Deep Generative Models
Flow-based Deep Generative Models
Hamid Beigy

Sharif University of Technology

April 27, 2024

Table of contents

1. Introduction

2. Flow-based Models

3. Constructing flows

4. References

1/54

Introduction

Generative models categories

[Generative models j

T

[Explicit density j [Implicit density j

/ ‘ \ MGAN |

[Tractable density] [Approximate density] [Unnormalized densityj

’Autoregressive ‘ ’VAEs ‘ éuEnergy-based ‘

‘Normalizing Flows ‘ ’Diffusion models ‘

Learn approximation : compare real vs
: L. >
of density, e.g. generated samples

lower bound

2/ 54

Generative models

1. Assume that the observed variable x is a random sample from an underlying process,
whose true distribution p,,.,(x) is unknown.

d(PdalmPF’)
-

Pdata P

0eM

Model family

2. We attempt to approximate this process with a chosen model, py(x), with parameters ¢
such that x ~ py(x).

3. Learning is the process of searching for the parameter ¢ such that p,(x) well approximates
Pyata(X) for any observed x, i.e.

Po (X) ~ Pdata (X)

4. We wish py(x) to be sufficiently flexible to be able to adapt to the data for obtaining
sufficiently accurate model and to be able to incorporate prior knowledge.

Credit: Aditya Grover
3/54

Likelihood-based m

Autoregressive models Latent variable models

1. Tractable density 1. Approximated density
2. Density is estimated as 2. Density is estimated as
p(x;6) = [bl | x5:6) p(x6) = [plx,zi6)dz
j=1

3. Intractable likelihood

3. Tractable likelihood)
4. Latent feature representation

4. No inferred latent factors

How to build model with latent variables and tractable likelihood?
1. Flow-based generative models:
o Constructed by a sequence of invertible transformations.

o Learns data distribution where loss function is simply the negative log-likelihood.

Flow Inverse

f(x) | (@)

4/54

Flow-based Models

Jacobian Matrix and Determinant

1. Given a function of mapping a n-dimensional input vector x to a m-dimensional output
vector, f : R” — R, the Jacobian matrix, J, is

of of

Ox1 T Ox,
J =

Ot of

Oxq et OXn

2. The determinant of a n X n matrix M is

dilz d12 ... din
ax axp ... azp TGz n)
det (M) = det . . . = E (—1) 12:-oJn aij; A2, - - - Anj,
: : : J12-+-dn
dpl adn2 ... dpn

7(.) indicates the signature of a permutation.

Some slides of this section are adopted from Lilian Weng's page
5/54

https://lilianweng.github.io/posts/2018-10-13-flow-models/

Change of Variable Theorem

1. Given a random variable z and its known probability density function z ~ p(z), we would
like to construct a new random variable using a one-one mapping function x = f(z).

2. The function f is invertible, so z = f~*(x).

3. The question is how to infer the unknown probability density function of the new variable,
p(x)?

/ p(x)dx = / p(z)dz=1 Definition of probability distribution.
X z

p(x) = p(2) f,L

df 1

000 G| = o] ())

4. By definition, the integral | p(z)dz is the sum of an infinite number of rectangles of
infinitesimal width Az.

5. The height of such a rectangle at position z is the value of the density function p(z).

6/ 54

Change of Variable Theorem

1. When we substitute the variable, z = f~!(x) yields 22 = (f’l(x))/ and
Az = (f’l(x))/Ax.

2. Here !fﬁl(x)" indicates the ratio between the area of rectangles defined in two different
coordinate of variables z and x, respectively.

3. The multivariable version has a similar format:

z~ p(2)
x = f(z)
z= f_l(x)
o(x) = o(z) et (57)
— p(F1(x))|det <dg;l>’

where det (g—i) is the Jacobian determinant of the function f.

7/54

Change of Variable Theorem (example)

1. Consider a random variable Z that is uniformly distributed over the unit cube z € [0, 1].

2. We can scale Z by a factor of 2 to get a new random variable X,

x=f(z)=Az=

o O N

O NN O

N O O
N

where X is uniform over a cube with side length 2.

