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Introduction



Introduction

The complexity of any classifier or regressors depends on the number of input variables or features.
These complexities include

1. Time complexity: In most learning algorithms, the time complexity depends on the number of
input dimensions(D) as well as on the size of training set (N). Decreasing D decreases the time
complexity of algorithm for both training and testing phases.

2. Space complexity: Decreasing D also decreases the memory amount needed for training and
testing phases.

3. Samples complexity: Usually the number of training examples (N) is a function of length of
feature vectors (D). Hence, decreasing the number of features also decreases the number of
training examples.

Usually the number of training pattern must be 10 to 20 times of the number of features.
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Introduction

There are several reasons why we are interested in reducing dimensionality as a separate preprocessing
step.

1. Decreasing the time complexity of classifiers or regressors.

2. Decreasing the cost of extracting/producing unnecessary features.

3. Simpler models are more robust on small data sets. Simpler models have less variance and thus

are less depending on noise and outliers.
4. Description of classifier or regressors is simpler / shorter.

5. Visualization of data is simpler.
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Peaking phenomenon

1. In practice, for a finite N, by increasing the number of features we obtain an initial improvement
in performance, but after a critical value further increase of the number of features results in an
increase of the probability of error. This phenomenon is also known as the peaking phenomenon.
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2. If the number of samples increases (N> > Ny), the peaking phenomenon occures for larger
number of features (h > h).

4/61



High-dimensional space



High-dimensional space

1. In most applications of data mining/ machine learning, typically the data is very high dimensional
(the number of features can easily be in the hundreds or thousands).

2. Understanding the nature of high-dimensional space (hyperspace) is very important, because
hyperspace does not behave like the more familiar geometry in two or three dimensions.

3. Consider the N x D data matrix

X111 X12 X1D

X21 X22 X2D
S =

XN1 Xn2 ... XND

4. Let the minimum and maximum values for each feature x; be given as
min(x;) = min{x;}
1
max(x;) = max{x;}
1

5. The data hyperspace can be considered as a D-dimensional hyper-rectangle, defined as

Ro = [] [min(x;), max(x)] .

Jj=1
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High-dimensional space (cont.)

1. Hypercube

o Assume the data is centered to have mean : © = 0.
o Let m denote the largest absolute value in S.

e The data hyperspace can be represented as a hypercube Hp(/), centered at 0, with all sides of length
I =2m.

Hp(l) = {x:(xl,,..,xD)T\ Vi xi € {éﬂ}

2. Hypersphere

o Assume the data is centered to have mean : © = 0.
o Let r denote the largest magnitude among all points in S.

r = max {|lxl}.
o The data hyperspace can also be represented as a D-dimensional hyperball centered at 0 with radius r
Bp(r) ={x[lxil < r}

o The surface of the hyperball is called a hypersphere, and it consists of all the points exactly at
distance r from the center of the hyperball

Sp(r) = {x | IIxill = r}
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High-dimensional space (cont.)

1. Consider two features of Irish data set

—————

24

X5: sepal width

Xi: sepal length
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High-dimensional volumes

1. The volume of a hypercube with edge length / equals to
vol(Hp(1)) =

2. The volume of a hyperball and its corresponding hypersphere equals to

vol(Sp(r)) = (r(;”+1)> D

where gamma function for a > 0 is defined as

MNa) = / x* e ¥dx
0

3. The surface area of the hypersphere can be obtained by differentiating its volume with respect to r

area(Sp(r)) = %VO/(SD(r)) — < (;)) D1
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Asymptotic Volume

1. An interesting observation about the hypersphere volume is that as dimensionality increases, the
volume first increases up to a point, and then starts to decrease, and ultimately vanishes.

