensive

second-order derivatives.

5. This estimation method is called Denoising Score Matching (DSM).
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Denoising Score Matching (DSM)

1. The major drawback of adding noise to data arises when pdata(x) is already a well-behaved

distribution that satisfies the regularity conditions required by Score Matching.

2. In this case, DF ( q(x̃) || pθ(x̃)) ̸= DF ( pdata(x) || pθ(x)), and DSM is not a consistent

objective because the optimal EBM matches the noisy distribution q(x̃) not pdata(x).

3. This inconsistency becomes non-negligible when q(x̃) significantly differs from pdata(x).

4. One way to attenuate the inconsistency of DSM is to choose q ≈ pdata.

5. This often significantly increases the variance of objective values and hinders optimization.

6. For example, suppose q(x̃ | x) = N (x̃ | x, σ2I), where σ ≈ 0. The corresponding DSM

objective is

DF ( q(x̃) || pθ(x̃)) = Epdata

[
Ez∼N (0,I)

[
1

2

∥∥∥ z
σ
+∇x log pθ(x+ σz)

∥∥∥
2

2

]]

≈ 1

2m

m∑

i=1

∥∥∥∥
z(i)

σ
+∇x log pθ(x

(i) + σz(i))

∥∥∥∥
2

2

where {x(1), . . . , x(m)} are some iid samples from pdata.
52 / 73



Denoising Score Matching (DSM)

1. When σ → 0, we can leverage Taylor series expansion to rewrite the Monte Carlo

estimator to obtain

DF ( q(x̃) || pθ(x̃)) ≈
1

2m

m∑

i=1

{
2

σ

(
z(i)
)⊺
∇x log pθ(x

(i)) +

∥∥z(i)
∥∥2
2

σ2

}
+ Constant

2. When estimating the above expectation with samples, the variances of
(
z(i)
)⊺∇x log pθ(x

(i))/σ and
∥z(i)∥2

2

σ2 will both grow unbounded as σ → 0 due to division by

σ and σ2.

3. This enlarges the variance of DSM and makes optimization challenging.

4. Some methods were proposed to solve this issue.
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Sliced Score Matching (SSM)

1. By adding noise to data, DSM avoids the expensive computation of second-order

derivatives.

2. However, DSM does not give a consistent estimator of the data distribution.

3. In order to use score matching for learning deep energy-based models, we have to compute

∥∇x log pθ(x)∥22 and tr(∇2
x log pθ(x)).

4. Term ∥∇x log pθ(x)∥22 can be computed by one simple backpropagation of Eθ(x).

5. Term tr(∇2
x log pθ(x)) requires much more number of backpropagations to compute.

6. Computing tr(∇2
x log pθ(x)) requires a number of backpropagation that is proportional to

the data dimension D (Martens, Sutskever, and Swersky 2012).

7. Therefore, score matching is not scalable when learning deep energy-based models on

high-dimensional data.

8. Sliced Score Matching is an alternative to Denoising Score Matching that is both

consistent and computationally efficient (Song, Garg, et al. 2019).
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Sliced Score Matching (SSM)

1. The idea is that one dimensional data distribution is much easier to estimate for score

matching.

2. Song et. al. proposed to project the scores onto random directions, such that the vector

fields of scores of the data and model distribution become scalar fields (Song, Garg, et al.

2019).

3. Then comparing the scalar fields to determine how far the model distribution is from the

data distribution.

4. Two vector fields are equivalent if and only if their scalar fields corresponding to

projections onto all directions are the same.

5. Let v be a random projection direction and pv as its distribution.

6. The random projected version of Fisher divergence is

DSF ( pdata(x) || pθ(x)) =
1

2
Epdata

[
(v⊺∇x log pdata(x)− v⊺∇x log pθ(x))

2
]

called sliced Fisher divergence.
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Sliced Score Matching (SSM)

1. Unfortunately, sliced Fisher divergence has the same problem as Fisher divergence, due to

the unknown data score function ∇x log pdata(x).

2. By using integration by parts, we obtain the following tractable alternative form

DSF ( pdata(x) || pθ(x)) = Epdata

[
v⊺∇2

x log pθ(x)v +
1

2
(v⊺∇x log pθ(x))

2

]
+ Constant

3. Term v⊺∇x log pθ(x) can be computed by one backpropagation for deep energy-based

models.

4. Term v⊺∇2
x log pθ(x)v involves Hessian, but it is in the form of Hessian-vector products,

which can be computed within O(1) backpropagations.