8/ 54

Change of Variable Theorem (example)

1. How is the density p(x) related to p(z)?
2. Since every distribution sums to 1 and the unit cube has volume V, = 1.
p(z)Vz=1
and p(z) =1 for all z in the unit cube.
3. The volume of the larger cube is easy to compute: Vy = 23 = 8.
4. The total probability mass must be conserved, so we can solve for the density of X.

_p(z9)Vz 1
P(X)—Tz—g

5. The new density is equal to the original density multiplied by the ratio of the volumes.

9/ 54

Change of Variable Theorem (example)

1. The change of variables formula allows us to tractably compute normalized probability
densities when we apply an invertible transformation f.

p(x) = p(z)abs * det (81‘81(x)>

MEON

2. The invertible function is just multiplication by a scaling matrix, so the determinant of the

= p(2)

Jacobian matrix is easy to compute:

det (81;(22)) = det (A) = 8.

10 / 54

Change of Variable Theorem (example)

. Let ze R and p(z) = N(0,1).

. Let x be a new random variable after applying a linear transformation to z.
. Let x =0.75z 4+ 1, what is p(x)?

. Using the change of variable theorem,

o(x) = oz = 1) 25 1

. Let f(z) =0.75z + 1, and hence

1 X = 1
=37
If1(x) _ 4
Ox 3
. Putting all together yields
x—1.4
p(x) = p(z= 0.75)g

N(1,0.75)

11/ 54

Change of Variable Theorem (example)

1. The change of variables formula allows us to tractably compute normalized probability
densities when we apply an invertible transformation f.

o(x) = p(z) et
det (82(22))_1

2. The invertible function is just multiplication by a scaling matrix, so the determinant of the

afai(x)>’

= p(2)

Jacobian matrix is easy to compute:

det (2@ _ ger (a) = 8.
(%)) = derm)

12/ 54

Inverse Function Theorem

1. Theses examples show that we can calculate a new distribution of a continuous random
variable by applying a known bijective transformation f to a random variable with a known
distribution z ~ p(z).

p(x) = p(z = f~1(x))|det (F*(x))]

2. From inverse function theorem, we have

|det (F1(x))| = ’det (f(x))*l‘

; Pl =1
= | &
1. x and z have the same dimensionality (R").
2. f could be parametric function as fy(x). f HyGe)| =05
3. Determinant of Jacobian matrix J = afg)((x) shows = =
how the volume changes under the ~
transformation 9,091 = 15
f
=
13/ 54

is Normalizing Flows?

. Density estimation has several important applications in many machine learning problems.

. In deep learning models, the embedded probability distribution is expected to be simple
enough to calculate the derivative easily and efficiently.

. This is why Gaussian distribution is often used in latent variable generative models.

. Normalizing Flow (NF) models are used for better and more powerful distribution
approximation (Rezende and Mohamed 2015).

. A normalizing flow transforms a simple distribution into a complex one by applying a
sequence of invertible transformation functions.

'S

‘ fi] fa
—_— —_— —_—
— — . — AN

>
1

0 0 0
“latent” space pixel space

14 /54

Fitting normalizing flows

1. MLE problem

p(x;0) = p(2)

det <g§>'
= o)t 22

log p(x; 8) = log p(fy(x)) + log|det (Jf)|

2. We want to find 6 that maximizes log p(x;).

Data space X Latent space Z
Inference ,g& j ”"% .
z=f (T) ?r%-f
Generation 4 W
z2~pz] =
z=f""(2)

15 / 54

Composition of normalizing flows

Theorem

Diffeomorphisms® are composable if {f, }£_, satisfy conditions of the change of variable
theorem, then z = f(x) = fx o fx_1 o ... 0 f1(x) also satisfies it.

It is an invertible function that maps one differentiable manifold to another such that both the function and
its inverse are continuously differentiable.

det (ag(xx))‘ = p(f(X))’G'et (a?‘:: gﬁ)'

f1(zo) fi(zi-1) fit1(z:)
® - OB - @--

2o ~ po(2o) z; ~ pi(2i) zx ~ Pk (2K)

16 / 54

Normalizing Flows

1. We want to find 6 that maximizes log p(x;6).

log p(x; 0) = log p(fy(x)) + log|det (Jr)|

Definition (Normalizing flows)
Normalizing flow is a differentiable, invertible mapping from data x to the noise z.

o Normalizing means that NF takes samples from p(x) and normalizes them into samples from
the density p(z).

