Deep learning

Convolutional Networks!

Hamid Beigy

Sharif University of Technology

November 4, 2022

1Some slides are taken from B. Raj's slides

Table of contents

1. Introduction

2. Example

3. Training the network with shared parameter

4. Convolution

5. Convolutional Neural networks

6. Convolutional neural network architectures

7. Case studies

8. Reading

1/68

Introduction

Introduction

1. Consider a Perceptron with threshold activation function

Bia@
1 O— W1
T Activate
m function Output
Inputs { 22 [F Y

// -
I3 O——— W3
Weights

)1 ifwlx>b
0 otherwise

2. What do the weights tell us?

3. The Perceptron fires if the inner product between the weights and the inputs
exceeds a threshold.

2/68

1. In Perceptron, we have

b
0 < cos™ ! (—>
(1] - [|wl]

2. The Perceptron fires if the input vector is close enough to the weight vector.

3/68

The weights as a correlation filter

1. If the correlation between the weight pattern and the inputs exceeds a threshold,
Perceptron fires.

2. The Perceptron is a correlation filter.

w

4/68

MLP as a cascade of feature detectors

1. Consider a classification task in which, we want to classify digit images from
non-digit images.

DIGIT ORNOT? ()

S o=
St F =7

2. The network is a cascade of feature detectors

3. Higher level neurons compose complex templates from features represented by
lower-level neurons.

5/68

Example

Finding a word in a signal

1. Does the following signal contain the word Hello?

2. Can MLP be used to solve the above problem?

6/68

The first solution: using a MLP for the entire signal

1. We can use a large network.

7/68

Problem with the first solution

1. Network that finds a Hello in the top recording will not find it in the lower one

» Unless trained with both
» Will require a very large network and a large amount of training data to cover every

case

8/68

Finding Hello

1. We need a simple network that will fire regardless of the location of Hello and not
fire when there is none.

9/68

The need for shift invariance

1. In many problems the location of a pattern is not important (Only the presence of
the pattern).

2. Conventional MLPs are sensitive to the location of the pattern.

3. Network must be shift invariant

10/68

The second solution: scanning signal

1. Use a sliding window and scan for the target word.

2. Does Hello occur in this recording?

» We have classified many windows individually
» Hello may have occurred in any of them.

3. Maximum of all the outputs (Equivalent of Boolean OR)

11/68

The second solution: scanning signal

1. Use a sliding window and scan for the target word.

Perceptron

2. Does Hello occur in this recording?

3. Use a Perceptron to decide.

12/68

The second solution: scanning signal

1. Use a sliding window and scan for the target word.

2. Does Hello occur in this recording?

3. Use a MLP to decide.

13/68

The second solution: scanning signal

1. The entire operation can be viewed as one large network.

2. With many subnetworks, one per window

3. Restriction: All subnets are identical (why?)

14/68

The second solution: scanning signal

1. What are the properties of this network?

2. The sub-networks are shared parameter networks.
3. All lower-level subnets are identical (Are all searching for the same pattern?)

4. Any update of the parameters of one copy of the subnet must equally update all
copies

15/68

The second solution: scanning signal

1. What are the properties of this network?

2. The network is sparse.

3. All sub-networks are used for local regions.

16/68

Substring problem

We have two strings s; and sy with lengths n; and np, respectively.
Assume that ny > n».

Is s a substring of s17

R S s

What is the solution?

17/68

Training the network with shared parameter

Training the network with shared parameter

1. We use conventional back-propagation to learn the parameters.

2. By Providing many training examples, we use Gradient descent to minimize the
cost function.

3. There are shared parameter networks and any update of the parameters of one
copy of the subnet must equally update all copies.

