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Introduction



Gradient based learning

1. Gradient based learning is by far the most popular

optimization strategy, used in machine learning and

deep learning at the moment.

2. Cost (error) is a function of the weights (parameters).

3. We want to reduce/minimize the error.

4. Gradient descent: move towards the error minimum.

5. Compute gradient, which implies get direction to the

error minimum.

6. Adjust weights towards direction of lower error.

Initial weight

Global minimum

w

J
(w

)
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Optimization methods

1. Based on the gradient information in optimization, optimization methods can be divided

into three categories (Sun et al. 2019):

first-order optimization methods such as stochastic gradient methods,

high-order optimization methods such as Newton’s method, and

heuristic derivative-free optimization methods coordinate descent methods.

2. First-order optimization methods, has been widely used in recent years.

3. High-order methods converge at a faster speed than first-order methods. They have

difficulty in the operation and storage of the inverse of the Hessian matrix.

4. Derivative-free optimization methods are used when the derivative of the objective

function may not exist or be difficult to calculate. Their ideas:

I adopting a heuristic search based on empirical rules, and
I fitting the objective function with samples.

5. Derivative- free optimization methods can also work in conjunction with gradient-based

methods.
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Examples of optimization in machine learning

1. Almost all machine learning algorithms can be formulated as an optimization problem to

find the extremum of an objective function.

2. In supervised learning, we have a training set

S = {(x1, t1), (x2, t2), . . . , (xm, tm)}

3. For example, in regression task the objective function for a Perceptron with sigmoid unit is

defined as

arg min
θ

1

2m

m∑

i=1

(h(xi )− ti )
2

4. For example, in classification task the objective function for a Perceptron with sigmoid

unit is defined as

arg min
θ

m∑

i=1

[
−t i ln h(x i )− (1− t i ) ln(1− h(x i ))

]
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First-order optimization methods



Gradient descent

1. Gradient descent (GD), computes the gradient of the cost function w.r.t. to the

parameters θ.

θt+1 = θt − η · ∇θJ(θ)

2. We need to calculate the gradients for the whole dataset to perform just one update.

3. GD can be very slow and is intractable for datasets that don’t fit in memory.

4. GD also doesn’t allow us to update our model online, i.e. with new examples on-the-fly.

5. GD method is simple to implement.

6. The solution is global optimal when the objective function is convex.

7. It often converges at a slower speed if the variable is closer to the optimal solution, and

more careful iterations need to be performed.
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Stochastic gradient descent

1. GD has high computational complexity in each iteration for large-scale data and does not

allow online update.

2. One solution is using stochastic gradient descent (SGD).

3. The ides of SGD is using one sample randomly to update the gradient per iteration,

instead of directly calculating the exact value of the gradient.

4. SGD performs a parameter update for each training example x (i) and label y (i).

θt+1 = θt − η · ∇θJ(θ; x (i); y (i))

5. It is therefore usually much faster and can also be used to learn online.

6. SGD performs frequent updates with a high variance that cause the objective function to

fluctuate heavily1.
Gradient Descent

Lecture 6 Optimization for Deep Neural Networks CMSC 35246

Stochastic Gradient Descent

Lecture 6 Optimization for Deep Neural Networks CMSC 35246

1Figures are taken from slides of Trivedi & Kondor
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Mini-batch gradient descent

1. Mini-batch gradient descent (MGD) finally takes the best of both worlds and performs an

update for every mini-batch of K training examples.

θt+1 = θt − η · ∇θJ(θ; x (i :i+K); y (i :i+K))

2. This method reduces the variance of the parameter updates, which can lead to more

stable convergence and helps to improve the optimization speed.

3. It can make use of highly optimized matrix optimizations common to state-of-the-art deep

learning libraries that make computing the gradient (mini-batch is very efficient).

4. Common mini-batch sizes range between 50 and 256, but can vary for different

applications.
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Mini-batch gradient descent (Challenges)

Mini-batch gradient descent does not guarantee good convergence and offers a few challenges

that need to be addressed.

1. Choosing a proper learning rate can be difficult.

2. Choosing the parameters (schedules and thresholds) of learning rate schedules is difficult.

3. Are we using the same learning rate for all parameters?

4. How to avoid from getting trapped in suboptimal local minima.

8/67



Momentum

1. Momentum is a method that helps accelerate GD in the relevant direction and dampens

oscillations (Qian 1999).

2. Its concept is derived from the mechanics of physics, which simulates the inertia of objects.

3. The idea of applying momentum is to preserve the influence of the previous update

direction on the next iteration to a certain degree.

4. It does this by adding a fraction γ of the update vector of the past time step to the

current update vector:

vt = γvt−1 + η∇θJ(θ)

θt+1 = θt − vt

5. In GD, the speed update is −η∇θJ(θ) each time.

6. Using the momentum algorithm, the amount of the update v is not just the amount of

GD calculated by −η∇θJ(θ). It also takes into account the friction factor, which is

represented as the previous update vt−1 multiplied by a momentum factor γ.
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Nesterov accelerated gradient

1. Nesterov Accelerated Gradient Descent (NAG) makes further improvement over the

momentum method (Nesterov 1983).