o Flow refers to the trajectory followed by samples from p(x) as they are transformed by the

sequence of transformations
z=1fgofk_10...0f(x)
—1 _ -1 -1
x=f ofgjo...0off(2)

=81 ngomogK(Z)

17 / 54

Normalizing Flows

1. From the previous slide, we have

zj_1 ~p;_1(zi-1)
z;, = f;-(Z,'_l), thUS Z,_1 = f;'_l(zi)

pi(z) = pja(f;(21))|det (d(::) ’

2. Repeating above, we can do inference using base distribution.

pi(zi) = pi1(zi-1)(F(21)

w((2))
(as)]
det(di)‘

= Pj_1 Z, 1) According to the inverse function theorem.

det

= Pj_1 Z, 1) Using property of Jacobians of invertible funcion

log p;(z;) = log p;_1(zi-1) — log

18 / 54

Normalizing Flows

1. Given chain of pdfs, we can expand the equation of the output x step by step until tracing
back to the initial distribution zg.

x=12zx =fgofk_10---0f(zp)

log p(x) = log px(z«)

= log px_1(zk—1) — log

= log px_s(zk—2) — log

dfx
det (pE— > ‘

= log po(20) Zlog

det
€ (de 1)’

de 1
det
€ <dZK 2>

—log

det()‘
ZI 1

19 / 54

Normalizing Flows

1. The path traversed by the random variables z; = f;(z;_1) is the flow.

2. The full chain formed by the successive distributions p;(z;) is called a normalizing flow.

3. For computation of equation, a transformation function f; should satisfy two properties:
o It is easily invertible.

o Its Jacobian determinant is easy to compute.

4. With normalizing flows, the exact log-likelihood of input data log p(x) becomes tractable.

5. The training criterion of flow-based generative model is simply the negative log-likelihood
(NLL) over the training dataset S.

e
‘j

;:; ;

20 / 54

Applications of Normalizing Flows

1. How to generate a sample?
o Sample z from p,(z): z ~ p,(z).
o Compute function x = f(z).

2. How to compute the density p,(x). Let g = 1.

Px(x) = p,(g(x))ldet (J¢(x))]
= py(2)ldet (Jr(2))| "

3. How flexible are the densities p,(x) obtained by transforming random variables sampled
from simple p,(z)?

4. We can use normalizing flows method to approximate any smooth distribution.

21/ 54

How to train a flow model?

1. There are two common applications of normalizing flow models.
o Density estimation, i.e. fitting p,(x) to the data.

The objective is to maximize the following function

pe(x) = po(2)ldet (J¢(2))|

This requires that we can evaluate f(z) ! and det (J¢(z)) " efficiently.

o Variational inference, sampling and evaluating from a variational posterior q,(z | x)
parameterized by a flow model.

The variational parameters are trained by maximizing the evidence lower bound (ELBO),

L(0) = Eqyzinllog p(x | 2) + log p,(2) — log q5(z | x)]

To optimize this objective, we need to be able to efficiently sample from q,(z | x) and
evaluate the probability density of these samples during optimization.

22 / 54

Constructing flows

Introduction

1. The density p,(zx) obtained by successively transforming a random variable xo with
distribution p, through a chain of K transformations f; defined as

Xk = fgo...0fofi(zg)

L 4
\

Zl oo

21 ~ pi(2k)

23 / 54

Affine

1. A simple choice is to use an affine transformation x = f(z) = Az + b.
2. This is a bijection if and only if A is an invertible square matrix.
3. Theinverse is z = f*(x) = A~!(x — b).
4. Affine flows are limited in their expressive power.

o Let the base distribution be Gaussian p,(z) = N (2, X,).

o The distribution after an affine bijection is still Gaussian p,(x) = N (A, + b, AL,AT).
5. However, they are useful building blocks when composed with the non-affine bijections.
6. We need to ensure Jacobian determinant and inverse of flow are fast to compute.

o In general, computing det (A) and det (A™") requires O(D?) time.

o If A is diagonal, the cost becomes O(D).

o If A is triangular, Jacobian determinant is product of its diagonal elements taking O(D).

o Inverting flow requires solving triangular system Az = x — b using back-substitution in
O(D?) time.