4. Consider a simple network with the following parameter sharing w;; = wy; = ws

5. We can calculate the gradient with respect to ws.

dJ(w) 0J(w)owy; 9J(w) Owy

Ows owjj Ows owyy Ows
_9J(w) o oJ(w)
- 8W,‘j aWk/

18/68

Convolution

Convolution

1. The following operation is called convolution.

+oo
s(t):/_ (F)w(t — 7)d7

2. The convolution operation is typically denoted with an asterisk(*).

+o0o
s(t) = (xxw)(t) = / x(T)w(t — 7)dT

— o0

w

. This operation has two steps: flipping and shifting

4. Then multiplication and integration.

19/68

Discrete convolution

1. If we now assume that x and w are defined only on integer t, we can define the
discrete convolution:

[e.9]

sl = (xxw)[nl = > x[mlw[n — m]

m=—0o0

2. What is the relation of convolution and cross-correlation?

20/68

Discrete convolution

1. In practice, we often use convolutions over more than one axis at a time.

sli] = (1« K)lisJjl = Z Z/[m nlKli —m,j —n]

m=—00 N=—00

2. The input is usually a multidimensional array of data.

3. The kernel is usually a multidimensional array of parameters that should be

learned.

4. We assume that these functions are zero everywhere but the finite set of points

for which we store the values.

5. We can implement the infinite summation as a summation over a finite number of

array elements.

21/68

Convolution (example)

< °
2 o
) o 5
Vt
< 58
of
o
o o O | O
G
Oxlxlxloe
] oo
| | A | m
—(H|o|Oo|H| —
alielielie}ie)]
o°
Q
2w
S =
o Vm
< 5 8
od
o|O|H|O|O
<o
O ||+ |O
)
= ap
| [[| ©
o E
| oo (| —
—|0O|O(O|O
°
]
=]
S =
> 2
<« 53
od
olo|+q|o|o
o |d|—|o]|
= ap
A || [| ©
== £
OO || —
o Flo|o

o

< | 7]

2 o

S =

m | < Wm

< [N G o

O w
S| =]
OO OO
I

lelxleE

=l i ap

Y [R m

—A|d(olo(d| —
-H|OO|O|O

°

< (4]

2 o

S =

o | <t W.w

(1]

< (N o

o &
olo|H|(o|O

o| o] .

=]

11nx.1x1nx.1m

- | o || —
—(O|O(O|O

o]

< [}

=

)

o Vm

<[~ 53

O w
olo|H|o|o

old|d|+|o o

llxlmlxlm

11m0.n0m1|
S EEE

°
< | on|< (7]
=
on|<t|mn]
=
< | NN o
o
TR]
oo || oo
o|«| o
[
= = Qb
111x1m1xm
wlH|lo|Oo|H| —
—|OlO(O|O
°
< |m]
=
(<t)
=
<t | NN o
)
o|o|H|(O|O
o|w || | &
= ab
|| | ©
—— E
|| OO | —
—|o|o|o|o
°
< | (]
=
o< Q
c
< NN o
(@]
o|lo|H|lO|O
oli=i=i=l{c
<o o
| [| |
S o
(- |O| O
<o |
— OO oo

22/68

Feature

Feature

Feature

Image

Convolutional Neural networks

Convolutional Neural networks

1. Convolutional neural network is a kind of feed-forward neural network that is able
to extract features from data with convolution structures (Li et al. 2020).

2. The architecture of CNN is inspired by visual perception.

3. A convolutional layer is a network layer that implements convolution.

4. A convolutional neural network is a feed—forward network in which at least one
layer is convolution layer.

5. Convolutional neural networks have the following characteristics

» Sparse & local interactions

» Parameter sharing

» Down-sampling dimensionality reduction
» Equi-variant representations

23/68

=
=
=
)
O
Q
c
c
o
O
)
(0]
S
R
(=%
wn

1. Sparse vs dense connectivity

24/68

Sparse connectivity

1. Sparse connectivity in multi-layers

LA
ol
[X

h11 hi2 hi13 hi4 his

25/68

Parameter sharing

1. In CNNs each member of the kernel is used at every position of the input

OSON050
G OO
0;ON050

O OO
OONORO

26/68

Equivariance

1. A function f(.) is equivariant to a function g(.) if f(g(x)) = g(f(x)).
2. A convolutional layer is equivariance to translation.
3. For example

g0l = g(x)li = 1]

4. If we apply this transformation to x, then apply convolution, the result will be the
same as if we applied convolution to x, then applied the transformation to the
output. (Check it.)

