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Introduction
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Generative models

1. Assume that the observed variable x is a random sample from an underlying process,

whose true distribution pdata(x) is unknown.

2. We attempt to approximate this process with a chosen model, pθ(x), with parameters θ

such that x ∼ pθ(x).

3. Learning is the process of searching for the parameter θ such that pθ(x) well approximates

pdata(x) for any observed x, i.e.

pθ(x) ≈ pdata(x)

4. We wish pθ(x) to be sufficiently flexible to be able to adapt to the data for obtaining

sufficiently accurate model and to be able to incorporate prior knowledge.

Credit: Aditya Grover
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Likelihood-based models

Autoregressive models

1. Tractable density

2. Density is estimated as

p(x; θ) =
m∏

j=1

p(xj | x<j ; θ)

3. Tractable likelihood

4. No inferred latent factors

Latent variable models

1. Approximated density

2. Density is estimated as

p(x; θ) =

∫
p(x, z; θ)dz

3. Intractable likelihood

4. Latent feature representation

How to build model with latent variables and tractable likelihood?

1. Flow-based generative models:

Constructed by a sequence of invertible transformations.

Learns data distribution where loss function is simply the negative log-likelihood.
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Flow-based Models



Jacobian Matrix and Determinant

1. Given a function of mapping a n-dimensional input vector x to a m-dimensional output

vector, f : Rn 7→ Rm, the Jacobian matrix, J, is

J =




∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...

∂fm
∂x1

. . . ∂f1
∂xn




2. The determinant of a n × n matrix M is

det (M) = det







a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

an1 an2 . . . ann







=
∑

j1j2...jn

(−1)τ(j1j2...jn)a1j1a2j2 . . . anjn

τ(.) indicates the signature of a permutation.

Some slides of this section are adopted from Lilian Weng’s page
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Change of Variable Theorem

1. Given a random variable z and its known probability density function z ∼ p(z), we would

like to construct a new random variable using a one-one mapping function x = f (z).

2. The function f is invertible, so z = f −1(x).

3. The question is how to infer the unknown probability density function of the new variable,

p(x)?

∫

x

p(x)dx =

∫

z

p(z)dz = 1 Definition of probability distribution.

p(x) = p(z)

∣∣∣∣
dz

dx

∣∣∣∣

= p(f −1(x))

∣∣∣∣
df −1

dx

∣∣∣∣ = p(f −1(x))
∣∣∣
(
f −1
)′
(x)
∣∣∣

4. By definition, the integral
∫
z p(z)dz is the sum of an infinite number of rectangles of

infinitesimal width ∆z.

5. The height of such a rectangle at position z is the value of the density function p(z).
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Change of Variable Theorem

1. When we substitute the variable, z = f −1(x) yields ∆z
∆x =

(
f −1(x)

)′
and

∆z =
(
f −1(x)

)′
∆x.

2. Here
∣∣f −1(x)′

∣∣ indicates the ratio between the area of rectangles defined in two different

coordinate of variables z and x , respectively.

3. The multivariable version has a similar format:

z ∼ p(z)

x = f (z)

z = f −1(x)

p(x) = p(z)

∣∣∣∣det
(
dz

dx

)∣∣∣∣

= p(f −1(x))

∣∣∣∣det
(
df −1

dx

)∣∣∣∣

where det
(
∂f
∂z

)
is the Jacobian determinant of the function f .
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Change of Variable Theorem (example)

1. Consider a random variable Z that is uniformly distributed over the unit cube z ∈ [0, 1]3.

2. We can scale Z by a factor of 2 to get a new random variable X ,

x = f (z) = Az =

∣∣∣∣∣∣∣

2 0 0

0 2 0

0 0 2

∣∣∣∣∣∣∣
z

where X is uniform over a cube with side length 2.
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Change of Variable Theorem (example)

1. How is the density p(x) related to p(z)?

2. Since every distribution sums to 1 and the unit cube has volume VZ = 1.

p(z)VZ = 1

and p(z) = 1 for all z in the unit cube.

3. The volume of the larger cube is easy to compute: VX = 23 = 8.

4. The total probability mass must be conserved, so we can solve for the density of X .

p(x) =
p(z)VZ

VX
=

1

8

5. The new density is equal to the original density multiplied by the ratio of the volumes.
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Change of Variable Theorem (example)

1. The change of variables formula allows us to tractably compute normalized probability

densities when we apply an invertible transformation f .

p(x) = p(z)abs ∗ det
(
∂f −1(x)

∂x

)

= p(z)

∣∣∣∣∣det
(
∂f (z)

∂z

)−1
∣∣∣∣∣

2. The invertible function is just multiplication by a scaling matrix, so the determinant of the

Jacobian matrix is easy to compute:

det

(
∂f (z)

∂z

)
= det (A) = 8.
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Change of Variable Theorem (example)

1. Let z ∈ R and p(z) = N (0, 1).

2. Let x be a new random variable after applying a linear transformation to z .

3. Let x = 0.75z + 1, what is p(x)?

4. Using the change of variable theorem,

p(x) = p(z = f −1(x))

∣∣∣∣
∂f −1(x)

∂x

∣∣∣∣

5. Let f (z) = 0.75z + 1, and hence

f −1(x) =
x − 1

0.75∣∣∣∣
∂f −1(x)

∂x

∣∣∣∣ =
4

3

6. Putting all together yields

p(x) = p(z =
x − 1

0.75
)
4

3

= N (1, 0.75)
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Change of Variable Theorem (example)

1. The change of variables formula allows us to tractably compute normalized probability

densities when we apply an invertible transformation f .

p(x) = p(z)

∣∣∣∣det
(
∂f −1(x)

∂x

)∣∣∣∣

= p(z)

∣∣∣∣∣det
(
∂f (z)

∂z

)−1
∣∣∣∣∣

2. The invertible function is just multiplication by a scaling matrix, so the determinant of the

Jacobian matrix is easy to compute:

det

(
∂f (z)

∂z

)
= det (A) = 8.
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Inverse Function Theorem

1. Theses examples show that we can calculate a new distribution of a continuous random

variable by applying a known bijective transformation f to a random variable with a known

distribution z ∼ p(z).

p(x) = p(z = f −1(x))
∣∣det

(
f−1(x)

)∣∣

2. From inverse function theorem, we have
∣∣det

(
f−1(x)

)∣∣ =
∣∣∣det (f(x))−1

∣∣∣

1. x and z have the same dimensionality (Rn).