24/ 54

Elementwise flows

1. Let h: R+ R be a scalar-valued bijection.

2. We can create a vector-valued bijection f : RP — RP by applying h element-wise:
f(z) = (h(z1), h(z2), ..., h(zD)).

dh
oz "

3. Function f is invertible and its Jacobian determinant is H,D:l

4. Element-wise flows are limited, since they do not model dependencies between the
elements.

5. However, they are useful building blocks for more complex flows.
6. Examples of element-wise flows are

o Affine scalar bijection

o Higher-order perturbations

Combinations of strictly monotonic scalar functions

Scalar bijections from integration

o Splines

25 / 54

Elementwise flows

1. Affine scalar bijection
o An affine scalar bijection has the form h(z;0) = az + b, where 6 = (a, b) € R?.
o Its derivative equals to a.
o It is invertible if and only if a # 0.
2. Higher-order perturbations
o The affine scalar bijection is simple to use, but limited.

o We can make it more flexible by adding higher-order perturbations, under the constraint that
invertibility is preserved.

C

h(z;H):az—i—b—i—m

where 0 = (a, b, c,d, e) € R,

o Under the constraints a > %ﬁcd and d > 0, the function becomes invertible.

26 / 54

Elementwise flows

3. Combinations of strictly monotonic scalar functions
o A strictly monotonic scalar function is one that is always increasing or always decreasing.
o These functions are invertible.

o Many activation functions, such as o(z) = are strictly monotonic.

1
1+e—2?

o Using such activation functions as a starting point, we can build more flexible monotonic
functions via conical combination (linear combination with positive coefficients) and function
composition.

o Suppose hi, ..., hi are strictly increasing; then the following are also strictly increasing
K
Zakhk + b with ax >0 conical combination with a bias
k=1
hio...ohk function composition

o By repeating the above two constructions, we can build arbitrarily complex increasing
functions.

o For example, a composition of conical combinations of logistic sigmoids is just an MLP
where all weights are positive.

27 / 54

Coupling flows

1. Coupling flows allow us to model dependencies between dimensions using arbitrary

non-linear functions

2. Consider a partition of the input z € R” into two sub-spaces: (z*,2z%) € R x RP~9,
where d is an integer in interval [1, D — 1].

3. Assume a bijection ?(0) : RY — RY parameterized by 0.

4. We define the function f : RP — RP as
XA = f(z*; 6(2%))

%
I
N

or vice versa.

5. © is an arbitrary function called the conditioner.

forward pass inverse pass

©

Zd+1:D

28 / 54

Coupling flows

1. The coupling layer f is invertible, and its inverse is

A = 7?71(XA; @(XB))
2B =xB
or vice versa.

2. The Jacobian of f is block triangular:

axt axt J, o
Jo =020 08| — f 948
f axE ax8 0 1

028 928

3. We often define f to be an elementwise bijection, so that ! and det (J7) are easy to
compute.

T1.d Z1:d

Ld+1:D Zd+1:D

forward pass inverse pass

29 / 54

Real-valued Non-Volume Preserving (RealNVP)

1. The RealNVP model implements a normalizing flow by stacking a sequence of invertible
bijective transformation functions (Dinh, Sohl-Dickstein, and S. Bengio 2017).

2. In each bijection f : x — y, the input dimensions are split into two parts:
o The first d dimensions stay same (x1);
o The second part, d + 1 to D dimensions (x2) transformed using

Yi.d = X1:d

Ya+1:0 = Xd+1:0 © exp(s(X1:4)) + t(X1.4)

where s(.) and t(.) are scale and translation functions and both map R+ R°~9 The ®
operation is the element-wise product.

30 / 54

Real-valued Non-Volume Preserving (RealNVP)

1. This network has
o Stack many invertible coupling layers.

o Each has simple inverse and determinant

31/ 54

Real-valued Non-Volume Preserving (RealNVP)

1. This transformation satisfy two properties of flow transformations.

o It is easily invertible.

Yi.d = X1.d
Ya+1:0 = Xd+1.0 © exp(s(xX1.9)) + t(X1.d)
X1:d = Yid
<~

Xdt1:0 = (Yd+1:0 — t(¥1:0)) © exp(—s(y1.4))

o Its Jacobian determinant is easy to compute. The Jacobian is a lower triangular matrix.