2. For the unit hypersphere ( r = 1),

D— o0 D— o0

lim vol(Sp(r)) = lim <r(§2> LIS

vol(S4(1))
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Hypersphere Inscribed Within Hypercube

1. Consider the space enclosed within the largest hypersphere that can be accommodated within a
hypercube.

2. Consider a hypersphere of radius r inscribed in a hypercube with sides of length 2r.

3. The ratio of the volume of the hypersphere of radius r to the hypercube with side length | = 2r

equals to
vol(52(f)) 7”2 _ T _
vol(Ha(2r)) ~— 4r2 4 0.785
vol(Ss(r)) _ 37r° _m _ 0.524
vo/(H3(2r)) 8r 6
D
vol(Sp(r)) ; e
im _vel(So(r)) | I RN ¢
lim vol(Hp(2r)) o 201 g + 1)
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Hypersphere Inscribed within Hypercube

1. Hypersphere inscribed inside a hypercube for two and three dimensions.

(a)

In d dimensions there are 2¢ corners and 297! diagonals.
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Volume of Thin Hypersphere Shell

1. Consider the volume of a thin hypersphere shell of width € bounded by an outer hypersphere of
radius r, and an inner hypersphere of radius r — € .

2. Volume of the thin shell equals to the difference between the volumes of the two bounding
hyperspheres.

3. Let Sp(r,€) denote the thin hypershell of width ¢. Its volume equals

vol(Sp(r,€)) = vol(Sp(r)) — vol(Sp(r —€)) = Kpr® — Kp(r — €)®
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Volume of Thin Hypersphere Shell (cont.)

1. Ratio of the volume of the thin shell to the volume of the outer sphere equals to

vol(Sp(r,€))  Kpr® — Kp(r —e)® €\P
VO/(SD(r)) - KDrD =1- (1 - 7)

2. Forr=1and ¢ =0.01

%:1, (1,¥) ~ 0.02
3
%:1_ (1_¥> ~ 0.03
4
%:1, (172) ~ 0.04
5
%:1, (1,¥) ~ 0.05
3. As D increases, in the limit we obtain

4. Almost all of the volume of the hypersphere is contained in the thin shell as D — co.
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Volume of Thin Hypersphere Shell (cont.)

1. Almost all of the volume of the hypersphere is contained in the thin shell as D — .

2. This means that in high-dimensional spaces, unlike in lower dimensions, most of the volume is
concentrated around the surface (within ¢) of the hypersphere, and the center is essentially
void.

3. In other words, if the data is distributed uniformly in the D-dimensional space, then all of the
points essentially lie on the boundary of the space (which is a D — 1 dimensional object).

4. Combined with the fact that most of the hypercube volume is in the corners, we can observe
that in high dimensions, data tends to get scattered on the boundary and corners of the
space.

5. As a consequence, high-dimensional data can cause problems for data mining and analysis,
although in some cases high-dimensionality can help, for example, for nonlinear classification.

6. It is important to check whether the dimensionality can be reduced while preserving the
essential properties of the full data matrix. This can aid data visualization as well as data
mining.
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Dimensionality reduction methods

1. There are two main methods for reducing the dimensionality of inputs

o Feature selection: These methods select d (d < D) dimensions out of D dimensions and D — d
other dimensions are discarded.

o Feature extraction: Find a new set of d (d < D) dimensions that are combinations of the original

dimensions.
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Feature selection methods

1. Feature selection methods select d (d < D) dimensions out of D dimensions and D — d other

dimensions are discarded.

2. Reasons for performing feature selection

Increasing the predictive accuracy of classifiers or regressors.

Removing irrelevant features.

Enhancing learning efficiency (reducing computational and storage requirements).

Reducing the cost of future data collection (making measurements on only those variables relevant for
discrimination/prediction).

Reducing complexity of the resulting classifiers/regressors description (providing an improved
understanding of the data and the model).

3. Feature selection is not necessarily required as a pre-processing step for classification/regression

algorithms to perform well.

4. Several algorithms employ regularization techniques to handle over-fitting or averaging such as

ensemble methods.
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Feature selection methods

1. Feature selection methods can be categorized into three categories.
o Filter methods: These methods use the statistical properties of features to filter out poorly

informative features.
o Wrapper methods: These methods evaluate the feature subset within classifier/regressor algorithms.

These methods are classifier/regressors dependent and have better performance than filter methods.
o Embedded methods:These methods use the search for the optimal subset into classifier/regression
design. These methods are classifier/regressors dependent.