2. f could be parametric function as fθ(x).

3. Determinant of Jacobian matrix J = ∂fθ(x)
∂x shows

how the volume changes under the

transformation
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What is Normalizing Flows?

1. Density estimation has several important applications in many machine learning problems.

2. In deep learning models, the embedded probability distribution is expected to be simple

enough to calculate the derivative easily and efficiently.

3. This is why Gaussian distribution is often used in latent variable generative models.

4. Normalizing Flow (NF) models are used for better and more powerful distribution

approximation (Rezende and Mohamed 2015).

5. A normalizing flow transforms a simple distribution into a complex one by applying a

sequence of invertible transformation functions.
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Fitting normalizing flows

1. MLE problem

p(x; θ) = p(z)

∣∣∣∣det
(
∂z

∂x

)∣∣∣∣

= p(fθ(x))

∣∣∣∣det
(
∂fθ(x)

∂x

)∣∣∣∣

log p(x; θ) = log p(fθ(x)) + log|det (Jf )|

2. We want to find θ that maximizes log p(x; θ).

Published as a conference paper at ICLR 2017

Data space X Latent space Z

Inference
x ⇠ p̂X

z = f (x)
)

Generation
z ⇠ pZ

x = f�1 (z)
(

Figure 1: Real NVP learns an invertible, stable, mapping between a data distribution p̂X and a latent
distribution pZ (typically a Gaussian). Here we show a mapping that has been learned on a toy
2-d dataset. The function f (x) maps samples x from the data distribution in the upper left into
approximate samples z from the latent distribution, in the upper right. This corresponds to exact
inference of the latent state given the data. The inverse function, f�1 (z), maps samples z from the
latent distribution in the lower right into approximate samples x from the data distribution in the
lower left. This corresponds to exact generation of samples from the model. The transformation of
grid lines in X and Z space is additionally illustrated for both f (x) and f�1 (z).

remains undetermined, often resulting in generation of highly correlated samples. Furthermore, these
approximations can often hinder their performance [7].

Directed graphical models are instead defined in terms of an ancestral sampling procedure, which is
appealing both for its conceptual and computational simplicity. They lack, however, the conditional
independence structure of undirected models, making exact and approximate posterior inference
on latent variables cumbersome [56]. Recent advances in stochastic variational inference [27]
and amortized inference [13, 43, 35, 49], allowed efficient approximate inference and learning of
deep directed graphical models by maximizing a variational lower bound on the log-likelihood [45].
In particular, the variational autoencoder algorithm [35, 49] simultaneously learns a generative
network, that maps gaussian latent variables z to samples x, and a matched approximate inference
network that maps samples x to a semantically meaningful latent representation z, by exploiting the
reparametrization trick [68]. Its success in leveraging recent advances in backpropagation [51, 39] in
deep neural networks resulted in its adoption for several applications ranging from speech synthesis
[12] to language modeling [8]. Still, the approximation in the inference process limits its ability
to learn high dimensional deep representations, motivating recent work in improving approximate
inference [42, 48, 55, 63, 10, 59, 34].

Such approximations can be avoided altogether by abstaining from using latent variables. Auto-
regressive models [18, 6, 37, 20] can implement this strategy while typically retaining a great deal of
flexibility. This class of algorithms tractably models the joint distribution by decomposing it into a
product of conditionals using the probability chain rule according to a fixed ordering over dimensions,
simplifying log-likelihood evaluation and sampling. Recent work in this line of research has taken
advantage of recent advances in recurrent networks [51], in particular long-short term memory [26],
and residual networks [25, 24] in order to learn state-of-the-art generative image models [61, 46] and
language models [32]. The ordering of the dimensions, although often arbitrary, can be critical to the
training of the model [66]. The sequential nature of this model limits its computational efficiency. For
example, its sampling procedure is sequential and non-parallelizable, which can become cumbersome
in applications like speech and music synthesis, or real-time rendering.. Additionally, there is no
natural latent representation associated with autoregressive models, and they have not yet been shown
to be useful for semi-supervised learning.

2

15 / 54



Composition of normalizing flows

Theorem

Diffeomorphismsa are composable if {fk}Kk=1 satisfy conditions of the change of variable

theorem, then z = f (x) = fK ◦ fK−1 ◦ . . . ◦ f1(x) also satisfies it.

aIt is an invertible function that maps one differentiable manifold to another such that both the function and

its inverse are continuously differentiable.

p(x) = p(f (x))

∣∣∣∣det
(
∂f (x)

∂x

)∣∣∣∣ = p(f (x))

∣∣∣∣det
(

∂fK
∂fK−1

. . .
∂f1
∂x

)∣∣∣∣

= p(f (x))

∣∣∣∣det
(

∂fk
∂fk−1

)∣∣∣∣

= p(f (x))
K∏

k=1

|det (Jfk )|
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Normalizing Flows

1. We want to find θ that maximizes log p(x; θ).

log p(x; θ) = log p(fθ(x)) + log|det (Jf )|

Definition (Normalizing flows)

Normalizing flow is a differentiable, invertible mapping from data x to the noise z.