Iy 04x(p-d)
J=
0Yd+1:.D

g diag(exp(s(xwa)))

Hence, the determinant is simply the product of terms on the diagonal.

det (3) = [expls(x)) = oxp(Y sl

32/ 54

Real-valued Non-Volume Preserving (RealNVP)

1. The inverse transformation

Real-valued Non-Volume Preserving (RealNVP)

Data space X Latent space Z
Inference ,fi W
T~ px PRy - =
z=f () ?‘,‘}w&g
Generation > gl
zZ~ Pz 5 P
z=f"1(2)

34/ 54

Real-valued Non-Volume Preserving (RealNVP)

Dataset samples from model

35/ 54

Non-linear Independent Component Estimation (NICE)

1. The NICE model is a predecessor of Real NVP (Dinh, Krueger, and Y. Bengio 2015).

2. The transformation in NICE is the affine coupling layer without the scale term, known as
additive coupling layer.

Yi.d = X1.d X1:d = Yid
=
Yd+1:0 = Xd+1:.0 + m(xl:d) Xd+1:D = Yd+1:D — m(y1:d)

where m is an arbitrarily complex function, in this case a ReLU MLP.

3. Additive layers have unit Jacobian determinant, and their composition will necessarily have
unit Jacobian determinant too.

4. NICE includes a diagonal scaling matrix S as the top layer.

5. Final layer of NICE applies a rescaling transformation x; = s;z; and inverse mapping
Xi

Zj = .
i si

6. Jacobian of forward mapping:
J = diag(S)

det(J) = Hs,-.

36 / 54

Samples generated by NICE

N <
QYD
Olwv
o A o
2
MM
P

Q
S

4

9'.:

é|8|=

(b) Model trained on TFD

(a) Model trained on MNIST

37 /54

Glow model

1. Glow extends NICE and RealNVP by replacing the reverse permutation operation on the
channel ordering with invertible 1 x 1 convolutions (Kingma and Dhariwal 2018).

2. There are three substeps in one step of flow in Glow.
o Activation normalization (short for actnorm):

B Actnorm layer performs an affine transformation of the activations using a scale and bias
parameter per channel.

B These parameters are initialized such that the post-actnorm activations per-channel have zero
mean and unit variance.

m After initialization, the scale and bias are treated as regular trainable parameters that are
independent of the data.

o Invertible 1 x 1 convolution: Instead of fixed ordering, 1 X 1 convolution is used.

o Affine coupling layer (Same as in RealNVP)

1

affine coupling layer
invertible 1x1 conv

| 38 / 54

Glow model

1. Latent factors

Hair
Color

Add Beard Increase Age

https://blog.openai.com/.

Remove Beard Decrease Age 39/ 54

Glow Results

Random samples from the Glow model.

See also https://openai.com/blog/glow/.

40 / 54

https://openai.com/blog/glow/

Autoregressive flows

1. Autoregressive flows are flows composed of autoregressive bijections.

2. An autoregressive bijection f : RP — RP is defined as

X = h(Z,';@,'(X<,')) = 1,...,D

3. Since h is invertible, f is also invertible, and its inverse is given by:

zi = hY(x:; 9i(x<))) i=1,...,D

4. An important property of f is that each output x; depends only on z_;, which results

5. Hence, Jr can be computed efficiently in O(D) time.
6. Although invertible, autoregressive bijections are computationally asymmetric:
o Evaluating f is inherently sequential. That is because we need xi,...,xi_1 to compute X;.

o Evaluating f ! is inherently parallel. That is because z does not appear on the right-hand.
41 /54

Autoregressive flows (Masked autoregressive flows)

1. The conditioners ©; can be arbitrary non-linear functions.

2. The most straightforward way to parameterize them is separately for each /, for example
by using D separate neural networks (Papamakarios, Murray, and Pavlakou 2017).

3. However, this can be parameter-inefficient for large D.

4. In practice, we often share parameters between conditioners by combining them into a
single model © that takes in x and outputs (61,...,0p).