2. Two key steps in feature selection process.
o Evaluation: An evaluation measure is a means of assessing a candidate feature subset.
o Subset generation: A subset generation method is a means of generating a subset for evaluation.
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Feature selection methods (Evaluation measures)

1.
2.
3.
4.

Large number of features are not informative (irrelevant or redundant).
Irrelevant features are features that don't contribute to a classification or regression rule.
Redundant features are features that are strongly correlated.

In order to choose a good feature set, we require a means of a measure to contribute to the
separation of classes, either individually or in the context of already selected features. We need to
measure relevancy and redundancy.

There are two types of measures

o Measures that relay on the general properties of the data.
These assess the relevancy of individual features and are used to eliminate redundancy.
All these measures are independent of the final classifier.
These measures are inexpensive to implement but may not well detect the redundancy.

o Measures that use a classification rule as a part of their evaluation.
In this approach, a classifier is designed using the reduced feature set and a measure of classifier
performance is employed to assess the selected features.
A widely used measure is the error rate.
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Feature selection methods (Evaluation measures)

1. The following measures relay on the general properties of the data.

Feature ranking: Features are ranked by a metric and those that fail to achieve a prescribed score are
eliminated.

Examples of these metrics are: Pearson correlation, mutual information, and information gain.
Interclass distance: A measure of distance between classes is defined based on distances between
members of each class.

Example of these metrics is: Euclidean distance.

Probabilistic distance: This is the computation of a probabilistic distance between class-conditional
probability density functions, i.e. the distance between p(x|Ci) and p(x|C2) (two-classes).

Example of these metrics is: Chernoff dissimilarity measure.

Probabilistic dependency: These measures are multi-class criteria that measure the distance between
class-conditional probability density functions and the mixture probability density function for the
data irrespective of the class, i.e. the distance between p(x|C;) and p(x).

Example of these metrics is: Joshi dissimilarity measure.
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Feature selection methods (Search algorithms)

1. Complete search: These methods guarantee to find the optimal subset of features according to
some specified evaluation criteria.
For example exhaustive search and branch and bound methods are complete.

2. Best individual N: The simplest method is to assign a score to each feature and then select N top
ranks features.

3. Sequential search: In these methods, features are added or removed sequentially. These methods

are not optimal, but are simple to implement and fast to produce results.

3.1 Sequential forward selection: It is a bottom-up search procedure that adds new features to a feature
set one at a time until the final feature set is reached.

3.2 Generalized sequential forward selection: In this approach, at each time r > 1, features are added
instead of a single feature.

3.3 Sequential backward elimination: It is a top-down procedure that deletes a single feature at a time
until the final feature set is reached.

3.4 Generalized sequential backward elimination : In this approach, at each time r > 1 features are
deleted instead of a single feature.
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Introduction

@ Let S consist of N points over D feature, i.e. it is an N x D matrix

X11 X12 s X1D
X21 X22 .. X2D
S =
XN1 Xn2 ... XND
. T . . . . .
@ Each point x; = (xi1, Xi2, ..., Xxip) " is a vector in D-dimensional space spanned by the D basis
vectors e1, e, ..., €ep, € corresponds to it feature.

@ The standard basis is an orthonormal basis for the data space: the basis vectors are pairwise
orthogonal e/ ¢; = 0, and have unit length | & = 1.

@ Given any other set of D orthonormal vectors uy, s, ..., up,with v/ u; = 0 and ||u;]| = 1 (or
ul up = 1), we can re-express each point x as the linear combination

X = aiu; + aur + ...+ apup.

.
o Let a=(a1,a,...,ap) , then we have x = Ua.
e U is the D x D matrix, whose i*" column comprises u;.