5. If we move an object in the image, its representation will move the same amount
in the output

6. Note that convolution is not equivariant to some other transformations, such as
changes in the scale or rotation of an image.

27/68

Convolutional Neural networks

1. The components of a typical convolutional neural network layer.

Complex layer terminology

Next layer

Simple layer terminology

f

Next layer

Convolutional Layer

Pooling stage

Pooling layer

3

Detector stage:
Nonlinearity
e.g., rectified linear

Detector layer: Nonlinearity
e.g., rectified linear

A

A

Convolution stage:
Affine transform

Convolution layer:
Affine transform

A

Input to layer

?

Input to layers

28/68

Convolutional Neural networks

1. To build a CNN model, four components are typically needed (Li et al. 2020).

Convolution The outputs of convolution can be called feature maps.

Padding Padding enlarges the input with zero value.

Stride For controlling the density of convolving, stride used.

Pooling As a result, Pooling (down-sampling) such as max pooling and average
pooling obviates large number of features in feature map.

Stride =2
olojofo[ofofo]o]o
olofofof[1]ofo olojofof[oft]o]ofo
1{0{0|1[{0]|0(1 0/LJ0J0|1f0[0|1|0]<%
01 1]0 ax
0]/0|1[{0|1({0]|O . |0{0|0O}J1{0O(1({0|0O|O X
Paddmg Conv Kernel 113 3|1 POOllng 3|3
0(1{1{0{0f1|0|———>|O0(O|1|J1|0|O0Of1]|0]|O
212 2|2 213
1{0(1|0(0|1]|0 0j1L({0[1|0|0|1|0O
0|1 3|2
0/0|1[{0|0f1]|0 0(0|0O|1[1|0f1]|0]|0
0]10|0[1]|1(0]|1 0(0fO0O|j0O|1|1[{0fL1|0
Input olofofofofo]o]ofo

29/68

Convolutional stage

The convolutional stage is

For convolution kernels to perceive larger
area, dilated convolution used (Li et al.
2020).

(a) A general 3 x 3 convolution kernel.
(b) A 2-dilated 3 x 3 convolution kernel.
(c) A 4-dilated 3 x 3 convolution kernel.

(@)

(b) ©

30/68

Convolutional stage

1. Now, we don't have just one filter in a convolutional layer, but multiple filters.

2. We call each output (matrix) a slice.

Input Filters Convolution Output

31/68

Convolutional stage

1. Multiple filters.

w|

32

Convolution Layer

activation maps

28

32/68

Padding

1. Usually, we specify a variable pad which is the amount of zeros to pad on each

border.
pad =0 pad =1 pad = 2

0]10]0]10{0]0]0
0{0]J010]0 0{0]0]10]0O]0{0O
0 0 0]0 010
0 0 010 010
0 0 010 010
0[0]0{0]0O 0[0{0{0]0]01]0

0{0]0]1010]0{0

33/68

Convolution stride

1. Another variable to control is the stride, which defines how much the filter moves

in the convolution.
stride =2 stride =2

T~

34/68

Deformable convolution

1. To handle irregular shapes, deformable convolution is used (Dai et al. 2017)

35/68

Detector stage

1. In the second stage, each linear activation is run through a nonlinear activation
function, such as the rectified linear activation function. This stage is sometimes
called the detector stage.

36/68

Pooling stage

1. CNNs also incorporate pooling layers, where an operation is applied to all elements
within the filtering extent. This corresponds, effectively, to downs—sampling.

2. The pooling filter has width and height and is applied with a given stride. It is
most common to use the max() operation as the pooling operation.

Input Output

1 2 3 4

5’ 6 7 8 2 X 2 max pool 6 8

stride 2 4]

37/68

Pooling stage

1. Invariance example:
2. Inputs shifted by 1. Five inputs changed but only three outputs changed.

38/68

Convolution and pooling as an infinitely strong prior

1. A weak prior is a prior distribution with high entropy, such a Gaussian distribution

with high variance.