5. Therefore, the computation of sliced score matching does not depend on the dimension of

data, and is much more scalable for training deep energy-based models on high

dimensional datasets.
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Sliced Score Matching (SSM)

1. Instead of minimizing the Fisher divergence between two vector-valued scores, SSM

randomly samples a projection vector v, takes the inner product between v and the two

scores, and then compare the resulting two scalars.

2. Sliced Score Matching minimizes the following divergence called the sliced Fisher

divergence

DSF ( pdata(x) || pθ(x)) = Epdata


Epv


1
2

D∑

i=1

(
∂Eθ(x)

∂xi
vi

)2

+
D∑

i=1

D∑

j=1

∂2Eθ(x)

∂xi∂xj
vivj






+ Constant

3. All expectations in the above objective can be estimated with empirical means.
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Theoretical guarantees of learning with SSM

1. Let {x1, . . . , xm} be iid samples from the data distribution pdata.

2. For each data point xi , randomly draw M random projection directions

{vi1, . . . , viM} ∼ pv.

3. The sliced score matching objective can be estimated with empirical averages, giving rise

to the following finite-sample estimator:

1

mM

m∑

i=1

M∑

j=1

{
v⊺ij∇2

x log pθ(xi )vij +
1

2

(
v⊺ij∇x log pθ(xi )

)2}

4. Let θ̂mM be the minimizer of the above empirical estimator, and let θ∗ be the true

parameter corresponding to the data distribution such that pθ∗ = pdata.

5. It has been shown that under some regularity conditions, θ̂mM is consistent and

asymptotically normal.

6. Formally, for any M ∈ N+, when m→∞, we have

θ̂mM
p→ θ∗

√
m
(
θ̂mM − θ∗

)
d→N (0,Σ)

where Σ is some covariance matrix.
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Noise Contrastive Estimation (NCE)

1. The core idea behind NCE is to distinguish data samples from a dataset (signal) from

artificially generated noise samples.

2. This is achieved by training a binary classifier that learns to classify whether a given

sample comes from the actual data distribution or from a noise distribution.

3. The classifier implicitly learns the parameters of the data distribution.

4. NCE involves the following steps:

4.1 A noise distribution is chosen, which should ideally be simple enough to sample from and

calculate probabilities.

4.2 Noise samples are generated from this noise distribution.

4.3 A logistic regression model is trained to discriminate between samples from the true data

distribution and the noise samples.

4.4 The parameters learned by the logistic regression model are then used as estimates for the

parameters of the true data distribution.
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Noise Contrastive Estimation

1. Advantages of NCE over MLE methods

1.1 Computational Efficiency: NCE avoids the computation of the partition function, which

can be intractable for large models.

1.2 Scalability: NCE scales well with the size of the dataset and the complexity of the model.

1.3 Flexibility: NCE can be applied to a wide range of models, including those where MLE is

not feasible.

2. Challenges and considerations of using NCE

2.1 Choice of Noise Distribution: The performance of NCE is sensitive to the choice of noise

distribution. A poor choice can lead to suboptimal parameter estimation.

2.2 Hyperparameter Tuning: NCE requires careful tuning of hyperparameters, including the

number of noise samples and the learning rate for the classifier.

2.3 Convergence: Ensuring convergence of the estimation process can be challenging, especially

for complex models with many parameters.
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Noise Contrastive Estimation

1. NCE is based on the idea that we can learn an Energy-Based Model by contrasting it with

another distribution with known density.

2. Let pdata(x) be the data distribution, and let pn(x) be a chosen distribution with known

density, called a noise distribution.

3. This noise distribution is usually simple and has a tractable pdf, like N (0, I), such that we

can compute the pdf and generate samples from it efficiently.

4. Let y be a binary variable with Bernoulli distribution, which we use to define a mixture

distribution of noise and data:

pn,data(x) = p(y = 0) pn(x) + p(y = 1) pdata(x)

5. Based on the Bayes’ rule, given a sample x from this mixture, the posterior probability of

y = 0 is

pn,data(y = 0 | x) = pn,data(x | y = 0) p(y)

pn,data(x)
=

pn(x)

pn(x) + α pdata(x)
Drive this equation.

where α = p(y=1)
p(y=0) .
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Noise Contrastive Estimation

1. Let our energy-based model has the following form:

pθ(x) =
exp(−Eθ(x))

Zθ

2. Unlike other EBMs, Zθ is treated as a learnable (scalar) parameter in NCE.

3. Given this model, we can define a mixture of noise and the model distribution:

pn,θ(x) = p(y = 0) pn(x) + p(y = 1) pθ(x)

4. The posterior probability of y = 0 given this noise/model mixture is

pn,θ(y = 0 | x) = pn(x)

pn(x) + α pθ(x)
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Noise Contrastive Estimation