Normalizing means that NF takes samples from p(x) and normalizes them into samples from

the density p(z).

Flow refers to the trajectory followed by samples from p(x) as they are transformed by the

sequence of transformations

z = fK ◦ fK−1 ◦ . . . ◦ f1(x)
x = f −1

K ◦ f −1
K−1 ◦ . . . ◦ f −1

1 (z)

= g1 ◦ g2 ◦ . . . ◦ gK (z)
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Normalizing Flows

1. From the previous slide, we have

zi−1 ∼ pi−1(zi−1)

zi = fi (zi−1), thus zi−1 = f −1
i (zi )

pi (zi ) = pi−1(f
−1
i (zi ))

∣∣∣∣det
(
df −1

i

dzi

)∣∣∣∣

2. Repeating above, we can do inference using base distribution.

pi (zi ) = pi−1(zi−1)(f
−1
i (zi ))

= pi−1(zi−1)

∣∣∣∣∣det
((

dfi
dzi−1

)−1
)∣∣∣∣∣According to the inverse function theorem.

= pi−1(zi−1)

∣∣∣∣det
(

dfi
dzi−1

)∣∣∣∣
−1

Using property of Jacobians of invertible funcion

log pi (zi ) = log pi−1(zi−1)− log

∣∣∣∣det
(

dfi
dzi−1

)∣∣∣∣
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Normalizing Flows

1. Given chain of pdfs, we can expand the equation of the output x step by step until tracing

back to the initial distribution z0.

x = zK = fK ◦ fK−1 ◦ · · · ◦ f1(z0)
log p(x) = log pK (zK )

= log pK−1(zK−1)− log

∣∣∣∣det
(

dfK
dzK−1

)∣∣∣∣

= log pK−2(zK−2)− log

∣∣∣∣det
(
dfK−1

dzK−2

)∣∣∣∣

− log

∣∣∣∣det
(

dfK
dzK−1

)∣∣∣∣

= . . .

= log p0(z0)−
K∑

i=1

log

∣∣∣∣det
(

dfi
dzi−1

)∣∣∣∣
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Normalizing Flows

1. The path traversed by the random variables zi = fi (zi−1) is the flow.

2. The full chain formed by the successive distributions pi (zi ) is called a normalizing flow.

3. For computation of equation, a transformation function fi should satisfy two properties:

It is easily invertible.

Its Jacobian determinant is easy to compute.

4. With normalizing flows, the exact log-likelihood of input data log p(x) becomes tractable.

5. The training criterion of flow-based generative model is simply the negative log-likelihood

(NLL) over the training dataset S .

L(S) = − 1

|S |
∑

x∈S

log p(x)Papamakarios, Nalisnick, Rezende, Mohamed and Lakshminarayanan
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Figure 1: Example of a 4-step flow transforming samples from a standard-normal base den-
sity to a cross-shaped target density.

In consequence, we can build complex transformations by composing multiple instances
of simpler transformations, without compromising the requirements of invertibility and
di↵erentiability, and hence without losing the ability to calculate the density px(x).

In practice, it is common to chain together multiple transformations T1, . . . , TK to obtain
T = TK � · · · � T1, where each Tk transforms zk�1 into zk, assuming z0 = u and zK = x.
Hence, the term ‘flow’ refers to the trajectory that a collection of samples from pu(u)
follow as they are gradually transformed by the sequence of transformations T1, . . . , TK .
The term ‘normalizing’ refers to the fact that the inverse flow through T�1

K , . . . , T�1
1 takes

a collection of samples from px(x) and transforms them (in a sense, ‘normalizes’ them)
into a collection of samples from a prescribed density pu(u) (which is often taken to be a
multivariate normal). Figure 1 illustrates a flow (K = 4) transforming a standard-normal
base distribution to a cross-shaped target density.

In terms of functionality, a flow-based model provides two operations: sampling from the
model via Equation 1, and evaluating the model’s density via Equation 3. These operations
have di↵erent computational requirements. Sampling from the model requires the ability to
sample from pu(u) and to compute the forward transformation T . Evaluating the model’s
density requires computing the inverse transformation T�1 and its Jacobian determinant,
and evaluating the density pu(u). The application will dictate which of these operations
need to be implemented and how e�cient they need to be. We discuss the computational
trade-o↵s associated with various implementation choices in Sections 3 and 4.

2.2 Expressive Power of Flow-Based Models

Before discussing the particulars of flows, a question of foremost importance is: how ex-
pressive are flow-based models? Can they represent any distribution px(x), even if the
base distribution is restricted to be simple? We show that this universal representation
is possible under reasonable conditions on px(x). Specifically, we will show that for any
pair of well-behaved distributions px(x) (the target) and pu(u) (the base), there exists a
di↵eomorphism that can turn pu(u) into px(x). The argument is constructive, and is based
on a similar proof of the existence of non-linear ICA by Hyvärinen and Pajunen (1999); a
more formal treatment is provided by e.g. Bogachev et al. (2005).

4

20 / 54



Applications of Normalizing Flows

1. How to generate a sample?

Sample z from pz(z): z ∼ pz(z).

Compute function x = f (z).

2. How to compute the density px(x). Let g = f −1.

px(x) = pz(g(x))|det (Jg (x))|
= pz(z)|det (Jf (z))|−1

3. How flexible are the densities px(x) obtained by transforming random variables sampled

from simple pz(z)?

4. We can use normalizing flows method to approximate any smooth distribution.
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How to train a flow model?

1. There are two common applications of normalizing flow models.

Density estimation, i.e. fitting pθ(x) to the data.

The objective is to maximize the following function

px(x) = pz(z)|det (Jf (z))|−1

This requires that we can evaluate f (z)−1 and det (Jf (z))
−1 efficiently.