@ Matrix U is an orthogonal matrix, whose columns, the basis vectors, are orthonormal, that is, they
are pairwise orthogonal and have unit length. This means that U™ = U".
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Introduction

e Multiplying both sides of x = Ua by U7, results in
U'x=U"Ua

-
a=U"x

Example
o Let e = (1,0,0)7, & = (0,1,0)7, and e3 = (0,0,1)7 be the standard basis vectors
o Let u; = (—0.39,0.089, —0.916) 7, up = (—0.639, —0.742,0.200) ", and u3z = (—0.663,0.664,0.346)7 be
the new basis vectors.

o The new coordinate of the centered point x = (—0.343, —0.754,0.241)7 can be computed as

—0.390 0.089 —0.916 —0.343 —0.154
a=UTx= 0.639 —0.742  0.200 —0.754 = 0.828

—0.663  0.664 0.346 0.241 —0.190
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Introduction

@ There are infinite choices for the set of orthonormal basis vectors, one natural question is whether
there exists an optimal basis, for a suitable notion of optimality.

@ We are interested in finding the optimal d-dimensional representation of S, with d < D.

@ In other words, given a point x, and assuming that the basis vectors have been sorted in
decreasing order of importance, we can truncate its linear expansion to just d terms, to obtain

/
X = aiu1 + aur + ...+ aqgug = Ugaq.

@ Since we have x’ = Uyay, restricting it to the first d terms, we get ag = UJ x.
@ Hence, we obtain x’ = UsUJ x = Pyx.
@ Projection error equals to € = x — x’.

@ By substituting, we conclude that x’ and e are orthogonal vectors: x'"e = 0.
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Introduction (example)

Example

o Let u; = (—0.39,0.089, 70.916)T. The new coordinate of the centered point
x = (—0.343, —0.754, 0.241)T using the first basis vector can be computed as

}
X = aiun = —0.154u; = ( 0060 —0.014 0.141 )

Projection of x on w1 can be obtained directly from
—0.390 0.152  —0.035 0.357
Pr=UUf = 008 |( —03% 008 —0916 )= —0035 0008 —0.082
—0.916 0.357 —0.082  0.839

.
o The new coordinate equals to x’ = P x = ( 0.060 —0.014 0.141 )

-
Projection error equals to € = axtp + asu3 = x — x' = Pix = ( —0.40 -0.74 0.10 )

@ Vectors € and x’ are orthogonal

—0.40
x'e:( 0.060 —0.014 0.141 ) —074 | =0
0.10
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Introduction

o In feature extraction, we are interested to find a new set of k (k < D) dimensions that are
combinations of the original D dimensions.

o Feature extraction methods may be supervised or unsupervised.
@ Examples of feature extraction methods

Principal component analysis (PCA)
Factor analysis (FA)s
Multi-dimensional scaling (MDS)
ISOMap

Locally linear embedding

Linear discriminant analysis (LDA)
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Feature extraction methods

Principal component analysis



Principal component analysis (Best 1-dimensional approximation)

@ PCA project D—dimensional input vectors to k—dimensional input vectors via a linear mapping
with minimum loss of information. Dimensions are combinations of the original D dimensions.

@ The problem is to find a matrix W such that the following mapping results in the minimum loss of
information.
Z=W"X
@ PCA is unsupervised and tries to maximize the variance.

@ The principle component is wy such that the sample after projection onto w; is most spread out
so that the difference between the sample points becomes most apparent.

@ For uniqueness of the solution, we require ||w1] =1,

o Let ¥ = Cov(X) and consider the principle component wi, we have

n = wx
Var(z1) = E[(WITX — WlT,u)Q] = E[(W]_TX — WlT,u)(WlTx — WlTM) T]

= E[w (x = p)(x — p) " wi] = wi' E[(x — p)(x — p) "Jws = wi' Emy
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Principal component analysis (Best 1-dimensional approximation)

@ The mapping problem becomes

T . T
wi = argmax w' Xw subject to wy wy = 1.
w

Writing this as Lagrange problem, we have
. T T
maximize wy Twy — a(w; wy — 1)
wy
o Taking derivative with respect to w; and setting it equal to 0, we obtain

2Ywi =2awi = Twy = aw

@ Hence w; is eigenvector of ¥ and « is the corresponding eigenvalue.