2. A strong prior has very low entropy, such as a Gaussian distribution with low

variance.
3. An infinitely strong prior places zero probability on some parameters.

4. A convolutional net is similar to a fully connected net with an infinitely strong

prior over its weights

5. The weights for one hidden unit must be identical to the weights of its neighbor,
but shifted in space.

6. The use of pooling is in infinitely strong prior that each unit should be invariant to
small translations.

39/68

Space to dept layer

1. Performance of CNNs degrade rapidly on tasks where images are of low resolution

or objects are small.

2. Sunkara and Luo designed a CNN in which strided convolution and pooling are

not used (Sunkara and Luo 2022).

s i o o
I | 5/2/ " |
o . ot]
E space-to-depth on a feature map(X) Convolution (stride=1)
(a) ' (b) © @ ©

40/68

Convolutional neural network architectures

Convolutional neural network architectures

1. Typically, convolutional neural networks are comprised of units that are composed
of:

» Several paired convolutional-relu layers.
» Potentially one max pooling layer.

2. These units are cascaded. Finally, a CNN may end with a fully connected-relu
layer, followed by a softmax classifier.

{
Convolutional layer

m repeats

41/68

Convolutional neural network architectures

1. The following describes a fairly typical CNN architecture.

g S <
S
o ©
© (0]
© - — ©
o © o @ x
© (= 5] Q c = i
— O—»E—->% :C»E-_»E
> = — Q = =
a 3 e o o
IS o = > @
-
s i
O

42/68

Case studies

Convolutional neural network architectures

1. Beyond this, there are many architectural considerations (as measured by
ImageNet performance).

>

>

LeNet-5 (LeCun et al. 1998)

AlexNet (Krizhevsky, Sutskever, and Hinton 2012) and ZFNet (Zeiler and Fergus
2014)

VGGNet and small filters (Simonyan and Zisserman 2015)

GoogleNet and inception layers (Szegedy et al. 2015)

ResNet and residual layers (He et al. 2016)

FractalNet and the importance of reducing effective depth (Larsson, Maire, and
Shakhnarovich 2017)

43/68

LeNet-5

Image(28 x 28)

s e ot e S o (6 2 s
recognition (LeCun et al. 1998). 2 x 2 AvgPool, stride 2

> It has 2 convolutional layers (with sigmoid activation l
TR s (i

» The average-pooling layer was used as a 2 x 2 AvgPool, stride 2
sub-sampling layer. l

» RelLUs and max-pooling work better. FC (120)

» This architecture has about 60,000 parameters. v

» Demo : http://yann.lecun.com/exdb/lenet/ A 584)

FC (10)

44/68

http://yann.lecun.com/exdb/lenet/

AlexNet

1. AlexNet has been proposed for image classification (Krizhevsky, Sutskever, and
Hinton 2012).

256 Max
Max Max pooling 4096 40%

Stride pocling poaling

2. Dropout is used in the last few fully-connected layers to randomly ignore some
neurons during training to avoid overfitting.

3. First layer (CONV1): 96 11 x 11 filters applied at stride 4

4. MaxPool (MaxPooll) 3 x 3 filters applied at stride 2. Max pooling can avoid the
blurred result of average pooling.

5. Local response normalization is used.

6. Two GPUs are used to train AlexNet.

45/68

AlexNet

1. AlexNet architecture is [CONV1-MaxPOOL1-Norm1-CONV2-MaxPOOL2-Norm2-
CONV3- CONV4-CONV5-MaxPOOL3-FC6-FC7-FC8].

max-pool max-pool
3x3 3x3

input

224x224x3

4096 4096 1000

2. AlexNet has 8 layers — 5 convolutional and 3 fully-connected..
3. AlexNet has 60M parameters.
4. They were the first to implement Rectified Linear Units (ReLUs) as activation

functions.