Variational inference, sampling and evaluating from a variational posterior qθ(z | x)
parameterized by a flow model.

The variational parameters are trained by maximizing the evidence lower bound (ELBO),

L(θ) = E qθ(z | x)[log p(x | z) + log pz(z)− log qθ(z | x)]

To optimize this objective, we need to be able to efficiently sample from qθ(z | x) and
evaluate the probability density of these samples during optimization.
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Constructing flows



Introduction

1. The density pk(zk) obtained by successively transforming a random variable x0 with

distribution p0 through a chain of K transformations fk defined as

xK = fK ◦ . . . ◦ f2 ◦ f1(z0)

z0 z1

f1(z0)
zi zi+1

fi+1(zi)
. . .

fi(zi−1)
zk. . .

fk(zk−1)
= x

z0 ∼ p0(z0) zi ∼ pi(zi) zk ∼ pk(zk)
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Affine flows

1. A simple choice is to use an affine transformation x = f (z) = Az+ b.

2. This is a bijection if and only if A is an invertible square matrix.

3. The inverse is z = f −1(x) = A−1(x− b).

4. Affine flows are limited in their expressive power.

Let the base distribution be Gaussian pz(z) = N (µz,Σz).

The distribution after an affine bijection is still Gaussian px(x) = N (Aµz + b,AΣzA
⊺).

5. However, they are useful building blocks when composed with the non-affine bijections.

6. We need to ensure Jacobian determinant and inverse of flow are fast to compute.

In general, computing det (A) and det
(
A−1

)
requires O(D3) time.

If A is diagonal, the cost becomes O(D).

If A is triangular, Jacobian determinant is product of its diagonal elements taking O(D).

Inverting flow requires solving triangular system Az = x− b using back-substitution in

O(D2) time.
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Elementwise flows

1. Let h : R 7→ R be a scalar-valued bijection.

2. We can create a vector-valued bijection f : RD 7→ RD by applying h element-wise:

f (z) = (h(z1), h(z2), . . . , h(zD)).

3. Function f is invertible and its Jacobian determinant is
∏D

i=1
∂h
∂zi

.

4. Element-wise flows are limited, since they do not model dependencies between the

elements.

5. However, they are useful building blocks for more complex flows.

6. Examples of element-wise flows are

Affine scalar bijection

Higher-order perturbations

Combinations of strictly monotonic scalar functions

Scalar bijections from integration

Splines
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Elementwise flows

1. Affine scalar bijection

An affine scalar bijection has the form h(z ; θ) = az + b, where θ = (a, b) ∈ R2.

Its derivative equals to a.

It is invertible if and only if a ̸= 0.

2. Higher-order perturbations

The affine scalar bijection is simple to use, but limited.

We can make it more flexible by adding higher-order perturbations, under the constraint that

invertibility is preserved.

h(z ; θ) = az + b +
c

1 + (dz + e)2

where θ = (a, b, c, d , e) ∈ R5.

Under the constraints a > 9

8
√
3
cd and d > 0, the function becomes invertible.
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Elementwise flows

3. Combinations of strictly monotonic scalar functions

A strictly monotonic scalar function is one that is always increasing or always decreasing.

These functions are invertible.

Many activation functions, such as σ(z) = 1
1+e−z , are strictly monotonic.

Using such activation functions as a starting point, we can build more flexible monotonic

functions via conical combination (linear combination with positive coefficients) and function

composition.

Suppose h1, . . . , hK are strictly increasing; then the following are also strictly increasing

K∑
k=1

akhk + b with ak > 0 conical combination with a bias

h1 ◦ . . . ◦ hK function composition

By repeating the above two constructions, we can build arbitrarily complex increasing

functions.

For example, a composition of conical combinations of logistic sigmoids is just an MLP

where all weights are positive.
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Coupling flows

1. Coupling flows allow us to model dependencies between dimensions using arbitrary

non-linear functions

2. Consider a partition of the input z ∈ RD into two sub-spaces: (zA, zB) ∈ Rd × RD−d ,

where d is an integer in interval [1,D − 1].

3. Assume a bijection f̂ (.; θ) : Rd 7→ Rd parameterized by θ.

4. We define the function f : RD 7→ RD as

xA = f̂ (zA; Θ(zB))

xB = zB

or vice versa.

5. Θ is an arbitrary function called the conditioner.

z1:d = x1:d

zd+1:D g

forward pass

xd+1:D

m

z1:d = x1:d

zd+1:D g−1

inverse pass

xd+1:D

m
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Coupling flows

1. The coupling layer f is invertible, and its inverse is

zA = f̂ −1(xA; Θ(xB))

zB = xB

or vice versa.

2. The Jacobian of f is block triangular:

Jf =

[
∂xA

∂zA
∂xA

∂zB

∂xB

∂zA
∂xB

∂zB

]
=

[
Jf

∂xA

∂zB

0 1

]

3. We often define f̂ to be an elementwise bijection, so that f̂ −1 and det
(
Jf̂
)
are easy to

compute.

z1:d = x1:d

zd+1:D g

forward pass

xd+1:D

m

z1:d = x1:d

zd+1:D g−1

inverse pass

xd+1:D

m
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Real-valued Non-Volume Preserving (RealNVP)

1. The RealNVP model implements a normalizing flow by stacking a sequence of invertible

bijective transformation functions (Dinh, Sohl-Dickstein, and S. Bengio 2017).

2. In each bijection f : x 7→ y, the input dimensions are split into two parts:

The first d dimensions stay same (x1);

The second part, d + 1 to D dimensions (x2) transformed using

y1:d = x1:d

yd+1:D = xd+1:D ⊙ exp(s(x1:d)) + t(x1:d)

where s(.) and t(.) are scale and translation functions and both map Rd 7→ RD−d . The ⊙
operation is the element-wise product.
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Real-valued Non-Volume Preserving (RealNVP)

1. This network has

Stack many invertible coupling layers.

