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Introduction



Introduction

1. The methods described before such as decision tree
1.1 finding a hypothesis
1.2 using this hypothesis for classification/regression of new test examples.
2. These methods are called eager learning.
3. The instance based learning algorithms such as k-NN
3.1 store all of the training examples
3.2 classify a new example x by finding some neighboring training example (x;, y;) of x according to some
distance functions.

4. Instance based classifiers do not explicitly compute decision boundaries.

5. However, the boundaries form a subset of the Voronoi diagram of the training data.
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Nearest neighbor algorithms

1. Fix k > 1 and let t; € {0,1}, given the training set

S = {(Xl; tl)v ce (XN7 tN)}

2. The k-NN for all test examples x returns the hypothesis h defined by
h(x) =1 Z w; > Wi
iti=1 i,ti=0

3. Weights wi, ..., wy are chosen such that w; = % if x; is among the k nearest neighbors of x.

4. The boundaries form a subset of the Voronoi diagram of the training data.
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Nearest neighbor algorithms

1. The k-NN only requires
o An integer k.
o A set of labeled examples S.
o A metric to measure closeness.
2. For all points x, y, z, a metric d must satisfy the following properties.
e Non-negativity : d(x,y) > 0.
o Reflexivity : d(x,y) =0& x=y.
e Symmetry : d(x,y) = d(y,x).
e Triangle inequality : d(x,y) + d(y,z) > d(x, z).
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Distance functions

1. The Minkowski distance for D-dimensional examples is the L, norm.

Lo(x,y) = <Z xi — Yfp>

2. The Euclidean distance is the L, norm

La(x,y) = <Z Ixi — y,-|2>

i=1
3. The Manhattan or city block distance is the L, norm

D

Li(x,y) = xi =il

i=1

4. The L norm is the maximum of distances along axes

L()O(X‘,y) = m_aX‘X/ __)//‘

1 p=

\
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Nearest neighbor algorithm for regression

1. The k-NN algorithm adapted for approximating continuous-valued target function.

2. Calculate the mean of k nearest neighboring examples instead of majority vote : f(x) = M
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!Pictures are taken from P. Rai slide.
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Nearest neighbor algorithms

1. The k-NN algorithm is a lazy learning algorithm.
o It defers the hypothesis finding until a test example x arrives.
o For test example x, the k-NN uses the stored training data.
o Discards the the found hypothesis and any intermediate results.
2. This strategy is opposed to an eager learning algorithm which
o It finds a hypothesis h using the training set
o It uses the found hypothesis h for classification of test example x.
3. Trade offs
o During training phase, lazy algorithms have fewer computational costs than eager algorithms.
o During testing phase, lazy algorithms have greater storage requirements and higher computational
costs.

4. What is inductive bias of k-NN?
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Properties of nearest neighbor algorithms

1. Advantages

Analytically tractable

Simple implementation

Use local information, which results in highly adaptive behavior.
It parallel implementation is very easy.

Nearly optimal in the large sample (N — o0).

E(Bayes) < E(NN) < 2 x E(Bayes).

2. Disadvantages

o Large storage requirements.
o It needs a high computational cost during testing.
o Highly susceptible to the irrelevant features.

3. Large values of k

o Results in smoother decision boundaries.
o Provides more accurate probabilistic information

4. But large values of k

o Increases computational cost.
o Destroys the locality of estimation.

8/18



Distance-weighted nearest neighbor algorithms




Distance-weighted nearest neighbor algorithms

1. One refinement of k-NN is to weight the contribution of each k neighbors to their distance to the
query point x.

2. For two class classification
h(x) =1 Z w; > Z w;
iti=1 i tj=0

where

N
d(x, xi)?

w; =

3. For C class classification
k

h(x) = argmax Z w;o(c, t;).

ceC i—1
4. For regression

Fo) — S wif (),

wi
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Locally weighted regression

1. In locally weighted regression (LWR), we use a linear model to do the local approximation f:

f(x) = wo + wixi + waxo + ... + wpxp.

2. Suppose we aim to minimize the total squared error:

3. Using gradient descent

Aw; =1 (f(x) = F(x))x;

XES

where 7 is a small number (the learning rate).
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Locally weighted regression i

1. How shall we modify this procedure to derive a local approximation rather than a global one?
2. The simple way is to redefine the error criterion E to emphasize fitting the local training examples.
3. Three possible criteria are given below. Note we write the error E(xq) to emphasize the fact that

now the error is being defined as a function of the query point xg.
o Minimize the squared error over just the k nearest neighbors:
1 ~
Ei(xq) = 5 > (F)—f(x)?
xEKNN(xq)

e Minimize 1 squared error over the set S of training examples, while weighting the error of each
training example by some decreasing function k of its distance from x4
1 z 2
Ex(xq) = 5 D (F(x) = F(x))*K(d(xq, X))

xXES
o Combine 1 and 2:

Bla) =5 > (F0)~ Fx))PK(d0a )

xEKNN(xq)

4. If we choose criterion (3) and re-derive the gradient descent rule, we obtain

Awj=7 Y K(d(xx)(F(x) = F(x)x

xEKNN(xq)

where 7 is a small number (the learning rate).
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Locally weighted regression ii

5. Criterion (2) is perhaps the most esthetically pleasing because it allows every training example to
have an impact on the classification of x,.

6. However, this approach requires computation that grows linearly with the number of training
examples.

7. Criterion (3) is a good approximation to criterion (2) and has the advantage that computational
cost is independent of the total number of training examples; its cost depends only on the number
k of neighbors considered.
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Finding KNN(x) efficiently

How efficiently find KNN(x)?
. Tree-based data structures: pre-processing.

. Often kd-trees (k-dimensional trees) used in applications.

. A kd-tree is a generalization of binary tree in high dimensions
4.1 Each internal node is associated with a hyper-rectangle and the hyper-plans is orthogonal to one of

its coordinates.
4.2 The hyper-plan splits the hyper-rectangle to two parts, which are associated with the child nodes.
4.3 The partitioning goes on until the number of data points in the hyper-plane falls below some given

threshold.
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5. Splitting order : Widest first
6. Splitting value : Median

7. Stop condition : fewer than a threshold or box hit some minimum width.
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1. initial data set

2. After first split
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1. After second split
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Nearest neighbor with kd-tree

1. Traverse tree looking for the nearest neighbor of the query point.

% | ° ..:L‘ .

I .zL .

b ooo’g{jooo'/q‘o

16 / 18



Reading




Readings

1. Chapter 8 of Machine Learning Book (Mitchell 1997).
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