1. In NCE, we indirectly fit pθ(x) to pdata(x) by fitting pn,θ(y | x) to pn,data(y | x) through
a standard conditional maximum likelihood objective:

θ∗ = argminθ E pn,data(x,y)

[
DKL

(
pn,data(y | x) || pn,θ(y | x)

)]

= argmaxθ Epn,data

[
log pn,θ(y | x)

]
Derive this objective function

2. This optimization problem can be solved using stochastic gradient ascent.

3. Like any other deep classifier, when the model is sufficiently powerful, pn,θ∗(y | x) will
match pn,data(y | x) at the optimum.

pn,θ∗(y = 0 | x) = pn,data(y = 0 | x)

⇐⇒ pn(x)

pn(x) + α pn,θ∗(x)
=

pn(x)

pn(x) + α pn,data(x)

⇐⇒ pθ∗(x) = pdata(x)

4. Consequently, Eθ∗(x) is an unnormalized energy function that matches the data

distribution pdata(x), and Zθ∗ is the corresponding normalizing constant.
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Adversarial training

1. When training EBMs with MLE, we need to sample from the EBM per training iteration.

2. Sampling using multiple MCMC steps is expensive and requires careful tuning of the

Markov chain.

3. One way to avoid this difficulty is to use non-MLE methods that do not need sampling,

such as Score Matching and Noise Contrastive Estimation.

4. We can sidestep costly MCMC sampling by learning an auxiliary model through adversarial

training, which allows fast sampling.

5. From the definition of EBMs, we can rewrite the maximum likelihood objective by

introducing a variational distribution qϕ(x) parameterized by ϕ:

E pdata(x)
[log pθ(x)] = E pdata(x)

[−Eθ(x)]− logZθ

= E pdata(x)
[−Eθ(x)]− log

∫
exp(−Eθ(x))

= E pdata(x)
[−Eθ(x)]− log

∫
exp(−Eθ(x))

qϕ(x)

qϕ(x)

≤ E pdata(x)
[−Eθ(x)]−

∫
exp(−Eθ(x))

qϕ(x)

qϕ(x)
Using Jensen inequality

= E pdata(x)
[−Eθ(x)]− E qϕ(x)

[−Eθ(x)]− H( qϕ(x))
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Adversarial training

1. The upperbound of E pdata(x)
[log pθ(x)] is

E pdata(x)
[log pθ(x)] ≤ E pdata(x)

[−Eθ(x)]− E qϕ(x)
[−Eθ(x)]− H( qϕ(x))

2. For EBM training,

First minimize the upper bound with respect to qϕ(x) so that it is closer to the likelihood

objective.

Then maximize with respect to Eθ(x) as a surrogate for maximizing likelihood.

3. This amounts to using the following maximin objective

max
θ

min
ϕ

E qϕ(x)
[Eθ(x)]− E pdata(x)

[Eθ(x)]− H( qϕ(x))

4. Optimizing the above objective is similar to training GANs and can be achieved by

adversarial training.

5. The variational distribution qϕ(x) should allow both fast sampling and efficient entropy

evaluation to make the maximin objective function tractable.
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Hybrid Modeling

1. Consider using deep generative modeling in the context of finding the joint distribution

over observables and decision variables that is factorized as

p(x, y) = p(y | x) p(x)

where x ∈ RD and y ∈ {0, 1, . . . ,K − 1}.

2. By taking the logarithm of the joint we obtain two additive components:

log p(x, y) = log p(y | x) + log p(x)

3. How can we model the above problem using EBMs?

4. Let Eθ(x, y) be parameterized by a neural network NNθ(x) where its input is x and returns

K values: NNθ : RD 7→ RK .

5. This means that we can define energy function as

Eθ(x, y) = −NNθ(x)[y ]

where [y ] denotes the specific output of the neural networks NNθ(x).
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Hybrid Modeling

1. Then, the joint probability distribution is defined as

p(x, y) =
exp(−Eθ(x, y))

Zθ

=
exp(NNθ(x)[y ])

Zθ

2. The mariginal distribution p(x) is

pθ(x) =
∑

y

p(x, y)

=

∑
y exp(NNθ(x)[y ])

Zθ

3. We can re-write the numerator in the following manner:

∑

y

exp ∗NNθ(x)[y ] = exp(log

{∑

y

exp(NNθ(x)[y ])

}
)

= exp(LogSumExpy (NNθ(x)[y ]))

4. We can say that the energy function of the marginal distribution is expressed as

−LogSumExpy (NNθ(x)[y ]).
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Hybrid Modeling

1. The conditional distribution pθ(y | x) is

pθ(y | x) =
pθ(x, y)

pθ(x)

=

exp(NNθ(x)[y ])
Zθ∑

y exp(NNθ(x)[y ])

Zθ

=
exp(NNθ(x)[y ])∑
y exp(NNθ(x)[y ])

.