2. A ball that rolls down a hill, blindly following the slope, is highly unsatisfactory.

3. We would like to have a smarter ball, a ball that has a notion of where it is going so that

it knows to slow down before the hill slopes up again.

4. NAG is a way to give our momentum term this kind of prescience.

vt = γvt−1 + η∇θJ(θt − γvt−1)

θt+1 = θt − vt

5. Value of θt − γvt−1 gives an approximation of the next position of the parameters.

6. The improvement of NAG over momentum is reflected in updating the gradient of the

future position instead of the current position.

7. NAG improves convergence rate

8. It is hard to determine the learning rate and usually it oscillates in the near of the optimal

point. The learning rate is updated using

ηt =
η0

1 + d × t
d ∈ [0, 1]
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Adagrad

1. Manually regulated learning rate greatly influences the effect of the SGD method.

2. It is a tricky problem for setting an appropriate value of the learning rate.

3. AdaGrad adjusts the learning rate dynamically based on the historical gradient in some

previous iterations (Duchi, Hazan, and Singer 2011).
I Smaller updates for parameters associated with frequently occurring features.
I Larger updates for parameters associated with infrequent features.

4. This algorithm well-suited for dealing with sparse data.

5. Adagrad uses a different learning rate for every parameter θi at every time step t.

6. Adagrad updates the parameters in the following manner.

θt+1,i = θt,i −
η√

Gt,ii + ε
· ∇θJ(θt,i )

where Gt ∈ Rd×d is a diagonal matrix where each diagonal element (i , i) is the sum of the

squares of the gradients w.r.t. θi up to time t. ε is a smoothing term that avoids division

by zero.

7. Without the square root operation, the algorithm performs much worse.

8. AdaGrad is good when the objective is convex.

9. Adadelta is an extension of Adagrad that seeks to reduce its aggressive, monotonically

decreasing learning rate (using a window) (Zeiler 2012).
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Adam

1. Adaptive moment estimation (Adam) computes adaptive learning rates for each

parameter (Kingma and J. Ba 2015).

2. Adam behaves like a heavy ball with friction, which thus prefers flat minima in the error

surface.

3. Adam computes the decaying averages of past and past squared gradients mt and vt ,

respectively.

mt = β1mt−1 + (1− β1)∇θJ(θt)

vt = β2vt−1 + (1− β2)(∇θJ(θt))2

where mt and vt are estimates of the first and the second moments of the gradients,

respectively,
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Adam (cont.)

1. Initially mt and vt are set to 0.

2. mt and vt are biased towards zero, and especially when the decay rates are small (i.e. β1

and β2 are close to 1).

3. Bias-corrected mt and vt are

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

Then Adam updates parameters as (same as Adadelta and RMSprop)

θt+1 = θt −
η√

v̂t + ε
m̂t
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AMSGrad

1. Adaptive learning rate methods have become the norm in training neural networks but in

some applications they fail to converge to an optimal solution and are outperformed by

GD with momentum.

2. One reason is exponential moving average of past squared gradients.

3. Another reason is some mini-batches provide large and informative gradients but occur

rarely.

4. AMSGrad that uses the maximum of past squared gradients vt rather than the exponential

average to update the parameters (Reddi, Kale, and Kumar 2018).

5. In AMSGrad, vt is defined the same as in Adam.

vt = β2vt−1 + (1− β2)(∇θJ(θt))2

6. Instead of using vt directly, we now employ the previous vt−1 if it is larger than the current

one:

v̂t = max(v̂t−1, vt)
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AMSGrad (cont.)

1. This way, AMSGrad results in a non-increasing step size, which avoids the problems

suffered by Adam.

mt = β1mt−1 + (1− β1)∇θJ(θt)

v̂t = max(v̂t−1, vt)

θt+1 = θt −
η√

v̂t + ε
mt

2. The authors observe improved performance compared to Adam on small datasets and on

CIFAR-10.

3. Other experiments show similar or worse performance than Adam.
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Other optimization algorithms

1. RMSprop and Adadelta have both been developed independently around the same time

stemming from the need to resolve Adagrad’s radically diminishing learning rates.

2. AdaMax changed parameter vt of Adam and generalized it to Lp norm(Kingma and J. Ba

2015).

3. Nadam (Nesterov-accelerated Adaptive Moment Estimation)(Dozat 2016) combines Adam

and NAG.

4. For more information please read this paper(Ruder 2016; Sun et al. 2019).

5. Which optimizer to use?
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Model selection

1. Considering regression problem, in which the training set is

S = {(x1, t1), (x2, t2), . . . , (xm, tm)}, tk ∈ R.

where

tk = f (xk) + ε ∀k = 1, 2, . . . ,m

f (xk) ∈ R is the unknown function and ε is the random noise.

2. The goal is to approximate the f (x) by a function g(x).

3. The empirical error on the training set S is measured using cost function

J(g) =
1

2

m∑

i=1

(ti − g(xi ))2

4. The aim is to find g(.) that minimizes the empirical error.

5. We assume that a hypothesis class for g(.) with a small set of parameters.

6. Assume that g(x) is linear

g(x) = w0 + w1x1 + w2x2 + . . .+ wDxD
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Model selection

1. Define the following vectors and Matrix

I Data matrix

X =


1 x11 x12 . . . x1D

1 x21 x22 . . . x2D

...
...