@ Since we want to maximize Var(zi), we have
T T
Var(z1) = wy Twhs = awy vy = «

@ Hence, we choose the eigenvector with the largest eigenvalue, i.e. A1 = a.
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Principal component analysis (Minimum squared error approach)

o Let ¢; = x; — x! denote the error vector. The MSE equals to

2
el

MSE(W) =

==
N'Mz

1
|xil>

T
N w rw

Il
M=

1

Var(S) — Wz w.

@ Since var(S), is a constant for a given dataset S, the vector W that minimizes MSE(W) is thus
the same one that maximizes the second term,
MSE(W) = Var(S) - W zw
= Var(S) — M

o Example: Let
0.681 —0.039 1.265

> = —0.039 0.187 —0.320
1.265 —-0.320 3.092

The largest eigenvalue of X equals to A = 3.662 and the corresponding eigenvector equals to
wi = (—0.390,0.089, —0.916) "
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Principal component analysis (Minimum squared error approach)

@ The variance of S equals var(S) = 0.681 + 0.187 + 3.092 = 3.96.
@ MSE equals to

MSE(Wh) = var(S) — A1
=3.96 — 3.662 = 0.298

@ Principle component
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Principal component analysis (Best 2-dimensional approximation)

@ The second principal component, ws, should also

@ maximize variance
o be unit length
o orthogonal to wy (z1 and z must be uncorrelated)

The mapping problem for the second principal component becomes

T . T T
Wp = argmax w' Xw subject to w, wo =1 and wy, wy = 0.
w

Writing this as Lagrange problem, we have

maximize w3 Ywy — o(wy wa — 1) — B(w3 wy — 0)
wy

Taking derivative with respect to w» and setting it equal to 0, we obtain
2ZW2 — 2()[W2 — ‘BW1 = 0

Pre-multiply by wy, we obtain

T T T
2wy Two — 2awy; wo — Bwy wi =0

Note that wy’ wo = 0 and wy Tw, = (W2TZW1)T = w) Tw is a scaler.
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Principal component analysis (Best 2-dimensional approximation)

Since “w; = A1ws, therefore we have

T T T
Wy Zwe = wp 2wy = A, wy =0

Then 8 = 0 and the problem reduces to

Twr = aws

This implies that ws should be the eigenvector of ¥ with the second largest eigenvalue A\» = a.
@ Let the projected dataset be denoted by A.

@ The total variance for A is given as

var(A) = A1+ X2
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@ The MSE objective is minimized when total projected variance var(A) is maximized

@ Let ¢; = x; — x/ denote the error vector. The MSE equals to

@ Example: Two first Principle components
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Principal component analysis (Best k-dimensional approximation)

@ We are now interested in the best k-dimensional (k < D) approximation to S.

@ Assume that we have already computed the first j — 1 principal components or eigenvectors,
Wi, Wa, ..., Wj_1, corresponding to the j — 1 largest eigenvalues of X

e To compute the j* new basis vector w;j, we have to ensure that it is normalized to unit length,

that is, w;’ w; = 1, and is orthogonal to all previous components w; (for i € [1,})).

@ The projected variance along wj; is given as VVjTZVVj

@ Combined with the constraints on wj, this leads to the following maximization problem with
Lagrange multipliers:

j—1
maximize w; Tw; — a(w;" wj — 1) — Z‘B;(W,-ij —0)

w,
J i=1

@ Solving this, results in 8; = 0 for all i < j.

o To maximize the variance along w;, we use the j largest eigenvalue of X.
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Principal component analysis (Best k-dimensional approximation)

@ In summary, to find the best k-dimensional approximation to ¥, we compute the eigenvalues of X.

@ Because X is positive semidefinite, its eigenvalues are non-negative, and we can thus sort them in
decreasing order
AM>X> A1 > N> > Ap >0

@ We then select the k largest eigenvalues, and their corresponding eigenvectors to form the best
k-dimensional approximation.

@ Since X is symmetric, for two different eigenvalues, their corresponding eigenvectors are
orthogonal. (Show it)

o If X is positive definite (x” Xx > 0 for all non-null vector x), then all its eigenvalues are positive.

o If X is singular, its rank is k (k < D) and \j =0fori=k+1,...,D.
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Principal component analysis (effect of centering data)

@ Define

Z=W"(X-m)
@ Then k columns of W are the k leading eigenvectors of S (the estimator of X).
@ m is the sample mean of X.

