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Introduction



Introduction

1. In our daily life
1.1 Asking different doctors’ opinions before undergoing a major surgery

1.2 Reading user reviews before purchasing a product.
1.3 There are countless number of examples where we consider the decision of mixture of experts.

2. Ensemble systems follow exactly the same approach to data analysis.

Problem (Ensemble learning)
o Given training data set S = {(x1, t1), (x2, t2), ..., (xn, tny)} drawn from common instance space X, and

o A collection of inductive learning algorithms,
e Return a new classification algorithm for x € X that combines outputs from collection of classification

algorithms

3. Desired Property
Guarantees of performance of combined prediction.
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Why we combine classifiers?

Reasons for using ensemble based systems

1. Statistical reasons
1.1 A set of classifiers with similar training data may have different generalization performance.
1.2 Classifiers with similar performance may perform differently in field (depends on test data).
1.3 In this case, averaging (combining) may reduce the overall risk of decision.
1.4 In this case, averaging (combining) may or may not beat the performance of the best classifier.

2. Large volumes of data
2.1 Usually training of a classifier with a large volumes of data is not practical.
2.2 A more efficient approach is to
Partition the data into smaller subsets
Training different Classifiers with different partitions of data
Combining their outputs using an intelligent combination rule
3. To little data

3.1 We can use resampling techniques to produce non-overlapping random training data.
3.2 Each of training set can be used to train a classifier.
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Why we combine classifiers? (cont.)

Reasons for using ensemble based systems

1. Data fusion

1.1 Multiple sources of data (sensors, domain experts, etc.)
1.2 Need to combine systematically, for example a neurologist may order several tests
MRI scan, EEG recording, Blood test
1.3 A single classifier cannot be used to classify data from different sources (heterogeneous features).

2. Divide and conquer

2.1 Regardless of the amount of data, certain problems are difficult for solving by a classifier.
2.2 Complex decision boundaries can be implemented using ensemble Learning.

Training Data Examples Decision Boundaries Generated by Individual Classifiers

Observation/Measurement/Feature 2

Observation/Measurement/Feature 2

(e} 00
Complex Decision oe O Examples
Boundary to Be Learned for Class 2
Observation/Measurement/Feature 1 Observation/Measurement/Feature 1
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Diversity

1. Strategy of ensemble systems
Creation of many classifiers and combine their outputs in a such a way that combination improves
upon the performance of a single classifier.

2. Requirement
The individual classifiers must make different errors on different inputs.

3. If errors are different then strategic combination of classifiers can reduce total error.

4. Solution
We need classifiers whose decision boundaries are adequately different from others.
Such a set of classifiers is said to be diverse.
5. Classifier diversity can be obtained
e Using different training datasets for training different classifiers.
o Using unstable classifiers.
e Using different training parameters(such as different topologies for NN).
o Using different feature sets (such as random subspace method).
6. Reference
G. Brown, J. Wyatt, R. Harris, and X. Yao, "'Diversity creation methods : a survey and
categorization”, Information fusion, Vo. 6, pp. 5-20, 2005.
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Classifier diversity using different training sets

Feature 2

Classifier 1— Decision Boundary 1

Feature 2

Classifier 2 — Decision Boundary 2 Classifier 3 — Decision Boundary 3

Feature 2

Feature 1

Feature 2

Feature 1 Feature 1

Ensemble Decision Boundary

Feature 2

Feature 1

Feature 1
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Diversity measures

1. Pairwise measures (assuming that we have T classifiers)
T(T=1) o o
We can calculate % pair-wise diversity measures.

hj is correct | h;j is incorrect

h; is correct a b

h; is incorrect c d

For a team of T classifiers, the diversity measures (d;;) are averaged over all pairs

Dy = dj

T-1 T
=1

2
T(T—1) &= 4

i=1 j

2. Pairwise diversity measures

2.1 Correlation diversity is measured as the correlation between two classifier outputs.
_ ad — bc
- Va+b)(ctrd)(atc)(b+d

When classifiers are uncorrelated, maximum diversity is obtained and p = 0.
2.2 Q-Statistic defined as

Pij

Qjj = (ad — bc)/(ad + bc)

Q is positive when the same instances are correctly classified by both classifiers; and is negative,
otherwise.
Maximum diversity is, once again, obtained for Q@ = 0.
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Diversity measures

1. Pairwise measures (assuming that we have T classifiers)

T(T=1) e o
We can calculate % pair-wise diversity measures, and average them.

hj is correct | hj is incorrect
b

h; is correct a
h; is incorrect c d

2. Pairwise diversity measures
2.1 Disagreement measure is the probability that the two classifiers will disagree,

DU:b+C

The diversity increases with the disagreement value.
2.2 Double fault measure is the probability that both classifiers are incorrect,

DFj = d.