1 xN1 xN2 . . . xDD


I The k th input vector: Xk = (1, xk1, xk2, . . . , xkD)T

I The weight vector: W = (w0,w1,w2, . . . ,wD)T

I The target vector: t = (t1, t2, t3, . . . , tN)T

2. The empirical error equals to: J(g) = 1
2

∑m
k=1

(
tk −W>Xk

)2
.

3. The gradient of J(g) equals to ∇W J(g) =
∑m

k=1 tkX
>
k −W>

∑m
k=1 XkX

>
k = 0

4. Solving for W , we obtain W ∗ =
(
X>X

)−1
X>t
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Model selection

1. If the linear model is too simple, the model can be a polynomial (a more complex

hypothesis set)

g(x) = w0 + w1x + w2x
2 + . . .+ wMxM .

2. M is the order of the polynomial.

3. Choosing the right value of M is called model selection.

4. For M = 1, we have a too general model

5. For M = 9, we have a too specific model
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Training vs Testing error

1. Given a new data point x , we would like to understand the expected prediction error

E
[
(t − g(x))2

]

2. Assume that x generated by the same process as the training set. We decompose

E
[
(t − g(x))2

]
into bias, variance, and noise.

E
[
(t − g(x))2

]
= Bias2(g(x)) + Var(g(x)) + σ2

3. The first term describes the average error of g(x).

4. The second term quantifies how much g(x) deviates from one training set S to another

one. This depends on both the estimator and the training set.This term is consequence of

over-fitting.

5. The last term is the variance of the added noise. This error cannot be removed no matter

what estimator we use. Note that the variance of the noise can not be minimized.
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Training vs Testing error

1. In regression, as M increases, a small changes in the data sets causes a greater change in

the fitted function; thus variance increases.

2. The goal is to minimize the expected loss. There is a trade-off between bias and variance.

I Very flexible models have low bias and high variance.
I Relative rigid models have high bias and low variance.

3. The model with optimal predictive capability is one that leads to the best balance between

bias and variance.

4. If there is bias, there is under-fitting. why?

5. If there is variance, there is over-fitting. why?
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Bias-Variance trade-off

1. Consider bias-variance of a model.

Figure 1: Bias Variance Decomposition

2.1 L2 Regularization

⌦(✓) =
1

2
||w||22 =

1

2
(w2

1 + w2
2 + ... + w2

n)

• constant terms are not penalized because it is multiplied by a con-
stant(i.e. 1). Thus, regularizing bias does not reduce variance by
much and instead can increase bias a lot (underfitting)

• What happens mathematically?

Denoting H by Hessian Matrix of J calculated at empirical optimal
solution of J i.e. w⇤,

rwJ̃(w; X, y) = rwJ(w; X, y) + ↵rw⌦(w)

rwJ̃(w; X, y) = H(w � w⇤) + ↵w

↵ = (H + I↵)�1Hw⇤

Eigen decomposition of H yields H = Q⇤QT Thus,

QT w = (⇤ + I↵)�1⇤QT w⇤

Looking in the same basis we find that original solution is shrunk by a factor of
�i

�i+↵

– �i << ↵ implies high shrinkage i.e. gradient change is small so
the parameters are shrunk to small values

2

2. The problem is how to balance between bias and variance.

3. Some solutions

I Trial and error using validation dataset
I Regularization

I
...
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Regularization



Regularization

1. Regularization is any modification we make to a learning algorithm that is intended to

reduce its generalization error but not its training error.

2. In this manner, regularization is used to improve the generalization of the model. Other

intuitions:

I Regularization tends to increase the estimator bias while reducing the estimator variance.
I Regularization can be seen as a way to prevent overfitting.
I A common problem is in picking the model size and complexity. It may be appropriate to

simply choose a large model that is regularized appropriately.

3. Regularization can also be studied from view point of statistical learning theory
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Types of regularization

1. Regularizations may take on many different types of forms. The following list is not

exhaustive, but includes regularizations one may consider.

2. It may be appropriate to add a soft constraint on the parameter values in the objective

function.

I To account for prior knowledge (e.g., that the parameters have a bias).
I To prefer simpler model classes that promote generalization.
I To make an under-determined problem determined. (e.g., least squares with indeterminate

XTX .)

3. Dataset augmentation

4. Ensemble methods (i.e., essentially combining the output of several models).

5. Some training algorithms (e.g., stopping training early, dropout) can be seen as a type of

regularization.
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Stopping early

1. A straightforward (and popular) way to regularize is to constantly evaluate the training

and validation loss on each training iteration, and return the model with the lowest

validation error.