Each has simple inverse and determinant
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Real-valued Non-Volume Preserving (RealNVP)

1. This transformation satisfy two properties of flow transformations.

It is easily invertible.y1:d = x1:d

yd+1:D = xd+1:D ⊙ exp(s(x1:d)) + t(x1:d)

⇔

x1:d = y1:d

xd+1:D = (yd+1:D − t(y1:d))⊙ exp(−s(y1:d))

Its Jacobian determinant is easy to compute. The Jacobian is a lower triangular matrix.

J =

 Id 0d×(D−d)

∂yd+1:D

∂x1:d
diag(exp(s(x1:d)))


Hence, the determinant is simply the product of terms on the diagonal.

det (J) =
D−d∏
j=1

exp(s(x1:d))j = exp(
D−d∑
j=1

s(x1:d)j)
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Real-valued Non-Volume Preserving (RealNVP)

1. The inverse transformation

Properties: E�cient inversion

• Inverse transformation

x1 = y1 (25)

x2 = (y2 � t (x1)) � exp (�s(x1)) (26)

• No need to invert s(·) and t(·)
• Can use complex non-invertible functions, e.g. deep CNN

52/66
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Real-valued Non-Volume Preserving (RealNVP)
Published as a conference paper at ICLR 2017

Data space X Latent space Z

Inference
x ⇠ p̂X

z = f (x)
)

Generation
z ⇠ pZ

x = f�1 (z)
(

Figure 1: Real NVP learns an invertible, stable, mapping between a data distribution p̂X and a latent
distribution pZ (typically a Gaussian). Here we show a mapping that has been learned on a toy
2-d dataset. The function f (x) maps samples x from the data distribution in the upper left into
approximate samples z from the latent distribution, in the upper right. This corresponds to exact
inference of the latent state given the data. The inverse function, f�1 (z), maps samples z from the
latent distribution in the lower right into approximate samples x from the data distribution in the
lower left. This corresponds to exact generation of samples from the model. The transformation of
grid lines in X and Z space is additionally illustrated for both f (x) and f�1 (z).

remains undetermined, often resulting in generation of highly correlated samples. Furthermore, these
approximations can often hinder their performance [7].

Directed graphical models are instead defined in terms of an ancestral sampling procedure, which is
appealing both for its conceptual and computational simplicity. They lack, however, the conditional
independence structure of undirected models, making exact and approximate posterior inference
on latent variables cumbersome [56]. Recent advances in stochastic variational inference [27]
and amortized inference [13, 43, 35, 49], allowed efficient approximate inference and learning of
deep directed graphical models by maximizing a variational lower bound on the log-likelihood [45].
In particular, the variational autoencoder algorithm [35, 49] simultaneously learns a generative
network, that maps gaussian latent variables z to samples x, and a matched approximate inference
network that maps samples x to a semantically meaningful latent representation z, by exploiting the
reparametrization trick [68]. Its success in leveraging recent advances in backpropagation [51, 39] in
deep neural networks resulted in its adoption for several applications ranging from speech synthesis
[12] to language modeling [8]. Still, the approximation in the inference process limits its ability
to learn high dimensional deep representations, motivating recent work in improving approximate
inference [42, 48, 55, 63, 10, 59, 34].

Such approximations can be avoided altogether by abstaining from using latent variables. Auto-
regressive models [18, 6, 37, 20] can implement this strategy while typically retaining a great deal of
flexibility. This class of algorithms tractably models the joint distribution by decomposing it into a
product of conditionals using the probability chain rule according to a fixed ordering over dimensions,
simplifying log-likelihood evaluation and sampling. Recent work in this line of research has taken
advantage of recent advances in recurrent networks [51], in particular long-short term memory [26],
and residual networks [25, 24] in order to learn state-of-the-art generative image models [61, 46] and
language models [32]. The ordering of the dimensions, although often arbitrary, can be critical to the
training of the model [66]. The sequential nature of this model limits its computational efficiency. For
example, its sampling procedure is sequential and non-parallelizable, which can become cumbersome
in applications like speech and music synthesis, or real-time rendering.. Additionally, there is no
natural latent representation associated with autoregressive models, and they have not yet been shown
to be useful for semi-supervised learning.

2
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Real-valued Non-Volume Preserving (RealNVP)

Published as a conference paper at ICLR 2017

Dataset PixelRNN [46] Real NVP Conv DRAW [22] IAF-VAE [34]
CIFAR-10 3.00 3.49 < 3.59 < 3.28

Imagenet (32 ⇥ 32) 3.86 (3.83) 4.28 (4.26) < 4.40 (4.35)
Imagenet (64 ⇥ 64) 3.63 (3.57) 3.98 (3.75) < 4.10 (4.04)
LSUN (bedroom) 2.72 (2.70)

LSUN (tower) 2.81 (2.78)
LSUN (church outdoor) 3.08 (2.94)

CelebA 3.02 (2.97)

Table 1: Bits/dim results for CIFAR-10, Imagenet, LSUN datasets and CelebA. Test results for
CIFAR-10 and validation results for Imagenet, LSUN and CelebA (with training results in parenthesis
for reference).

Figure 5: On the left column, examples from the dataset. On the right column, samples from the
model trained on the dataset. The datasets shown in this figure are in order: CIFAR-10, Imagenet
(32 ⇥ 32), Imagenet (64 ⇥ 64), CelebA, LSUN (bedroom).