@ Subtracting m from X before projection centers the data on the origin.

A A

=1
[t

A
\[/
A J

@ How to normalize variances?
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Principal component analysis (example)

25 randomly chosen 64 x 64 pixel images Mean and the first three principal components

mean principal basis 1

principal basis 2 principal basis 3

FEkERE

L
i

4
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Principal component analysis (selecting k)

@ How to select k?

@ Since all eigenvalues are positive and |S| = H,.D:l Ai is small, then some eigenvalues have little
contribution to the variance and may be discarded.

@ Scree graph is the plot of variance as a function of the number of eigenvectors.
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Principal component analysis (selecting k)

@ How to select k?

o We select the leading k components that explain more than for example 95% of the variance.
@ The proportion of variance (POV) is
K
. Af
POV = 72’51
>\.

By visually analyzing it, we can choose k.

Prop. of var.

0 10 20 30 40 50 60 70
Eigenvectors
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Principal component analysis (selecting k)

@ How to select k7

Another possibility is to ignore the eigenvectors whose corresponding eigenvalues are less than the

average input variance (why?).

In the pre-processing phase, it is better to pre-process data such that each dimension has mean 0

and unit variance(why and when?).

Question: Can we use the correlation matrix instead of covariance matrix? Drive solution for PCA.
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Principal component analysis (conclusions)

o PCA is sensitive to outliers. A few points distant from the center have large effect on the
variances and thus eigenvectors.
@ Question: How can use the robust estimation methods for calculating parameters in the presence

of outliers?
o A simple method is discarding the isolated data points that are far away.

o Question: When D is large, calculating, sorting, and processing of S may be tedious. Is it possible
to calculate eigenvectors and eigenvalues directly from data without explicitly calculating the

covariance matrix?
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Kernel principal component analysis

@ PCA can be extended to find nonlinear directions in the data using kernel methods.
o Kernel PCA finds the directions of most variance in the feature space instead of the input space.

@ Linear principal components in the feature space correspond to nonlinear directions in the input
space.

@ Using kernel trick, all operations can be carried out in terms of the kernel function in input space
without having to transform the data into feature space.

@ Let ¢ correspond to a mapping from the input space to the feature space.
@ Each point in feature space is given as the image of ¢(x) of the point x in the input space.

@ In feature space, we can find the first kernel principal component W, (WlT Wi = 1) by solving
YW= MW

o Covariance matrix X, in feature space is equal to

N
NZ xi)p(xi) T

@ We assume that the points are centered.

41/ 61



Kernel principal component analysis (cont.)

@ Plugging ¥4 into X4 Wi = A1 Wi, we obtain

Wy -
S0 s a scalar value

AW

AWy

Wi

Wi



Kernel principal component analysis (cont.)

o Now substitute "V | cip(x;) =

Wi in Wi = A Wi, we obtain

N

)\1 Z C/¢(Xf)

i=1

N
MY cid(xi)
i=1

N

N)\l Z C,'(,b(X,‘)

i=1

N
N Z cio(xi)
i=1
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Kernel principal component analysis (cont.)

e Multiplying with ¢(xx)”, we obtain

N1 Z cip(xk) " o(xi)
N ZC,K(xk,xj)
i=1

Mz
/\ x>\<
>>r<
X 2<
HMZ HMZ
\>< \><
-
Il Il

@ By some algebraic simplificatin, we obtain (do it)

K2C = NMKC
e Multiplying by K%, we obtain
KC = NMXC
KC = 771C

o Weight vector C is the eigenvector corresponding to the largest eigenvalue 1; of the kernel matrix
K.
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Kernel principal component analysis (cont.)

Replacing 3"V | cip(x;) = Wi in constraint Wy W, = 1, we obtain

GGo(x) ¢0g) = 1

N
=1

i=1 j

C"KC =1

Using KC = 11 C, we obtain

c"(mC) = 1

mC'C = 1
1

Ici =~

m

@ Since C is an eigenvector of K, it will have unit norm.