I Requires caching the lowest validation error model.
I Training will stop when after a pre-specified number of iterations, no model has decreased

the validation error.
I The number of training steps can be thought of as another hyper-parameter.
I Validation set error can be evaluated in parallel to training.
I It doesn’t require changing the model or cost function.
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Regularization via parameter norm penalties

1. A common (and simple to implement) type of regularization is to modify the cost function

with a parameter norm penalty. This penalty is typically denoted as Ω(θ) and results in a

new cost function of the form:

J̄(θ) = J(θ) + αΩ(θ)

with α ≥ 0

I α is a hyper-parameter that weights the contribution of the norm penalty.
I When α = 0, there is no regularization.
I When α→∞, the cost function is irrelevant and the model will set the parameters to

minimize Ω(θ).
I The choice of α can strongly affect generalization performance.
I When regularizing parameters, we typically do not regularize biases, since they do not

introduce substantial variance to the estimator.
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L2 regularization

1. A common form of parameter norm regularization is to penalize the size of the weights,

which is also called ridge regression or Tikhonov regularization. Let θ is union of w and

bias.

Ω(θ) =
1

2
w>w

2. To prevent Ω(θ) from getting large, L2 regularization will cause the weights w to have

small norm.

3. The new cost function is

J̄(θ) = J(θ) +
α

2
w>w

4. Its gradient equals to

∇w J̄(θ) = ∇wJ(θ) + αw

5. Parameters are updated using

w (t+1) = (1− ηα)w (t) − η∇wJ(θ)
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L2 regularization

1. In linear regression, the least squares solution w = (X>X )−1X>y becomes:

w = (X>X + αI )−1X>y

2. In linear regression, as M increases, the magnitude of the coefficients typically gets larger.

3. The weights are updated using error-back-propagation algorithm when the input sample x

is fed to the network.
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Extensions of L2 regularization

1. Other related forms of L2 regularization include:

1.1 Instead of a soft constraint that w be small, one may have prior knowledge that w is close

to some value b. Then, the regularizer may take the form:

Ω(θ) = ‖w − b‖2.

1.2 One may have prior knowledge that two parameters, w (1) and w (2), must be close to each

other. Then, the regularizer may take the form:

Ω(θ) = ‖w (1) − w (2)‖2.
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L1 regularization

1. L1 regularization defines the parameter norm penalty as

Ω(θ) = ‖w‖1

2. This penalty also causes the weights to be small.

3. The new cost function is

J̄(θ) = J(θ) + α ‖w‖1

4. Its gradient equals to

∇w J̄(θ) = ∇wJ(θ) + αsign(w)

5. Empirically, this typically results in sparse solutions where wi = 0 for several i .

6. This may be used for feature selection, where features corresponding to zero weights may

be discarded.
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Regularization for linear regression

I L2-Regularization has Closed form solution and can be solved in polynomial time

J(g) =
1

2

m∑

i=1

(ti − g(xi ))2 +
λ

2
‖W ‖2

.

I L1-Regularization can be approximated in polynomial time

J(g) =
1

2

m∑

i=1

(ti − g(xi ))2 + λ ‖W ‖ .

I L0-Regularization is NP-complete optimization problem

J(g) =
1

2

m∑

i=1

(ti − g(xi ))2 + λ

M−1∑

j=1

δ(wj 6= 0).

The L0-norm represents the optimal subset of features needed by a Regression model.
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Regularization for linear regression

I A more general regularizer is sometimes used, for which the regularized error takes the form

J(g) =
1

2

m∑

i=1

(ti − g(xi ))2 +
λ

2

M−1∑

j=1

|wj |q.

I When q = 2, it is called Ridge regularizer

I When q = l , it is called Lasso regularizer
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Regularization and prior knowledge

I Assume that w has distribution of

P(w) = N (0, σ2ID).

I Posterior density of w given set S results in L2-regularization.

I Assume that w has isotropic Laplace distribution. Posterior density of w given set S

results in L1-regularization.

I What about other types of regularizes?
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Dataset augmentation

1. Can the more training data prevent the model from over-fitting.

2. For a given model complexity, the over-fitting problem become less severe as the size of

the data set increases.

3. Best way to make a ML model to generalize better is to train it on more data

4. In practice amount of data is limited

5. Get around the problem by creating synthesized data

6. For some ML tasks it is straightforward to synthesize data
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Dataset augmentation for classification

1. Data augmentation is easiest for classification

I Classifier takes high-dimensional input x and summarizes it with a single category identity y
I Main task of classifier is to be invariant to a wide variety of transformations

2. Generate new samples (x , y) just by transforming inputs

3. Approach not easily generalized to other problems

Example (Dataset augmentation for object recognition)

I Data set augmentation is very effective for the classification problem of object recognition

I Images are high-dimensional and include a variety of variations, may easily simulated

I Translating the images a few pixels can greatly improve performance

I Rotating and scaling are also effective

I Considering flipping between b and d.
I Considering rotation between 6 and 9.
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Dataset augmentation for Image processing

Scaling Rotation Flipping

Adding Salt and Pepper noise Lighting condition
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Dataset augmentation for Image processing

Perspective transform

Translation
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Dataset augmentation for Image processing (results)

The result of dataset augmentation on Caltech101 dataset (Taylor and Nitschke 2018).