2. This means that the energy-based model could be used either as a classifier or a marginal

distribution.

3. Any any classifier could be seen as an energy-based model (Grathwohl et al. 2020).

4. The logarithm of the joint distribution is

log pθ(x, y) = log
exp(fθ(x)[y ])∑

y exp(NNθ(x)[y ])
+ log

∑
y exp(NNθ(x)[y ])

Zθ

= log Softmax(NNθ(x)[y ]) + (LogSumExpy (NNθ(x)[y ])− logZθ)
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Hybrid Modeling

1. The model requires a shared neural network that is used for calculating both distributions.

2. We have a single neural network to train and the training objective is the logarithm of the

joint distribution.

3. The training objective is a sum of the logarithm of the conditional pθ(y | x) and the

logarithm of the marginal pθ(x).

4. Calculating the gradient with respect to the parameters θ requires taking the gradient of

each of the component separately (Derive the weight update equations).
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Summary



Summary

1. Both Variational Autoencoders and EBM learn the parameters by maximizing the

(marginal) log-likelihood, which can be interpreted also as the minimization of

DKL(pdata || pθ).

2. VAEs are intrinsically latent variable models imposing an information bottleneck and

approximating the posterior on the latent variables pdata(z | x)p(z—x) through variational

inference, whereas EBMs generally are not.

3. EBMs can easily extended to latent variable models (Xiao, Yan, and Amit 2020).

4. Che et. al. showed that GANs can be better understood through the lens of EBM (Che

et al. 2020).

5. They showed that GAN generators and discriminators collaboratively learn an implicit

energy-based model.

70 / 73



References



Reading

1. Paper Learning Deep Generative Models (Salakhutdinov 2015).

2. Chapter A Tutorial on Energy-Based Learning (Lecun et al. 2006).

3. Paper How to Train Your Energy-Based Models (Song and Kingma 2021).

4. Chapter 23 of Probabilistic Machine Learning: Advanced Topics (Murphy 2023).

5. Chapter 3 of Deep Generative Modeling (Tomczak 2022).

71 / 73



References i

Che, Tong et al. (2020). “Your GAN is Secretly an Energy-based Model and You Should

Use Discriminator Driven Latent Sampling”. In: Advances in Neural Information Processing

Systems.

Grathwohl, Will et al. (2020). “Your classifier is secretly an energy based model and you

should treat it like one”. In: International Conference on Learning Representations.

Lecun, Yann et al. (2006). “A tutorial on energy-based learning”. In: Predicting structured

data. Ed. by G. Bakir et al. MIT Press.

Martens, James, Ilya Sutskever, and Kevin Swersky (2012). “Estimating the Hessian by

Back-propagating Curvature”. In: International Conference on Machine Learning.

Murphy, Kevin P. (2023). Probabilistic Machine Learning: Advanced Topics. The MIT

Press.

Salakhutdinov, Ruslan (2015). “Learning Deep Generative Models”. In: Annual Review of

Statistics and Its Application 2, pp. 361–385.

Salakhutdinov, Ruslan and Hugo Larochelle (2010). “Efficient Learning of Deep Boltzmann

Machines”. In: Proceedings of the Thirteenth International Conference on Artificial

Intelligence and Statistics (AISTATS). Vol. 9, pp. 693–700.

Song, Yang, Sahaj Garg, et al. (2019). “Sliced Score Matching: A Scalable Approach to

Density and Score Estimation”. In: Uncertainty in Artificial Intelligence. Vol. 115,

pp. 574–584.

72 / 73



References ii

Song, Yang and Diederik P. Kingma (2021). “How to Train Your Energy-Based Models”.

In: CoRR abs/2101.03288.

Tomczak, Jakub M. (2022). Deep Generative Modeling. Springer.

Xiao, Zhisheng, Qing Yan, and Yali Amit (2020). “Exponential Tilting of Generative

Models: Improving Sample Quality by Training and Sampling from Latent Energy”. In:

CoRR abs/2006.08100.

73 / 73



Questions?

73 / 73


	Introduction
	Energy-based models
	Likelihood Based Methods
	Restricted Boltzmann Machine (RBM)
	Deep Belief Networks
	Deep Boltzmann Machine

	Score-Based Generative Models
	Noise Contrastive Estimation based Methods
	Adversarial training
	Hybrid Modeling
	Summary
	References