4.2 Results

We show in Table 1 that the number of bits per dimension, while not improving over the Pixel RNN
[46] baseline, is competitive with other generative methods. As we notice that our performance
increases with the number of parameters, larger models are likely to further improve performance.
For CelebA and LSUN, the bits per dimension for the validation set was decreasing throughout
training, so little overfitting is expected.

We show in Figure 5 samples generated from the model with training examples from the dataset
for comparison. As mentioned in [62, 22], maximum likelihood is a principle that values diversity

8

Dataset samples from model
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Non-linear Independent Component Estimation (NICE)

1. The NICE model is a predecessor of Real NVP (Dinh, Krueger, and Y. Bengio 2015).

2. The transformation in NICE is the affine coupling layer without the scale term, known as

additive coupling layer.
{
y1:d = x1:d

yd+1:D = xd+1:D +m(x1:d)
⇔
{
x1:d = y1:d

xd+1:D = yd+1:D −m(y1:d)

where m is an arbitrarily complex function, in this case a ReLU MLP.

3. Additive layers have unit Jacobian determinant, and their composition will necessarily have

unit Jacobian determinant too.

4. NICE includes a diagonal scaling matrix S as the top layer.

5. Final layer of NICE applies a rescaling transformation xi = sizi and inverse mapping

zi =
xi
si
.

6. Jacobian of forward mapping:

J = diag(S)

det (J) =
∏

i

si .

36 / 54



Samples generated by NICE

Samples generated via NICE

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 8 6 / 20
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Glow model

1. Glow extends NICE and RealNVP by replacing the reverse permutation operation on the

channel ordering with invertible 1× 1 convolutions (Kingma and Dhariwal 2018).

2. There are three substeps in one step of flow in Glow.

Activation normalization (short for actnorm):

Actnorm layer performs an affine transformation of the activations using a scale and bias

parameter per channel.

These parameters are initialized such that the post-actnorm activations per-channel have zero

mean and unit variance.

After initialization, the scale and bias are treated as regular trainable parameters that are

independent of the data.

Invertible 1× 1 convolution: Instead of fixed ordering, 1× 1 convolution is used.

Affine coupling layer (Same as in RealNVP)
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Glow model

1. Latent factors

Example: GLOW 

�  Generative Flow with Invertible 1x1 Convolutions !
    https://blog.openai.com/glow/ !

48!

Age! Hair 
Color!

Smile! Beard!

Image!

z1 ! zk!

x!

Latent factors of variation!

Kingma, Dhariwal, 2018 
Example: GLOW 

49!

Increase Age!

Decrease Age!

Input!

https://blog.openai.com/glow/ !
!

Add Beard !Smile!

Remove Beard !

Input!
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Glow Results

Glow: Generative Flow
with Invertible 1⇥1 Convolutions

Diederik P. Kingma*†, Prafulla Dhariwal⇤
*OpenAI

†Google AI

Abstract

Flow-based generative models (Dinh et al., 2014) are conceptually attractive due to
tractability of the exact log-likelihood, tractability of exact latent-variable inference,
and parallelizability of both training and synthesis. In this paper we propose Glow,
a simple type of generative flow using an invertible 1⇥ 1 convolution. Using our
method we demonstrate a significant improvement in log-likelihood on standard
benchmarks. Perhaps most strikingly, we demonstrate that a flow-based generative
model optimized towards the plain log-likelihood objective is capable of efficient
realistic-looking synthesis and manipulation of large images. The code for our
model is available at https://github.com/openai/glow.

1 Introduction

Two major unsolved problems in the field of machine learning are (1) data-efficiency: the ability to
learn from few datapoints, like humans; and (2) generalization: robustness to changes of the task or
its context. AI systems, for example, often do not work at all when given inputs that are different

⇤Equal contribution.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

Figure 1: Synthetic celebrities sampled from our model; see Section 3 for architecture and method,
and Section 5 for more results.

Synthetic celebrities sampled from Glow model

Figure 4: Random samples from the model, with temperature 0.7.

Figure 5: Linear interpolation in latent space between real images.

between the latents to obtain samples. The results in Figure 5 show that the image manifold of the
generator distribution is smooth and almost all intermediate samples look like realistic faces.

Semantic Manipulation. We now consider modifying attributes of an image. To do so, we use the
labels in the CelebA dataset. Each image has a binary label corresponding to presence or absence of
attributes like smiling, blond hair, young, etc. This gives us 30000 binary labels for each attribute.
We then calculate the average latent vector zpos for images with the attribute and zneg for images
without, and then use the difference (zpos � zneg) as a direction for manipulating. Note that this is a
relatively small amount of supervision, and is done after the model is trained (no labels were used
while training), making it extremely easy to do for a variety of different target attributes. The results
are shown in Figure 6 (appendix).

Effect of temperature and model depth. Figure 8 (appendix) shows how the sample quality and
diversity varies with temperature. The highest temperatures have noisy images, possibly due to
overestimating the entropy of the data distribution; we choose a temperature of 0.7 as a sweet spot
for diversity and quality of samples. Figure 9 (appendix) shows how model depth affects the ability
of the model to learn long-range dependencies.

7 Conclusion

We propose a new type of generative flow and demonstrate improved quantitative performance in
terms of log-likelihood on standard image modeling benchmarks. In addition, we demonstrate that
when trained on high-resolution faces, our model is able to synthesize realistic images.

References
Deco, G. and Brauer, W. (1995). Higher order statistical decorrelation without information loss.

Advances in Neural Information Processing Systems, pages 247–254.

3For 128⇥ 128 and 96⇥ 96 versions, we centre cropped the original image, and downsampled. For 64⇥ 64
version, we took random crops from the 96 ⇥ 96 downsampled image as done in Dinh et al. (2016)

8

Random samples from the Glow model.