Top-1 Accuracy Top-5 Accuracy
Baseline 48.13 ± 0.42% 64.50 ± 0.65%
Flipping 49.73 ± 1.13% 67.36 ± 1.38%
Rotating 50.80 ± 0.63% 69.41 ± 0.48%
Cropping 61.95 ± 1.01% 79.10 ± 0.80%

Color Jittering 49.57 ± 0.53% 67.18 ± 0.42%
Edge Enhancement 49.29 ± 1.16% 66.49 ± 0.84%

Fancy PCA 49.41 ± 0.84% 67.54 ± 1.01%

Table 3: CNN training results for each DA method.

all pixel values from [0, 255] → [0, 1].
Every CNN was trained using 30 epochs. This value was

determined by exploratory experiments that evaluated vali-
dation and test scores every epoch. All implementation was
completed in Java 8 using DL4j6 with the experiments being
conducted on a NVIDIA Tesla K80 GPU using CUDA. All
source code and experiment details can be found online7.

5 Results and Discussion
Table 3 presents experimental results, where Top-1 and Top-5
scores were evaluated as percentages as done in the Imagenet
competition [Russakovsky et al., 2016], though we report ac-
curacies rather than error rates. The CNN’s output is a multi-
nomial distribution over all classes:

∑
pclass = 1

The Top-1 score is the number of times the highest proba-
bility is associated with the correct target over all testing im-
ages. The Top-5 score is the number of times the correct label
is contained within the 5 highest probabilities. As the CNN’s
accuracy was evaluated using cross-validation a standard de-
viation was associated with every result, thus indicating how
variable the result is over different testing folds. In table 3,
Top-1 and Top-5 scores in the geometric and photometric DA
category are represented in bold.

Results indicate that in all cases of applying DA, CNN
classification task performance increased. Notably, the ge-
ometric augmentation schemes outperformed the photomet-
ric schemes in terms of Top-1 and Top-5 scores. The excep-
tion was the flipping scheme Top-5 score being inferior to the
fancy PCA Top-5 score. For all schemes, a standard deviation
of 0.5% ∼ 1% indicated similar results over all folds with the
cross-validation.

The cropping scheme yielded the greatest improvement
in Top-1 score with an improvement of 13.82% in classi-
fication accuracy. Results also indicated that Top-5 classi-
fication yielded a similar task improvement which corrobo-
rated related work [Chatfield et al., 2014; Mash et al., 2016].
We theorize that the cropping scheme outperforms the other
methods as it generates more sample images than the other
augmentation schemes. This increase in training data reduces
the likelihood of over-fitting, improving generalization and
thus increasing overall classification task performance. Also,

6deeplearning4j.org
7github.com/webstorms/AugmentedDatasets

cropping represents specific translations allowing the CNN
exposure to a greater receptive view of training images which
the other augmentation schemes do not take advantage of
[Chatfield et al., 2014].

However, the photometric augmentation methods yielded
modest improvements in performance compared to the ge-
ometric schemes, indicating the CNN yields increased task
performance when trained on images containing invariance
in geometry rather than lighting and color. The most appro-
priate photometric schemes were found to be color jittering
with a top-1 classification improvement of 1.44% and fancy
PCA which improved top-5 classification by 3.04%. Fancy
PCA increased top-1 performance by 1.28% which supported
the findings of previous work [Krizhevsky et al., 2012].

We also hypothesize that color jittering outperformed the
other photometric schemes in top-1 classification as this
scheme generated augmented images containing more varia-
tion compared to the other methods (figure 2). Also, edge en-
hancement augmentation did not yield comparable task per-
formance, likely due to the overlay of the transformed image
onto the source image (as described in section 2.2) did not
enhance the contours enough but rather lightened the entire
image. However, the exact mechanisms responsible for the
variability of CNN classification task performance given geo-
metric versus photometric augmentation methods for coarse-
grained data-sets remains the topic of ongoing research.

6 Conclusion
This study’s results demonstrate that an effective method of
increasing CNN classification task performance is to make
use of Data Augmentation (DA). Specifically, having evalu-
ated a range of DA schemes using a relatively simple CNN
architecture we were able to demonstrate that geometric aug-
mentation methods outperform photometric methods when
training on a coarse-grained data-set (that is, the Caltech101
data-set). The greatest task performance improvement was
yielded by specific translations generated by the cropping
method with a Top-1 score increase of 13.82%. These results
indicate the importance of augmenting coarse-grained train-
ing data-sets using transformations that alter the geometry of
the images rather than just lighting and color.

Future work will experiment with different coarse-grained
data-sets to establish whether results obtained using the Cal-
tech101 are transferable to other data-sets. Additionally dif-
ferent CNN architectures as well as other DA methods and
combinations of DA methods will be investigated in compre-
hensive studies to ascertain the impact of applying a broad
range of generic DA methods on coarse-grained data-sets.
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Top-1 score is the number of times the highest probability is associated with the correct target

over all testing images.

Top-5 score is the number of times the correct label is contained within the 5 highest

probabilities.
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Noise injection

1. Noise injection to the input can be seen as a form of data augmentation.

2. Neural networks are robust to noise.

3. The robustness of neural networks can be improved by adding noise to inputs and outputs

of hidden units.

4. Caution for using noise

Multiple optimal solutions?