5. For the bijection to remain autoregressive, we must constrain © so that 6; depends only
on xi,...,xj_1 and not on x;, ..., xp.

z1 T

scale &
shift terms | Li—1

: s
Zitl] 2@ 0y(Xpio1) + pa(Xpaon) T

ZD Zp

z~7(z) ——— 2 ——— x~ p(x)

(known) (unknown)

42/ 54

Autoregressive flows (Masked autoregressive flows)

1. Given two random variables z ~ p,(z) and x ~ p,(x), and the probability density function
p,(z) is known, MAF aims to learn p,(x).

2. MAF generates each x;, conditioned on the past dimensions xy.;_1.
o Data generation, producing a new x.
Xj = Zj eXp o + i
where

p(xi | xi1) =N (x;l,u;, (expa,-)2)

pi = fu;(X1:i-1)
Q= fa,'(xl:i—l)
Zj ~ N(O, 1)
o Density estimation, given a known x.
D

p(x) = HP(X,' | X1:i-1)

i=1

43/ 54

Autoregressive flows (Masked autoregressive flows)

1. IAF models the conditional probability of the target variable as an autoregressive model
too, but with a reversed flow (for efficient sampling process) (Kingma, Salimans, and
Welling 2016).

2. IAF makes 0; a function of the previous inputs zi, ..., z_1 (Papamakarios, Murray, and
Pavlakou 2017).

3. This leads to the following bijection, which is known as inverse autoregressive:

Xj = h(Z,';@,'(Z<,')) i = 1,...,D

21 -'Z'l

. scale & -

Z2i—1 | shiftterms Ti—1

Zi ——» ; z;

Zit1| = < = - Tit1
5 06 (X1m1) + Bi(Xio1) | T

ED -'Z'D

44 / 54

Autoregressive flows (Inverse autoregressive flows)

1. In IAF, the nonlinear shift/scale statistics are computed using the previous noise variates

z1.;_1, instead of the data samples:
Xi = Zj eXp & + [

wi = fu(z1:i-1) a;j = fo,(z1:i-1)

2. The reverse transformation in MAF is

Z = Xi — pti(X1:i-1) _ _/Ji(xl:ifl) 1O
oi(x1:i-1) oi(x1:j-1)

3. If we consider

4. Then, X ~ p(Xi|21.i)) = Z © 6i(Z1:i-1) + fii(Z1:i-1), where Z ~ p(Z)

5. IAF intends to estimate the probability density function of X given that p(Z) is already

known. 45/ 54

Residual flows

1. A residual network is a composition of residual connections, which are functions of the
form f(z) =z + F(z).

2. The function F : RP — RP is called the residual block.

3. Under certain conditions on F, the residual connection f becomes invertible. residual-block

identity

x + F(x)

4. Flows composed of invertible residual connections are referred as residual flows.

46 / 54

idual flows (Contractive residual blocks)

1. One way to ensure the residual connection is invertible is to choose the residual block to

be a contraction.

2. A function F whose Lipschitz constant is less than 1 is called contraction, that is, there

exists 0 < L <1 such that for all vz; and z> we have:

|F(z1) — F(z2)|| < L|jz1 — 22|

3. The invertibility of (z) =z + F(z) can be shown as:
o Consider the mapping g(z) = x — F(z).
o Because F is a contraction, g is also a contraction.

o Using Banach'’s fixed-point theorem, g has has a unique fixed point z.. Hence,

z, =x— F(z.)
=z, + F(z.) =x
=f(z.) =x

o Since z. is unique, it follows that z. = f*(z..)

47 / 54

Residual flows (Contractive residual blocks)

1. The iResNet uses convolutional neural networks as residual blocks, that is, compositions of
convolutional layers with non-linear activation functions (Behrmann et al. 2019).

2. Since the Lipschitz constant of a composition is less or equal to the product of the
Lipschitz constants of the individual functions, it is enough to ensure the convolutions are
contractive, and to use increasing activation functions with slope less or equal to 1.

3. The iResNet model ensures the convolutions are contractive by applying spectral
normalization to their weights.

4. there is no analytical expression for the Jacobian determinant, whose exact computation
costs O(D?).

5. However, there is a computationally efficient stochastic estimator of the log Jacobian
determinant.

6. The idea is to express the log Jacobian determinant as a power series.

48/ 54

Residual flows (Contractive residual blocks)

EID‘“@INE&IE&
EEQEEH&#BI ™
BRI .asER e

CIFAR10 samples.