See also https://openai.com/blog/glow/.
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Autoregressive flows

1. Autoregressive flows are flows composed of autoregressive bijections.

2. An autoregressive bijection f : RD 7→ RD is defined as

xi = h(zi ; Θi (x<i )) i = 1, . . . ,D

3. Since h is invertible, f is also invertible, and its inverse is given by:

zi = h−1(xi ; Θi (x<i )) i = 1, . . . ,D

4. An important property of f is that each output xi depends only on z<i , which results

det (Jf ) =
D∏

i=1

∂h

∂zi

5. Hence, Jf can be computed efficiently in O(D) time.

6. Although invertible, autoregressive bijections are computationally asymmetric:

Evaluating f is inherently sequential. That is because we need x1, . . . , xi−1 to compute xi .

Evaluating f −1 is inherently parallel. That is because z does not appear on the right-hand.
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Autoregressive flows (Masked autoregressive flows)

1. The conditioners Θi can be arbitrary non-linear functions.

2. The most straightforward way to parameterize them is separately for each i , for example

by using D separate neural networks (Papamakarios, Murray, and Pavlakou 2017).

3. However, this can be parameter-inefficient for large D.

4. In practice, we often share parameters between conditioners by combining them into a

single model Θ that takes in x and outputs (θ1, . . . , θD).

5. For the bijection to remain autoregressive, we must constrain Θ so that θi depends only

on x1, . . . , xi−1 and not on xi , . . . , xD .
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Autoregressive flows (Masked autoregressive flows)

1. Given two random variables z ∼ pz(z) and x ∼ px(x), and the probability density function

pz(z) is known, MAF aims to learn px(x).

2. MAF generates each xi , conditioned on the past dimensions x1:i−1.

Data generation, producing a new x.

xi = zi expαi + µi

where

p(xi | x1:i−1) = N
(
xi |µi , (expαi )

2
)

µi = fµi (x1:i−1)

αi = fαi (x1:i−1)

zi ∼ N (0, 1)

Density estimation, given a known x.

px(x) =
D∏
i=1

p(xi | x1:i−1)
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Autoregressive flows (Masked autoregressive flows)

1. IAF models the conditional probability of the target variable as an autoregressive model

too, but with a reversed flow (for efficient sampling process) (Kingma, Salimans, and

Welling 2016).

2. IAF makes θi a function of the previous inputs z1, . . . , zi−1 (Papamakarios, Murray, and

Pavlakou 2017).

3. This leads to the following bijection, which is known as inverse autoregressive:

xi = h(zi ; Θi (z<i )) i = 1, . . . ,D
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Autoregressive flows (Inverse autoregressive flows)

1. In IAF, the nonlinear shift/scale statistics are computed using the previous noise variates

z1:i−1, instead of the data samples:

xi = zi expαi + µi

µi = fµi (z1:i−1) αi = fαi (z1:i−1)

2. The reverse transformation in MAF is

zi =
xi − µi (x1:i−1)

σi (x1:i−1)
= −µi (x1:i−1)

σi (x1:i−1)
+ xi ⊙

1

σi (x1:i−1)

3. If we consider

x̃ = z, p̃(.) = p(.), x̃ ∼ p̃(x̃)

z̃ = x, p̃(.) = p(.), z̃ ∼ p̃(z̃)

µ̃i (z̃1:i−1) = µ̃i (x1:i−1) = −µi (x1:i−1)

σi (x1:i−1)

σ̃(z̃1:i−1) = σ̃(x1:i−1) =
1

σi (x1:i−1)

4. Then, x̃i ∼ p(x̃i |z̃1:i ) = z̃i ⊙ σ̃i (z̃1:i−1) + µ̃i (z̃1:i−1), where z̃ ∼ p̃(z̃)

5. IAF intends to estimate the probability density function of x̃ given that p̃(z̃) is already

known. 45 / 54



Residual flows

1. A residual network is a composition of residual connections, which are functions of the

form f (z) = z+ F (z).

2. The function F : RD 7→ RD is called the residual block.

3. Under certain conditions on F , the residual connection f becomes invertible. residual-block

4. Flows composed of invertible residual connections are referred as residual flows.
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Residual flows (Contractive residual blocks)

1. One way to ensure the residual connection is invertible is to choose the residual block to

be a contraction.

2. A function F whose Lipschitz constant is less than 1 is called contraction, that is, there

exists 0 ≤ L ≤ 1 such that for all vz1 and z2 we have:

∥F (z1)− F (z2)∥ ≤ L∥z1 − z2∥

3. The invertibility of f (z) = z+ F (z) can be shown as:

Consider the mapping g(z) = x− F (z).

Because F is a contraction, g is also a contraction.

Using Banach’s fixed-point theorem, g has has a unique fixed point z∗. Hence,

z∗ = x− F (z∗)

=⇒z∗ + F (z∗) = x

=⇒f (z∗) = x

Since z∗ is unique, it follows that z∗ = f −1(z∗)
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Residual flows (Contractive residual blocks)

1. The iResNet uses convolutional neural networks as residual blocks, that is, compositions of

convolutional layers with non-linear activation functions (Behrmann et al. 2019).

2. Since the Lipschitz constant of a composition is less or equal to the product of the

Lipschitz constants of the individual functions, it is enough to ensure the convolutions are

contractive, and to use increasing activation functions with slope less or equal to 1.

3. The iResNet model ensures the convolutions are contractive by applying spectral

normalization to their weights.

4. there is no analytical expression for the Jacobian determinant, whose exact computation

costs O(D3).

5. However, there is a computationally efficient stochastic estimator of the log Jacobian

determinant.