Class +1

Class -1

𝑤2 𝑤3𝑤1

Prefer 𝑤2 (higher confidence)

Add noise to the input

Class +1

Class -1

𝑤2

Prefer 𝑤2 (higher confidence)

Caution: not too much noise

Class +1

Class -1

𝑤2

Prefer 𝑤2 (higher confidence)

Too much noise leads 
to data points cross 

the boundary
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Dataset augmentation for text processing

1. Easy data augmentation techniques (EDA) consists of four simple but powerful

operations (Wei and Zou 2019).

Synonym replacement (SR) Randomly choose n words from the sentence that are not

stop words. Replace each of these words with one of its synonyms chosen at random.

Random insertion (RI) Find a random synonym of a random word in the sentence that

is not a stop word. Insert that synonym into a random position in the sentence. Do this

n times.

Random swap (RS) Randomly choose two words in the sentence and swap their

positions. Do this n times.

Random deletion (RD) For each word in the sentence, randomly remove it with

probability p.

Sentences generated using EDA rules
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Abstract

We present EDA: easy data augmentation
techniques for boosting performance on text
classification tasks. EDA consists of four sim-
ple but powerful operations: synonym replace-
ment, random insertion, random swap, and
random deletion. On five text classification
tasks, we show that EDA improves perfor-
mance for both convolutional and recurrent
neural networks. EDA demonstrates particu-
larly strong results for smaller datasets; on av-
erage, across five datasets, training with EDA
while using only 50% of the available train-
ing set achieved the same accuracy as normal
training with all available data. We also per-
formed extensive ablation studies and suggest
parameters for practical use.

1 Introduction

Text classification is a fundamental task in natu-
ral language processing (NLP). Machine learning
and deep learning have achieved high accuracy on
tasks ranging from sentiment analysis (Tang et al.,
2015) to topic classification (Tong and Koller,
2002), but high performance often depends on the
size and quality of training data, which is often te-
dious to collect. Automatic data augmentation is
commonly used in computer vision (Simard et al.,
1998; Szegedy et al., 2014; Krizhevsky et al.,
2017) and speech (Cui et al., 2015; Ko et al., 2015)
and can help train more robust models, particu-
larly when using smaller datasets. However, be-
cause it is challenging to come up with generalized
rules for language transformation, universal data
augmentation techniques in NLP have not been
thoroughly explored.

Previous work has proposed some techniques
for data augmentation in NLP. One popular study
generated new data by translating sentences into
French and back into English (Yu et al., 2018).
Other work has used data noising as smoothing

Operation Sentence
None A sad, superior human comedy played out

on the back roads of life.
SR A lamentable, superior human comedy

played out on the backward road of life.
RI A sad, superior human comedy played out

on funniness the back roads of life.
RS A sad, superior human comedy played out

on roads back the of life.
RD A sad, superior human out on the roads of

life.

Table 1: Sentences generated using EDA. SR: synonym
replacement. RI: random insertion. RS: random swap.
RD: random deletion.

(Xie et al., 2017) and predictive language models
for synonym replacement (Kobayashi, 2018). Al-
though these techniques are valid, they are not of-
ten used in practice because they have a high cost
of implementation relative to performance gain.

In this paper, we present a simple set of univer-
sal data augmentation techniques for NLP called
EDA (easy data augmentation). To the best of our
knowledge, we are the first to comprehensively
explore text editing techniques for data augmen-
tation. We systematically evaluate EDA on five
benchmark classification tasks, showing that EDA
provides substantial improvements on all five tasks
and is particularly helpful for smaller datasets.
Code is publicly available at http://github.
com/jasonwei20/eda_nlp.

2 EDA

Frustrated by the measly performance of text clas-
sifiers trained on small datasets, we tested a num-
ber of augmentation operations loosely inspired by
those used in computer vision and found that they
helped train more robust models. Here, we present
the full details of EDA. For a given sentence in the
training set, we randomly choose and perform one
of the following operations:

Average performance on 5 datasets w/wo EDA.
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Dataset augmentation for text processing

1. Unsupervised data augmentation techniques (UDA) translating an existing example x in

language A into another language B and then translating it back into A to obtain an

augmented example x̂ (Xie et al. 2020).

• Targeted inductive biases: Different tasks require different inductive biases. Data augmentation
operations that work well in supervised training essentially provides the missing inductive biases.

2.3 Augmentation Strategies for Different Tasks

We now detail the augmentation methods, tailored for different tasks, that we use in this work.

RandAugment for Image Classification. We use a data augmentation method called RandAug-
ment [15], which is inspired by AutoAugment [11]. AutoAugment uses a search method to combine
all image processing transformations in the Python Image Library (PIL) to find a good augmentation
strategy. In RandAugment, we do not use search, but instead uniformly sample from the same set
of augmentation transformations in PIL. In other words, RandAugment is simpler and requires no
labeled data as there is no need to search for optimal policies.