46/68

227

CONV Overlapping
11x11, Max POOL
stride=4, 96 3x3, o
96 kernels stride=2
" (227-11)/4 +1 (55-3y2+1
-

227

CONV
3x3,pad=1 384
384 kernels

256 kernels

(13+2°1-3)1 (13+2*1-3)1
+1 =13 +1 =13

13

CONV

5x5,pad=2

256 kernels,
(27+2°2-5)/1
+1 =27

Overlapping

Max POOL

3x3, 256
stride=2

(13-3)/2 +1 FC
=6

6
6

9216

=13

Overlapping
Max POOL
3x3,

stride=2

(27-3)12 +1

13

FC

4096

4096

CONV
3x3,pad=1
384 kernels

—_—

(13+2*1-3)1
+1 =13

O
O
1000

Softmax

47/68

AlexNet

227x227x3
55x55x96
27x27x96
27x27x96
27x27x256
13x13x256
13x13x256
13x13x384
13x13x384
13x13x256
6x6x256
4096

4096

1000

INPUT

CONV1: 96 11x11 filters at stride 4, pad 0
MAX POOL1L: 3x3 filters at stride 2
NORM1: Normalization layer

CONV2: 256 5x5 filters at stride 1, pad 2
MAX POOL2: 3x3 filters at stride 2
NORM?2: Normalization layer

CONV3: 384 3x3 filters at stride 1, pad 1
CONV4: 384 3x3 filters at stride 1, pad 1
CONV5: 256 3x3 filters at stride 1, pad 1
MAX POOL3: 3x3 filters at stride 2

FC6: 4096 neurons

FC7: 4096 neurons

FC8: 1000 neurons (class scores)

48/68

AlexNet Results

mite container ship motor scooter leopard
mite container ship motor scooter legpard
black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard

starfish

golfcart

drilling platform

mushroom

herry

Egyptian cat

X s

dagascar cat

convertible
grille

pickup
beach wagon
fire engine

agaric

mushroom

jelly fungus

gill fungus
dead-man's-fingers

dalmatiah

squirrel monkey

grape
elderberry

ffordshire bullterrier
currant

spider monkey
titi

indri

howler monkey

49/68

ZFNet

1. ZFNet has the following architecture (Zeiler and Fergus 2014).

image size 224 110 26 13 13 13
filter size 7 Ila 13

‘1'1 384 | W1 \3‘54 ,\z‘fa
stride 2 3x3 max c
3x3 max pool| | contr: pool 4096 4096 class
e stride 2 units| | units| | softmax

v\i 55 ,l; 2
4 g 256
Input Image \a
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer6 Layer7 Output

2. ZFNet is AlexNet with the following modifications
3. CONV1: change from (11x11 stride 4) to (7x7 stride 2)
4. CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

50/68

VGGNet

1. VGGNets are a series of convolutional neural network algorithms proposed by the
Visual Geometry Group (VGG) of Oxford University, including VGG-11,
VGG-11-LRN, VGG-13, VGG-16, and VGG-19.

2. VGGNets secured the first place in the localization track of ImageNet Challenge
2014.

3. The LRN (Local Response Normalization) layer was removed since the author of
VGGNets found the effect of LRN in deep CNNs was not obvious.

4. VGGNets use 3 x 3 convolution kernels.

5. VGGNet uses small filters, deeper networks

6. VGGNet has the following architecture (Simonyan and Zisserman 2015).

» Only 3 x 3 CONV with stride 1,
» Pad 1
» 2 x 2 MAX POOL with stride 2

51/68

VGGNet

Softmax
FC 1000
Softmax FC 4096
FC 1000 FC 4096
FC 4096 Pool
FC 4096 3x3 conv, 512
Pool 3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

Pool

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

Pool

Pool

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

Pool Pool
3x3 conv, 64 3x3 conv, 64
3x3 conv, 64 3x3 conv, 64

Input Input

VGG16

VGG19

52/68

VGG-Net-16

1. The VGG-16 which has 13 convolutional and 3 fully-connected layers with RelLU
activation function.

max-pool
2x2

224x224x3

4096 4096 1000

2. This network stacks more layers onto AlexNet.
3. It uses smaller size filters (2 x 2 and 3 x 3). It consists of 138M parameters.