6. The idea is to express the log Jacobian determinant as a power series.
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Residual flows (Contractive residual blocks)

Invertible Residual Networks

E. Evaluating the Bias of Our Log-determinant Estimator
Here we numerically evaluate the bias of the log-determinant estimator used to train our generative models (Equation (4)).
We compare the true value (computed via brute-force) with the estimator’s mean and standard deviation as the number of
terms in the power series is increased. After 10 terms, the estimator’s bias is negligible and after 20 terms it is numerically 0.
This is averaged over 1000 test examples.

# Terms

B
its

/D
im

Figure 9. Convergence of approximation error of log-determinant estimator when varying the number of terms used in the power series.
The variance is due to the stochastic trace estimator.

F. Additional Samples of i-ResNet flow

CIFAR10 samples. MNIST samples.
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Residual flows (Residual blocks with low-rank Jacobian)

1. There is an efficient way of computing the determinant of a matrix which is a low-rank

perturbation of an identity matrix.

2. Let A and B be two D ×M and M × D matrices, respectively. We have

det (ID + AB) = det (IM + BA)

3. The significance of this formula is that it turns a D × D determinant that costs O(D3)

into an M ×M determinant that costs O(M3).

4. If M ≪ D, this saves computation.

5. With some restrictions on the residual block F : RD 7→ RD , we can apply this formula to

compute the determinant of a residual connection efficiently.

6. The trick is to create a bottleneck inside F .
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Residual flows (Residual blocks with low-rank Jacobian)

1. The trick is to create a bottleneck inside F .

2. We do that by defining F = F2 ◦ F1, where F1 : RD 7→ RM , F2 : RM 7→ RD and M ≪ D.

3. The chain rule gives JF = JF2JF1 . Now, we have

det (Jf ) = det (ID + JF ) = det (ID + JF2JF1) = det (IM + JF1JF2)

4. In planar flow, each residual block is an MLP with one hidden layer and one hidden

unit (Rezende and Mohamed 2015).

Variational Inference with Normalizing Flows

involves several additional operations that are also O(LD3)
and involve matrix inverses that can be numerically unsta-
ble. We therefore require normalizing flows that allow for
low-cost computation of the determinant, or where the Ja-
cobian is not needed at all.

4.1. Invertible Linear-time Transformations

We consider a family of transformations of the form:

f(z) = z + uh(w>z + b), (10)

where � = {w 2 IRD,u 2 IRD, b 2 IR} are free pa-
rameters and h(·) is a smooth element-wise non-linearity,
with derivative h0(·). For this mapping we can compute
the logdet-Jacobian term in O(D) time (using the matrix
determinant lemma):

 (z) = h0(w>z + b)w (11)

det
��� @f
@z

��� = | det(I + u (z)>)| = |1 + u> (z)|. (12)

From (7) we conclude that the density qK(z) obtained by
transforming an arbitrary initial density q0(z) through the
sequence of maps fk of the form (10) is implicitly given
by:

zK = fK � fK�1 � . . . � f1(z)

ln qK(zK) = ln q0(z)�
KX

k=1

ln |1 + u>
k  k(zk)|. (13)

The flow defined by the transformation (13) modifies the
initial density q0 by applying a series of contractions and
expansions in the direction perpendicular to the hyperplane
w>z+b = 0, hence we refer to these maps as planar flows.

As an alternative, we can consider a family of transforma-
tions that modify an initial density q0 around a reference
point z0. The transformation family is:

f(z) = z + �h(↵, r)(z� z0), (14)

det

����
@f

@z

���� = [1 + �h(↵, r)]
d�1

[1 + �h(↵, r) + h0(↵, r)r)] ,

where r = |z � z0|, h(↵, r) = 1/(↵ + r), and the param-
eters of the map are � = {z0 2 IRD,↵ 2 IR,� 2 IR}.
This family also allows for linear-time computation of the
determinant. It applies radial contractions and expansions
around the reference point and are thus referred to as radial
flows. We show the effect of expansions and contractions
on a uniform and Gaussian initial density using the flows
(10) and (14) in figure 1. This visualization shows that we
can transform a spherical Gaussian distribution into a bi-
modal distribution by applying two successive transforma-
tions.

Not all functions of the form (10) or (14) will be invert-
ible. We discuss the conditions for invertibility and how to
satisfy them in a numerically stable way in the appendix.
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Figure 1. Effect of normalizing flow on two distributions.

Inference network Generative model

Figure 2. Inference and generative models. Left: Inference net-
work maps the observations to the parameters of the flow; Right:
generative model which receives the posterior samples from the
inference network during training time. Round containers repre-
sent layers of stochastic variables whereas square containers rep-
resent deterministic layers.

4.2. Flow-Based Free Energy Bound

If we parameterize the approximate posterior distribution
with a flow of length K, q�(z|x) := qK(zK), the free en-
ergy (3) can be written as an expectation over the initial
distribution q0(z):

F(x) = Eq�(z|x)[log q�(z|x)� log p(x, z)]

= Eq0(z0) [ln qK(zK)� log p(x, zK)]

= Eq0(z0) [ln q0(z0)]� Eq0(z0) [log p(x, zK)]

� Eq0(z0)

"
KX

k=1

ln |1 + u>
k  k(zk)|

#
. (15)

Normalizing flows and this free energy bound can be used
with any variational optimization scheme, including gener-
alized variational EM. For amortized variational inference,
we construct an inference model using a deep neural net-
work to build a mapping from the observations x to the
parameters of the initial density q0 = N (µ,�) (µ 2 IRD

and � 2 IRD) as well as the parameters of the flow �.

4.3. Algorithm Summary and Complexity

The resulting algorithm is a simple modification of the
amortized inference algorithm for DLGMs described by
(Kingma & Welling, 2014; Rezende et al., 2014), which
we summarize in algorithm 1. By using an inference net-

5. The flow is f (z) = z+ vσ(w⊺z+ b) and hence det (Jf ) = 1 +w⊺vσ′(w⊺z+ b)
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