
Deep Generative Models

Introduction

Hamid Beigy

Sharif University of Technology

March 1, 2024

Table of contents

1. Introduction

2. Deep Generative Models

3. Applications of Deep Generative Models

4. Course Information

5. Course overview

6. References

1 / 20

Introduction

Introduction

How do you understand complex and unstructured inputs?

Computer vision
Computational speech

Natural language processing Robotics

Credit: Aditya Grover
2 / 20

Generative and Discriminative Models

1. Discriminative modeling estimates the conditional distribution p(y | x).

2. Generative modeling estimates the joint distribution p(x, y).

Discriminative modeling Generative modeling

3. Without assuming y, generative models learn p(x) from given data.

4. p(x) enables us to generate new data similar to the training dataset.

3 / 20

Statistical / Deep Generative Models

1. A Generative model (GM) is a probability distribution p(x).

A statistical GM is a trainable probabilistic model, pθ(x).

A deep GM is a statistical generative model parametrized by a neural network.

2. A generative model needs

Data (x): Complex, unstructured samples such as images, speech, molecules, text, etc.

Prior knowledge: parametric form (e.g., Gaussian, mixture, softmax), loss function (e.g.,

maximum likelihood, divergence), optimization algorithm, etc.

Credit: Aditya Grover
4 / 20

Key Questions

1. A Representation: how do we parameterize the joint distribution of many random

variables?

2. A Learning: what is the right way to compare probability distributions?

3. A Inference: how do we invert (or encode) the generation process?

Credit: Aditya Grover
5 / 20

Deep Generative Models

Progress in Deep Generative Models

Credit: Ian Goodfellow, 2019
6 / 20

Progress in Deep Generative Models

7 / 20

Sample Applications of Generative Models

Image generation

Text prompt: an armchair in the shape of an avocado ...

Language Generation

Text prompt: to get an A+ in deep generative modes, students should have to

Credit: Aditya Grover
8 / 20

Applications of Deep Generative Models

Generating Data

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

20.3. GOALS OF GENERATIVE MODELING

Input Output Original

C
ol

or
iz

at
io

n
In

pa
in

ti
ng

U
nc

ro
pp

in
g

JP
E

G
re

st
or

at
io

n

Figure 20.4: Illustration of some image-to-image tasks using the Palette conditional diffusion model (Sec-
tion 25.6.4). From Figure 1 of [Sah+22a]. Used with kind permission of Chitwan Saharia.

20.3.2 Density estimation

The task of density estimation refers to evaluating the probablity of an observed data vector,
i.e., computing p(x). This can be useful for outlier detection (Section 19.3.2), data compression
(Section 5.4), generative classifiers, model comparison, etc.

A simple approach to this problem, which works in low dimensions, is to use kernel density

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license

9 / 20

Density Estimation

770

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

−5 0 5 10

x

0.0

0.1

0.2

0.3

D
e
n
si

ty
fu

n
c
ti
o
n

unif, h=1

(a)

−5.0 −2.5 0.0 2.5 5.0 7.5 10.0

x

0.0

0.1

0.2

0.3

unif, h=2

(b)

−5 0 5 10

x

0.00

0.05

0.10

0.15

D
e
n
si

ty
fu

n
c
ti
o
n

gauss, h=1

(c)

−5.0 −2.5 0.0 2.5 5.0 7.5 10.0

x

0.00

0.05

0.10

0.15
gauss, h=2

(d)

Figure 20.5: A nonparametric (Parzen) density estimator in 1d estimated from 6 datapoints, denoted by x.
Top row: uniform kernel. Bottom row: Gaussian kernel. Left column: bandwidth parameter h = 1. Right
column: bandwidth parameter h = 2. Adapted from http: // en. wikipedia. org/ wiki/ Kernel_ density_
estimation . Generated by parzen_window_demo.ipynb.

estimation or KDE, which has the form

p(x|D) =
1

N

N∑

n=1

Kh (x− xn) (20.1)

Here D = {x1, . . . , xN} is the data, and Kh is a density kernel with bandwidth h, which is a
function K : R→ R+ such that

∫
K(x)dx = 1 and

∫
xK(x)dx = 0. We give a 1d example of this in

Figure 20.5: in the top row, we use a uniform (boxcar) kernel, and in the bottom row, we use a
Gaussian kernel.

In higher dimensions, KDE suffers from the curse of dimensionality (see e.g., [AHK01]), and
we need to use parametric density models pθ(x) of some kind.

20.3.3 Imputation

The task of imputation refers to “filling in” missing values of a data vector or data matrix. For
example, suppose X is an N ×D matrix of data (think of a spreadsheet) in which some entries, call
them Xm, may be missing, while the rest, Xo, are observed. A simple way to fill in the missing
data is to use the mean value of each feature, E [xd]; this is called mean value imputation, and is

Draft of “Probabilistic Machine Learning: Advanced Topics”. April 1, 2023

10 / 20

Imputation (Filling in missing values)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

20.3. GOALS OF GENERATIVE MODELING

NANA

NA

NA

A B C A B CData sample

1

2

3

4

5

6

6

6

0

6

10 10 10

10 10 10

6 10 10 10

Average

Variables
Missing values

replaced by means

2

6

6

0

6

10 10 10

10 10 10

10 10 10

9 8 7.5 9 8 7.5

9

9

7.5

7.5

Figure 20.6: Missing data imputation using the mean of each column.

illustrated in Figure 20.6. However, this ignores dependencies between the variables within each row,
and does not return any measure of uncertainty.

We can generalize this by fitting a generative model to the observed data, p(Xo), and then
computing samples from p(Xm|Xo). This is called multiple imputation. A generative model can
be used to fill in more complex data types, such as in-painting occluded pixels in an image (see
Figure 20.4).