@ To ensure that W is a unit vector, multiply C by ,/%
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Kernel principal component analysis (cont.)

@ In general, we do not map input space to the feature space via ¢, hence we cannot compute W,
using

N

Z cp(xi) = Wi
i=1
@ We can project any point ¢(x) on to principal direction W,

N

WT6(x) = 3" el 60) = 3 aK(xx)

i=1

@ When x = x; is one of the input points, we have
ai=W¢(x)=K'C

where K; is the column vector corresponding to the i™ row of K and a; is the vector in the
reduced dimension.

@ If we sort the eigenvalues of K in decreasing order \; > A2 > ... > Ay > 0, we can obtain the j”’
principal component.

@ This shows that all computation are carried out using only kernel operations.
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Factor analysis

@ In PCA, from the original dimensions x; (for i = 1,..., D), we form a new set of variables z; that
are linear combinations of x;
Z=WT(X - p)

@ In factor analysis (FA), we assume that there is a set of unobservable, latent factors z; (for
J=1,...,k), which when acting in combination generate x.

@ Thus the direction is opposite that of PCA.
@ The goal is to characterize the dependency among the observed variables by means of a smaller
number of factors.

@ Suppose there is a group of variables that have high correlation among themselves and low
correlation with all the other variables. Then there may be a single underlying factor that gave
rise to these variables.

@ FA, like PCA, is a one-group procedure and is unsupervised. The aim is to model the data in a
smaller dimensional space without loss of information.

@ In FA, this is measured as the correlation between variables.
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Factor analysis (cont.)

o *r Xa Y I3 I

W v W
e OO O OO O
Z zz bt} X1 Xz X
PCA FA

There are two uses of factor analysis:

@ It can be used for knowledge extraction when we find the loadings and try to express the variables
using fewer factors.

@ It can also be used for dimensionality reduction when k < D.
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Factor analysis (cont.)

1. Sample x drawn from some unknown probability density p(x) with E [x] = iz and Cov(x) = X.
2. We assume that u = 0 and we can always add p after projection.

3. In FA, each input dimension, x; can be written as a weighted sum of k < D factors, z; plus the
residual term.

Xi = Vi1 + VieZo + ... + VikZk + €

4. This can be written in vector-matrix form as
X = VZ+e¢

V is the D x k matrix of weights, called factor loadings.
5. Factors are unit normals ( E[z] =0, Var(z) = 1) and uncorrelated (Cov(z;, z) =0, i # j).

6. To explain what is not explained by factors, there is an added source (¢;) for each input.
7. It is assumed that

o Noise are zero-mean (E [¢;] = 0) with unknown variance Var(¢;) = ;.
o Noise are uncorrelated among themselves (Cov(ej, €;) =0, i # j).

o Thus, ¥c = E [ec” | = diag[t1,%2, ..., 9p]-
o Noise are also uncorrelated with the factors, (Cov(ej, zj) =0, Vi, j).
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Factor analysis (cont.)

. We have
S =E [XXT} —VE [ZZT} VA

. Since factors are uncorrelated unit normals, hence E [ZZT] =1
PINESRVAVARNES 3

Z=WX

. If we have V/, then

. Post multiplying by X" and taking expectations and using E [ZZT] =/, we get
E {ZXT] —E [z [(VZ)T + JH
=E[2ZTVT]+E[zT] = VT

. Also
E [ZXT] - WE [XXT] — Wx,

. Hence, VT = WX,
w=vis!

. By combining the above equations, we obtain

z= VT):X_IX
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Multidimensional Scaling @

@ MDS is an approach mapping the original high dimensional space to a lower dimensional space

preserving pairwise distances.
@ Goal of Multidimensional scaling (MDS): Given pairwise dissimilarities, reconstruct a map that

preserves distances.




Multidimensional Scaling (cont.)

@ MDS is an approach mapping the original high dimensional space to a lower dimensional space
preserving pairwise distances.

@ MDS addresses the problem of constructing a configuration of N points in Euclidean space by
using information about the distances between the N patterns.