The diversity increases with the double fault value.
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Diversity measures

1. Non-pairwise measures (assuming that we have T classifiers)
1.1 Entropy measure makes the assumption that the diversity is highest if half of the classifiers are
correct, and the remaining ones are incorrect.

1< 1
E= o Z ?M min{&, (T — &)}
i=1 2
where &; is the number of classifiers that misclassify instance x;.

Entropy varies between 0 and 1, where 1 indicates highest diversity.
1.2 Kohavi-Wolpert variance

N
1
KW = W;fi(—,—*gi)
1.3 Measure of difficulty is

Kohavi—Wolpert variance follows a similar approach to the disagreement measure.

1T
0=—22 (2-2)
t=0
where z = [07%,%,.‘.,

1} and Z s mean of z.
z is the fraction of classifiers that misclassify x;.

How Measure of difficulty shows the diversity?
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Diversity measures

o Comparison of different diversity measures

Name 1/ P S Reference

Q-statistic Q (1) Y Y (Yule, 1900)

Correlation coefficient o () Y Y (Sneath & Sokal, 1973)
Disagreement measure D (1) Y Y (Ho, 1998; Skalak, 1996)
Double-fault measure DF () Y N (Giacinto & Roli, 2001)
Kohavi-Wolpert variance kw (1) N Y (Kohavi & Wolpert, 1996)
Interrater agreement K () N Y (Dietterich, 2000b; Fleiss, 1981)
Entropy measure Ent (1) N Y {Cunningham & Carney, 2000)
Measure of difficulty a (4) N N (Hansen & Salamon, 1990)
Generalised diversity GD (1) N N (Partridge & Krzanowski, 1997)
Coincident failure diversity CFD (1) N N (Partridge & Krzanowski, 1997)

Note: The arrow specifies whether diversity is greater if the measure is lower (|) or greater (1). *P* stands for

‘Pairwise’ and *S" stands for *Symmetrical”.

@ Reference

L. I. Kuncheva and C. J. Whitaker, Measures of diversity in classifier ensembles and their
relationship with the ensemble accuracy, Machine Learning, Vol. 51, pp. 181-207, 2003.
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Design of ensemble systems

@ Two key components of an ensemble system

1. Creating an ensemble by creating weak learners.
1.1 Bagging
1.2 Boosting
1.3 Stacked generalization
1.4 Mixture of experts

2. Combination of classifiers’ outputs (trainable vs. fixed rule).
2.1 Majority Voting
2.2 Weighted Majority Voting
2.3 Averaging
2.4 Error correcting codes

@ What is weak learners?

Definition (Weak learner)

A weak learner does not guarantee to do better than random guessing.
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Design of ensemble systems

In ensemble learning, a rule is needed to combine outputs of classifiers.

1. Classifier selection

1.1 Each classifier is trained to become an expert in some local area of feature space.

1.2 Combination of classifiers is based on the given feature vector.

1.3 Classifier that was trained with the data closest to the vicinity of the feature vector is given the
highest credit.

1.4 One or more local classifiers can be nominated to make the decision.

2. Classifier fusion

2.1 Each classifier is trained over the entire feature space.
2.2 Classifier Combination involves merging the individual weak classifier design to obtain a single Strong
classifier.
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Bagging

Bootstrap Aggregating (Bagging)
1. Create T bootstrap samples S[1], S[2],...,S[T].
2. Train distinct inducer on each S[t] to produce T classifiers.
3. Classify new instance by classifier vote (majority vote).

Application of bootstrap sampling

1. Given set S containing N training examples
2. Create S[t] by drawing N examples at random with replacement from S
3. S[t] of size N: expected to leave out 75% — 100% of examples from S. (show it)
@ Variations
1. Random forests
Can be created from decision trees, whose certain parameters vary randomly.
@ Pasting small votes (for large datasets)

1. RVotes : Creates the data sets randomly
2. IVotes : Creates the data sets based on the importance of instances, easy to hard
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Bagging

Consider the set of k regression models

1. Each model i makes error ¢; on each example

2. Errors drawn from a zero-mean multivariate normal with variance E[¢?] = v and covariance
E[€,‘€j] =C

3. Error of average prediction of all ensemble models: %Z;Gi

4. Expected squared error of ensemble prediction is

2
1 1 k—1

E ; Z €j = ;V + 7/{ C

5. If errors are perfectly correlated, ¢ = v, and mean squared error reduces to v, so model averaging

does not help.