Back-translation for Text Classification. When used as an augmentation method, back-
translation [16, 17] refers to the procedure of translating an existing example x in language A
into another language B and then translating it back into A to obtain an augmented example x̂. As
observed by [12], back-translation can generate diverse paraphrases while preserving the semantics
of the original sentences, leading to significant performance improvements in question answering. In
our case, we use back-translation to paraphrase the training data of our text classification tasks.2

We find that the diversity of the paraphrases is important. Hence, we employ random sampling with a
tunable temperature instead of beam search for the generation. As shown in Figure 2, the paraphrases
generated by back-translation sentence are diverse and have similar semantic meanings. More
specifically, we use WMT’14 English-French translation models (in both directions) to perform back-
translation on each sentence. To facilitate future research, we have open-sourced our back-translation
system together with the translation checkpoints.

Back-translationGiven the low budget and 
production limitations, this movie 
is very good.

Since it was highly limited in terms of 
budget, and the production restrictions, the 
film was cheerful.
There are few budget items and production 
limitations to make this film a really good 
one.
Due to the small dollar amount and 
production limitations the ouest film is very 
beautiful.

RandAugment

Figure 2: Augmented examples using back-translation and RandAugment.

Word replacing with TF-IDF for Text Classification. While back-translation is good at maintaining
the global semantics of a sentence, there is little control over which words will be retained. This
requirement is important for topic classification tasks, such as DBPedia, in which some keywords are
more informative than other words in determining the topic. We, therefore, propose an augmentation
method that replaces uninformative words with low TF-IDF scores while keeping those with high
TF-IDF values. We refer readers to Appendix A.2 for a detailed description.

2.4 Additional Training Techniques

In this section, we present additional techniques targeting at some commonly encountered problems.

Confidence-based masking. We find it to be helpful to mask out examples that the current model is
not confident about. Specifically, in each minibatch, the consistency loss term is computed only on
examples whose highest probability among classification categories is greater than a threshold �. We
set the threshold � to a high value. Specifically, � is set to 0.8 for CIFAR-10 and SVHN and 0.5 for
ImageNet.

2We also note that while translation uses a labeled dataset, the translation task itself is quite distinctive from
a text classification task and does not make use of any text classification label. In addition, back-translation is a
general data augmentation method that can be applied to many tasks with the same model checkpoints.

4
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Dataset augmentation

1. For more data augmentation techniques, please read the following papers.

I Image data(Shorten and Khoshgoftaar 2019):

https://link.springer.com/article/10.1186/s40537-019-0197-0.
I Time series data(Wen et al. 2020).
I EEG signals(Lashgari, Lianga, and Maoz 2020).
I Text data(Ratner et al. 2017; Sahin and Steedman 2018; Wei and Zou 2019).

2. Data augmentation instead of explicit regularization(Hernández-Garćıa and König 2018).
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Noise robustness



Adding noise is equivalent to weight decay

1. Suppose we add noise to input: x + ε

2. Suppose the hypothesis is h(x) = wT x , noise is ε ∼ N (0, λI )

3. Before adding noise, the loss is

J(θ) = Ex,y (f (x)− y)2

4. After adding noise, the loss is

J(θ) = Ex,y ,ε(f (x + ε)− y)2

5. Simplifying the above equation yields to

J(θ) = Ex,y ,ε(f (x)− y)2 + λ‖w‖2

6. This is equivalent to weight decay (L2 regularization)
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Adding noise to labels

1. Many datasets has mistakes in label y .

2. In this case maximizing − log p(y |x) is harmful.

3. We can assume that for small constant ε, the training label is correct or vise versa.

4. Extending the above case to k output values is label smoothing (Müller, Kornblith, and

Hinton 2019).

5. For more information, please read (Song et al. 2020).
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Adding noise to weights

1. This technique primarily used with RNNs

2. This can be interpreted as a stochastic implementation of Bayesian inference over the

weights

3. Adding noise to weights is a practical, stochastic way to reflect this uncertainty

4. Noise applied to weights is equivalent to traditional regularization, encouraging stability.

45/67



Bagging & Dropout



Bagging

1. It is short for Bootstrap Aggregating

2. It is a technique for reducing generalization error by combining several models

Idea is to train several models separately, then have all the models vote on the output for

test examples

3. This strategy is called model averaging

4. Techniques employing this strategy are known as ensemble methods.

5. Model averaging works because different models will not make the same mistake
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Bagging

Consider the set of k regression models

1. Each model i makes error εi on each example

2. Errors drawn from a zero-mean multivariate normal with variance E[ε2
i ] = v and

covariance E[εiεj ] = c

3. Error of average prediction of all ensemble models: 1
k

∑
i εi

4. Expected squared error of ensemble prediction is

E

[
1

k

∑

i

εi

]2

=
1

k
v +

k − 1

k
c

5. If errors are perfectly correlated, c = v , and mean squared error reduces to v , so model

averaging does not help.