-V Qoo DN
“"\QW (\Q &LU‘\
AWANTANT £ O

(A A QWA o

C— NI~ QDD
PR~

MNIST samples.

(VP WNO A > ©

“WAWLWNW—W

OULUO~~vo @

49 / 54

Residual flows (Residual blocks with low-rank Jacobian)

1. There is an efficient way of computing the determinant of a matrix which is a low-rank
perturbation of an identity matrix.

2. Let A and B be two D x M and M x D matrices, respectively. We have
det(ID + AB) = det (lM + BA)
3. The significance of this formula is that it turns a D x D determinant that costs O(D?)
into an M x M determinant that costs O(M?).
4. If M < D, this saves computation.

5. With some restrictions on the residual block F : RP — RP, we can apply this formula to
compute the determinant of a residual connection efficiently.

6. The trick is to create a bottleneck inside F.

50 / 54

Residual flows (Residual blocks with low-rank Jacobian)

1. The trick is to create a bottleneck inside F.
2. We do that by defining F = F, o F;, where F; : RP — RM F, : RM i RP and M < D.
3. The chain rule gives JF = J£,Jr,. Now, we have

det (Jf) = det(ID + JF) = det (ID + JF2J,E1) = det(IM + JFlJFz)

4. In planar flow, each residual block is an MLP with one hidden layer and one hidden
unit (Rezende and Mohamed 2015).

. u | N —
N 1 - 2wk
o0} L% 00—
wy
Inference network Generative model

5. The flow is f(z) = z + vo(wTz + b) and hence det (Jf) =1+ wTvo'(wTz + b)

51/ 54

References

Reading

1. Paper Normalizing Flows: An Introduction and Review of Current Methods (Kobyzev,
Prince, and Brubaker 2021).

2. Paper Normalizing Flows for Probabilistic Modeling and Inference (Papamakarios,
Nalisnick, et al. 2021).

3. Chapter 23 of Probabilistic Machine Learning: Advanced Topics (Murphy 2023).

4. Chapter 3 of Deep Generative Modeling (Tomczak 2022).

52 / 54

References i

[Behrmann, Jens et al. (2019). “Invertible Residual Networks". In: International Conference
on Machine Learning. Vol. 97, pp. 573-582.

[4 Dinh, Laurent, David Krueger, and Yoshua Bengio (2015). “NICE: Non-linear Independent
Components Estimation”. In: International Conference on Learning Representations.

@ Dinh, Laurent, Jascha Sohl-Dickstein, and Samy Bengio (2017). “Density estimation using
Real NVP". In: International Conference on Learning Representations.

[d Kingma, Diederik P. and Prafulla Dhariwal (2018). “Glow: Generative Flow with Invertible
1x1 Convolutions”. In: Advances in Neural Information Processing Systems,
pp. 10236-10245.

[Kingma, Diederik P., Tim Salimans, and Max Welling (2016). “Improving Variational
Inference with Inverse Autoregressive Flow". In: Advances in Neural Information Processing
Systems.

ﬁ Kobyzev, lvan, Simon J. D. Prince, and Marcus A. Brubaker (2021). “Normalizing Flows:
An Introduction and Review of Current Methods". In: /EEE Trans. Pattern Analyses and
Machine Intelligence 43.11, pp. 3964-3979.

@ Murphy, Kevin P. (2023). Probabilistic Machine Learning: Advanced Topics. The MIT

Press.

53 / 54

References ii

[§ Papamakarios, George, lain Murray, and Theo Pavlakou (2017). “Masked Autoregressive
Flow for Density Estimation”. In: Advances in Neural Information Processing Systems,
pp. 2338-2347.

@ Papamakarios, George, Eric T. Nalisnick, et al. (2021). “Normalizing Flows for Probabilistic
Modeling and Inference”. In: Journal of Machine Learning Research 22, 57:1-57:64.

[d Rezende, Danilo Jimenez and Shakir Mohamed (2015). “Variational Inference with
Normalizing Flows". In: International Conference on Machine Learning. Vol. 37,
pp. 1530-1538.

[d Tomczak, Jakub M. (2022). Deep Generative Modeling. Springer.

54 / 54

Questions?

	Introduction
	Flow-based Models
	Constructing flows
	References