6. If errors are perfectly uncorrelated and ¢ = 0, expected squared error of ensemble is only | and

Ensemble error decreases linearly with ensemble size
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Random Forests

1. Let S = {(x1,t1),...,(xn, tn)} be the training set, where x; € RP.
2. Random Forests algorithm follows thefollowing steps:

2.1 Create m bagged samples of size n, with n < N.
2.2 Train a decision tree with each of the m bagged data sets as input using the following procedure.

2.2.1 When doing a node split, don't explore all features in S.
2.2.2 Randomly select a smaller number, d < D features, from all the features in S.
2.2.3 Then pick the best split using impurity measures, like Gini, Impurity or Entropy.

2.3 Aggregate the results of the individual decision trees into a single output.

2.3.1 Average the values for each observation, produced by each tree, if you're working on a Regression task.
2.3.2 Do a majority vote across all trees, for each observation, if you're working on a Classification task.
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Boosting

@ Schapire proved that a weak learner can be turned into a strong learner that generates a classifier
that can correctly classify all but an arbitrarily small fraction of the instances.

@ In boosting, the training data are ordered from easy to hard. Easy samples are classified first, and
hard samples are classified later.
@ Boosting algorithm
1. Create the first classifier same as Bagging
2. The second classifier is trained on training data only half of which is correctly classified by the first
one and the other half is misclassified.
3. The third one is trained with data that two first disagree.
@ Variations
1. AdaBoost.M1
2. AdaBoost.R
o Reference
Robert E. Schapire, The strength of weak learnability, Machine Learning, Vol. 5, pp. 197-227
(1990).
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AdaBoost

ADABOOST(S = ((21,%1),- - > (Tims Ym)))
1 fori<+ 1tomdo
D1 (i) < 4
fort < 1to T do

hi < base classifier in H with small error ¢; = Pr;.p,[h:(z;) # yi]

p — %log 1=e

€t

Zy <+ 2[e(1 — et)]% > normalization factor

for i < 1 to m do

Dy (i) exp(—azyihe(x;))

Dt+1(i) <—
g = 23:1 aihy
return h = sgn(g)

© 00 N O Ot = W N

—
e}

Freund, Yoav; Schapire, Robert E.A decision-theoretic generalization of on-line learning and an
application to boosting, Journal of Computer and System Sciences, Vol. 55, pp. 119-139 (1997).

17/ 23



AdaBoost (example)

° decision
boundary
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Stacked Generalization

Yy
Combiner Predictions
4 4
Z AN
Combiner Combiner
Predictions Predictions
4 Yy 4 4
Inducer Inducer Inducer Inducer
X1 M2 A5 oy
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Mixture Models

1. Train multiple learners

1.1 Each uses subsample of S
1.2 May be ANN, decision tree, etc.

2. Gating Network usually is NN

Gating
Network

X

g4

Y1

(¢ P

Y2
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Cascading Models

Cascade learners in order of complexity

y=d,
A
y=d,
yes
y=d, 1o > d .
yes A
no
dz
d]

= — TP
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Readings

1. Sections 14.1, 14.2 & 14.3 of Pattern Recognition and Machine Learning Book (Bishop 2006).

2. Robi Polikar, Ensemble based system in decision making, IEEE Circuits and Systems Magazine,
Vol. 6, No. 3, pp. 21 - 45 (2006).

3. T. G. Dietterich, Machine Learning Research: four current directions, Al Magazine. 18(4), 97-136
(1997).

4. T. G. Dietterich, Ensemble Methods in Machine Learning, Lecture Notes in Computer Science,
Vol. 1857, pp 1-15 (2000).

5. Ron Meir, Gunnar Ratsch, An introduction to Boosting and Leveraging, Lecture Notes in

Computer Science, Vol. 2600, pp 118-183 (2003).

6. David Opitz, Richard Maclin, Popular Ensemble Methods: An Empirical Study, journal of artificial
intelligence research, pp. 169-198 (1999).

7. L.I. Kuncheva, Combining Pattern Classifiers, Methods and Algorithms, Second edition. New
York, NY: Wiley Interscience, 2014.
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