@ Given a collection of not necessarily Euclidean distances dj between pairs of points {x1,...,xn}.
@ Let D be an N x N distance matrix for the input space.

o Given a matrix D, MDS attempts to find N points z, ..., zy in k dimensions, such that if c?,-j
denotes the Euclidean distance between z; and z; , then D is similar to D.

@ MDS minimizes

N N N2
mzin IZZI: JZ:; (d,‘j — d,‘j)
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Multidimensional Scaling (cont.)

Now, the objective function of MDS can be reduced to

NN )
min E Z (X;ij — z,-sz)
==
e MDS algorithm

1. Build a Gram matrix of inner products G = XX T

2. Find the top k eigenvectors of G : ¥1,...,%, with the top k eigenvalues A1 ..., \x.
Let A = diag(M1 ..., Ak).

3. Calculate

Z=NAidiag(\1..., 0)T

When Euclidean distance is used, MDS and PCA produce the same results.

@ But, the distances need not be based on Euclidean distances and can represent many types of
dissimilarities between objects.
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Locally Linear Embedding

@ Locally linear embedding (LLE) recovers global nonlinear structure from locally linear fits.
@ The idea is that each point can be approximated as a weighted sum of its neighbors.
@ The neighbors either defined using a given number of neighbors (n) or distance threshold (¢).

o Let x" be an example in the input space and its neighbors be X(s,). We find weights in such a way
that minimize the following objective function.

N 2

EW[x] ="

r=1

r s
X — WrsX(r)
s

@ The idea in LLE is that the reconstruction weights w,s reflect the intrinsic geometric properties of

the data is also valid for the new space.

@ The first step of LLE is to find w;s in such a way that minimize the above objective function
subject to > w,s = 1.
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Locally Linear Embedding (cont.)

The second step of LLE is to keep w;s fixed and construct the new coordinates Y in such a way
that minimize the following objective function.

N
E[Y|W] = Z

in such a way that Cov(Y)=1/and E[Y] =

Z Wrsy(sr)

Oq o @ Select neighbors

o e
o o __
[ ]
° o
o X
[ ] [
[
(o]
(o7} ® o °

S. T. Roweis and L. K. Saul, Nonlinear
Dimensionality Reduction by Locally Linear
Embedding, Science, Vol. 290, No. 22, pp.
2323-2326, Dec. 2000.

Reconstruct with
linear weights

Map to embedded coordinates
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Isomap is a technique similar to LLE for providing a low dimensional representation of a high

dimensional data set.

Isomap differs in how it assesses similarity between objects and in how the low dimensional

mapping is constructed.
Isomap is a nonlinear generalization of classical MDS.

The main idea is to perform MDS, not in the input space, but in the geodesic space of the

nonlinear data manifold.

The geodesic distances represent the shortest paths along the curved surface of the manifold

measured as if the surface were flat.
The geodesic distances can be computed with e.g. the Floyd Warshall algorithm.

Isomap then applies MDS to the geodesic distances.
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Isomap algorithm

We start with data points in high dimensional space, lying near some manifold

@ For each data point / we find the points j on manifold within some Euclidean distance d(/,j) < e.
o We construct a graph on the manifold with an edge between i and j if d(i,j) < e.

@ We find the shortest path dg(7, /) between points i and j on the graph.

@ Finally, we apply classical MDS to the distances dg(/, j).
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Isomap (geodesic distance)

Reference:

Joshua B. Tenenbaum, Vin de Silva, and John C. Langford, A Global Geometric Framework for
Nonlinear Dimensionality Reduction, Science, Vol. 290, No. 22, pp. 2319-2323, Dec. 2000
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Linear discriminant analysis

@ Linear discriminant analysis (LDA) is a supervised method for dimensionality reduction for
classification problems.

@ This method has been discussed in classification.
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Readings

1. Section 12.1 of Pattern Recognition and Machine Learning Book (Bishop 2006).
2. Chapter 12 & 14.4 of Machine Learning: A probabilistic perspective (Murphy 2012).
3. Chapter 20 of Probabilistic Machine Learning: An introduction (Murphy 2022).
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