See Section 3.11 for a more general discussion of missing data.

20.3.4 Structure discovery

Some kinds of generative models have latent variables z, which are assumed to be the “causes”
that generated the observed data x. We can use Bayes’ rule to invert the model to compute
p(z|x) ∝ p(z)p(x|z). This can be useful for discovering latent, low-dimensional patterns in the data.

For example, suppose we perturb various proteins in a cell and measure the resulting phosphorylation
state using a technique known as flow cytometry, as in [Sac+05]. An example of such a dataset is
shown in Figure 20.7(a). Each row represents a data sample xn ∼ p(·|an, z), where x ∈ R11 is a
vector of outputs (phosphorylations), a ∈ {0, 1}6 is a vector of input actions (perturbations) and z is
the unknown cellular signaling network structure. We can infer the graph structure p(z|D) using
graphical model structure learning techhniques (see Section 30.3). In particular, we can use the
dynamic programming method described in [EM07] to get the result is shown in Figure 20.7(b). Here
we plot the median graph, which includes all edges for which p(zij = 1|D) > 0.5. (For a more recent
approach to this problem, see e.g., [Bro+20b].)

20.3.5 Latent space interpolation

One of the most interesting abilities of certain latent variable models is the ability to generate samples
that have certain desired properties by interpolating between existing datapoints in latent space.
To explain how this works, let x1 and x2 be two inputs (e.g., images), and let z1 = e(x1) and
z2 = e(x2) be their latent encodings. (The method used for computing these will depend on the

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license

11 / 20

Structure Discovery
772

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

(a)

B2cAMP

f

erk

akt

jnk

Psitect AKT inh U0126
PMA

p38

G06967
mek12

raf

pkc

pip3

plcy

pip2

pka

Present
Missing
Int. edge

(b)

Figure 20.7: (a) A design matrix consisting of 5400 datapoints (rows) measuring the state (using flow
cytometry) of 11 proteins (columns) under different experimental conditions. The data has been discretized
into 3 states: low (black), medium (grey), and high (white). Some proteins were explicitly controlled using
activating or inhibiting chemicals. (b) A directed graphical model representing dependencies between various
proteins (blue circles) and various experimental interventions (pink ovals), which was inferred from this data.
We plot all edges for which p(Gij = 1|D) > 0.5. Dotted edges are believed to exist in nature but were not
discovered by the algorithm (1 false negative). Solid edges are true positives. The light colored edges represent
the effects of intervention. From Figure 6d of [EM07].

Figure 20.8: Interpolation between two MNIST images in the latent space of a β-VAE (with β = 0.5).
Generated by mnist_vae_ae_comparison.ipynb.

Figure 20.9: Interpolation between two CelebA images in the latent space of a β-VAE (with β = 0.5).
Generated by celeba_vae_ae_comparison.ipynb.

Draft of “Probabilistic Machine Learning: Advanced Topics”. April 1, 2023

12 / 20

Latent Space Arithmetic

13 / 20

Representation Learning

Input pattern
A B

Embedding Nodes

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 3

Intuition: Find embedding of nodes to d-
dimensions so that “similar” nodes in the graph
have embeddings that are close together.

OutputInput

Representation
A B

Embedding Nodes

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 3

Intuition: Find embedding of nodes to d-
dimensions so that “similar” nodes in the graph
have embeddings that are close together.

OutputInput

14 / 20

Course Information

Course Information

1. Course name : Deep Generative Model

2. Instructor : Hamid Beigy Email : beigy@sharif.edu

3. Class : CE 202

4. Virtual class link: https://vc.sharif.edu/beigy

5. Course Website: http://sharif.edu/~beigy/14022-40957.html

6. Lectures: Sat-Mon (10:30-12:00)

7. Teaching Assistant : Mohaddeseh Mirbeygi Email: m.mirbeygi@gmail.com

15 / 20

beigy@sharif.edu
https://vc.sharif.edu/beigy
http://sharif.edu/~beigy/14022-40957.html
m.mirbeygi@gmail.com

Course overview

Course overview

1. Introduction

2. Structured density

3. Disentangled Representation Learning

4. Generative adversarial network

5. Flow-based models

6. Variational auto-encoder

7. Autoregressive models

8. Energy-based models

9. Diffusion models

10. Hybrid models

11. Evaluation of generative models

12. Differential privacy

13. Causal representation learning

14. Causal generative models

15. Other topics

16 / 20

Course evaluation

Evaluation:

Mid-term exam 20% 1403-01-25

Final exam 20%

Homeworks 35%

Quiz 15%

Paper 10% Hard deadline for paper selection: 1403-01-25

Class activity 5%

17 / 20

Main references

Foundations
and Concepts

Christopher M. Bishop
with Hugh Bishop

 Deep Learning

Bishop, Christopher M. and Hugh Bishop (2024). Deep Learning: Foundations and Con-

cepts. Springer.

Murphy, Kevin P. (2023). Probabilistic Machine Learning: Advanced Topics. The MIT

Press.

Tomczak, Jakub M. (2022). Deep Generative Modeling. Springer.

Several research papers will be used as references in the class.
18 / 20

References

Reading

1. Chapter 20 of Probabilistic Machine Learning: Advanced Topics (Murphy 2023).

2. Chapter 1 of Deep Generative Modeling (Tomczak 2022).

19 / 20

References

Bishop, Christopher M. and Hugh Bishop (2024). Deep Learning: Foundations and

Concepts. Springer.

Murphy, Kevin P. (2023). Probabilistic Machine Learning: Advanced Topics. The MIT

Press.

Tomczak, Jakub M. (2022). Deep Generative Modeling. Springer.

20 / 20

Questions?

20 / 20

	Introduction
	Deep Generative Models
	Applications of Deep Generative Models
	Course Information
	Course overview
	References