4. The contribution from this paper is the designing of deeper networks (roughly
twice as deep as AlexNet).

53/68

GooglLeNet

1. GoogleNet is the winner of the ILSVRC 2014 image classification
algorithms (Szegedy et al. 2015).

2. It is the first large-scale CNN formed by stacking with Inception modules.

3. GoogleNet didn't use fully connected layers and global average pooling is used at
the end of the network and eliminating a large amount of parameters that do not
seem to matter much.

4. This layer takes a feature map of 7 x 7 and averages it to 1 x 1.
5. This 22-layer architecture with 5M parameters is called the Inception-v1.

6. lts main contribution was the development of an Inception Module that
dramatically reduced the number of parameters in the network (4M, compared to
AlexNet with 60M).

7. It achieved a top-5 error rate of 6.67%!

54/68

Inception Modules

1. Objects in images have different distances to cameras and then have large

variation in size.

2. An object with a large (small) proportion of an image usually prefers a large
(small) convolution kernel or a few small (many large) ones.

3. Hence, choosing the right kernel size becomes a challenging problem.
4. A larger/smaller kernel is useful for globally/locally distributed information.

5. Very deep networks may overfit and stacking large convolution layers is

computationally expensive.

6. GoogleNet use filters with multiple sizes operating on the same level. Hence the

network becomes wider.

7. Inception modules are used to implement filters with multiple sizes operating on
the same level.

8. Inception modules have four versions, namely Inception v1, Inception v2, Inception

v3, and Inception v4.

55/68

GoogleNet

1. GoogleNet has the following architecture.

Convolution
Pooling

Concat/Normalize

56,68

Inception V1

1. Inception V1 module has the following architecture.

Filter
concatenation

T

1x1 convolutions 3x3 convolutions 5x5 convolutions 3x3 max pooling

Previous layer

2. Inception V1 performs convolution on an input, with 3 different sizes of filters:
1x1,3x%x3,and 5 x 5.

3. It also performs max pooling.

4. The outputs of these filters are concatenated and sent to the next inception
module.

57/68

Inception V1 with dimensionality reduction

1. To reduce computational cost, inception module uses 1 x 1 convolution kernel to
reduce the number of channels.
2. Consider a 28 x 28 x 190 input and use 48 5 x 5 kernels resulting 28 x 28 x 48
feature map.
3. Number of parameters: (5 x 5 x 190) x (28 x 28 x 48) = 178,752, 000.
4. Now first use 16 1 x 1 kernels and then use 48 5 x 5 resulting 28 x 28 x 48.
» Number of parameters in first layer: (5 x 5 x 190) x (28 x 28 x 16) = 118, 750.
» Number of parameters in second layer: (5 x 5 x 16) x (28 x 28 x 48) = 15,052, 800.
» The total number of parameters: 118,750 + 15,052,800 = 15,171, 550.

Filter
concatenation

ﬂv\

1x1 convolutions

3x3 convolutions

5x5 convolutions

1x1 convolutions

)

7

ﬂuﬁons

//

1x1 convolutions

Previous layer

[}

3x3 max pooling

Inception V2

1. Inception V2 uses batch normalization layer.
2. Inception V1 5 x 5 filter aggressively decreases the feature
map.

3. Inception V2 replaces 5 x 5 filter by two 3 x 3 filters.

1. Inception V2 also uses asymmetric convolution.

2. Each 3 x 3 filter factorized by 1 x 3 and 3 x 1 filters.

1. The use of factorization is not effective in the early layers.
2. It is better to use it on medium-sized feature maps.

3. Filter banks should be expanded (wider but not deeper) to

improve high dimensional representations.

59/68

-
()
=
()]
Q
o
&
(=]
(7]
o
=
=
p

2016).

1. ResNet is a new 152 layer network architecture (He et al.

2. ResNet has the following architecture.

£
=5

=

Ssov

sT-Don

wied asAe-rE

Ienpissa s Ae-bE

60,/68

Microsoft ResNet

1. ResNet has stacked residual blocks.

2. Every residual block has two 3x3 conv layers

X+ (x)4

300|q [enpisay
X
@
njal l

Anuspl
X

3. The authors believe that “it is easier to optimize the residual mapping than to
optimize the original, unreferenced mapping”.

4. The ResidualNet creators proved empirically that it's easier to train a 34-layer
residual compared to a 34-layer cascaded (Like VGG).

61/68

)

(]
2
2
=

(=]
p

1. Google proposed MobileNet V1 to reduce the model size and

complexity(Howard et al. 2017).

2. Depthwise Separable Convolution is used.

3.

It is useful for mobile and embedded vision applications

each filter

In depthwise convolution,

In a standard convolution, we would di-

channel only used at one input channel.

rectly convolve in depth dimension.

62/68

)

(]
2
2
.|m

(=]
p

Depthwise separable convolution uses 1 x 1 convolution after Depthwise convolution?.

Yz a 22

o L

t f
gPo Lo Gho
f f

hﬁﬂﬁnA\«________Hﬂﬂ_\wﬂ________;ﬁﬁaﬁaljlﬁjljj
i S

)

2Figure taken from Atul Pandey page

63/68

Comparing different CNN architectures on ImageNet @

ImageNet is an image database organized according to the WordNet hierarchy.

28.2

l 22 layers I 19 Iayers

a7 I

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11l ILSVRC'10
ResNet GoogleNet VGG AlexNet

64/68

Some other CNN networks

Inception-v3 (2015)
Xception (2016)
Inception-v4 (2016)
Inception-ResNet-V2 (2016)
ResNeXt-50 (2017)
DenseNet (CVPR 2017)
MobileNets (2017 & 2018)

© N o 0k~ w b=

For more networks, please study the networks given in

https://paperswithcode.com/sota/image-classification-on-imagenet

65,/68

https://paperswithcode.com/sota/image-classification-on-imagenet

Reading

1. Chapter 9 of Deep Learning Book3

3lan Goodfellow, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. The MIT Press.

66/68

References i

[§ Dai, Jifeng et al. (2017). “Deformable Convolutional Networks” . In: IEEE International
Conference on Computer Vision, pp. 764-773.

@ Goodfellow, lan, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. The MIT
Press.

@ He K. etal (2016). “Deep Residual Learning for Image Recognition”. In: Proc. of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 770-778.

[4 Howard, Andrew G. et al. (2017). MobileNets: Efficient Convolutional Neural Networks
for Mobile Vision Applications. eprint: 1704.04861.

@ Krizhevsky, Alex, llya Sutskever, and Geoffrey E. Hinton (2012). “Imagenet
classification with deep convolutional neural networks”. In: Advances in neural
information processing systems, pp. 1097-1105.

B Larsson, Gustav, Michael Maire, and Gregory Shakhnarovich (2017). “FractalNet:
Ultra-Deep Neural Networks without Residuals”. In: International Conference on

Learning Representations.

67/68

1704.04861

References ii

[

LeCun, Yann et al. (1998). “Gradient-Based Learning Applied to Document
Recognition”. In: Proceedings of the IEEE. Vol. 86. 11, pp. 2278-2324.

Li, Zewen et al. (2020). “A Survey of Convolutional Neural Networks: Analysis,
Applications, and Prospects”. In: CoRR abs/2004.02806.

Simonyan, Karen and Andrew Zisserman (2015). “Very Deep Convolutional Networks
for Large-Scale Image Recognition.”. |n: International Conference on Learning
Representations.

Sunkara, Raja and Tie Luo (2022). “No More Strided Convolutions or Pooling: A New
CNN Building Block for Low-Resolution Images and Small Objectso”. In: Proc. of
European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases.

Szegedy, Christian et al. (2015). “Going Deeper with Convolutions”. In: Computer
Vision and Pattern Recognition (CVPR).

Zeiler, Matthew D. and Rob Fergus (2014). “Visualizing and Understanding
Convolutional Networks™”. |n: Proc. of European Conference on Computer Vision,
pp. 818-833.

68,/68

Questions?

@O®O

	Introduction
	Example
	Training the network with shared parameter
	Convolution
	Convolutional Neural networks
	Convolutional neural network architectures
	Case studies
	Reading