6. If errors are perfectly uncorrelated and c = 0, expected squared error of ensemble is only v
k

and Ensemble error decreases linearly with ensemble size
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Dropout

1. Bagging is a method of averaging over several models to improve generalization

2. How do you apply the bagging to neural networks?

3. Impractical to train many neural networks since it is expensive in time and memory

4. Dropout makes it practical to apply bagging to very many large neural networks

5. It is a method of bagging applied to neural networks

6. Dropout is an inexpensive but powerful method of regularizing a broad family of models

48/67



Dropout

1. Dropout trains an ensemble of all subnetworks

2. Sub-networks formed by removing non-output units from an underlying base network

3. We can effectively remove units by multiplying its output value by zero

Deep  Learning                         Srihari 

Dropout Neural Net 
•  A simple way to prevent neural net overfitting 

8 

(a) A standard neural net with 
two hidden layers 

(b) A thinned net produced by  
applying dropout, crossed units  
have been dropped 

Drop hidden and 
visible units from net,  
i.e., temporarily remove 
it from the network with  
all input/output connections. 
Choice of units to drop is 
random, determined by a 
probability p, chosen by a 
validation set, or equal to 0.5 
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Dropout as bagging

1. In bagging we define k different models, construct k different data sets by sampling from

the dataset with replacement, and train model i on dataset i

2. Dropout aims to approximate this process, but with an exponentially large number of

neural networks

D
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Mask for dropout training

1. To train with dropout we use mini-batch based learning algorithm that takes small steps

such as SGD

2. At each step randomly sample a binary mask

3. Probability of including a unit is a hyper-parameter:

0.5 for hidden units and 0.8 for input units

4. We run forward and backward propagation as usual
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Dropout prediction

1. Each sub-model defines mask vector µ defines a probability distribution p(y |x , µ)

2. Dropout prediction is ∑

µ

p(y |x , µ)

3. It is intractable to evaluate due to an exponential number of terms

4. We can approximate inference using sampling

5. By averaging together the output from many masks

6. 10-20 masks are sufficient for good performance

7. Even better approach, at the cost of a single forward propagation
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Weight Initialization i

1. Set all the initial weights to zero

I Derivative with respect to loss function is the same for every w , for the same input pattern.

I Weights have the same values in the subsequent iteration, for the same input pattern.

I This makes the hidden units symmetric and continues for all the n iterations you run.

2. Set all the initial weights to small random numbers following standard normal distribution.

This leads the following issues

I Vanishing gradients: For any activation function, | ∂J
∂w
| will get smaller and smaller as

backpropagate error in layers.

I Exploding gradients: For any activation function, | ∂J
∂w
| will get larger and larger as

backpropagate error in layers.

3. Sparse initialization. Set all the initial weights to zero and randomly connect each neuron

to some of its inputs.

4. Set biases to zero.
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Weight Initialization

1. Variance of neuron’s output grows with the number of its inputs, n. One solution is to

normalize the variance to 1, by scaling the weights by
√
n. Xavier weight initialization

initializes weights as

w ∼ U

(
− 1√

n
,

1√
n

)

2. Normalized Xavier weight initialization initializes weights as

w ∼ U

(
−
√

6√
n + m

,

√
6√

n + m

)

m is the number of outputs from the layer (the number of nodes in the current layer).

3. In practice: Use ReLU activation function and set weights to (He et al. 2015).

w ∼ N
(

0,

√
2

n

)
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Normalization methods



Normalization methods

1. Normalization prepares data to change features in the dataset to a common scale when

the features have different ranges.

2. There are several normalization approaches, which can be used in deep learning.

I Batch normalization
I Layer normalization
I Group normalization
I Instance normalization
I Weight normalization
I Cosine normalization

3. Advantages of using normalization

I Contribution of all features become almost the same (features with large/small ranges).
I Internal covariate shift will be reduced. Internal covariate shift is the change in the

distribution of network activations due to the change in network parameters during training.
I The loss surface becomes smoother.
I Optimization becomes faster, because weights don’t explode all over the place and is

restricted to a certain range.
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Batch normalization

1. Batch normalization normalizes activations in a network (Ioffe and Szegedy 2015).

x FC BN σ FC BN σ σ(z)

2. Batch normalization computes the mean and variance of that feature in every mini-batch.

µB =
1

K

K∑

k=1

xk σ2
B =

1

K

K∑

k=1

(xk − µB)2

3. Then, it normalizes every feature using this mean and variance (ε is for numerical stability).

x̂k =
xk − µB√
σ2
B + ε

4. But increasing the magnitude of weights may improve network performance.

ŷk = γx̂k + β = BNγ,β(xk)

γ and β are learnable parameters.
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Batch normalization

1. BN reduces internal covariate shift and accelerates the training of a deep neural network.

2. BN reduces the dependence of gradients on the scale of parameters or of their initial

values, which results in higher learning rates without the risk of divergence.

3. BN makes it possible to use saturating nonlinearities by preventing the network from

getting stuck in the saturated modes.

4. BN reduces the common problem of vanishing gradients.

5. In training phase, we normalize the samples to zero means and unit variance.

6. What happens in the testing phase?
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Layer normalization (LN)

1. In layer normalization, mean and variance are calculated for each individual sample across

all channels and both spatial dimensions. and is very useful for RNN (L. J. Ba, Kiros, and

Hinton 2016).

2. LN computes the mean and variance of that feature in every layer.

µn =
1

CHW

C∑

i=1

H∑

j=1

W∑

k=1

aijk

σ2
n =

√√√√ 1

CHW

C∑

i=1

H∑

j=1

W∑

k=1

(aijk − µn)
2

3. Then, it normalizes every feature using this mean and variance (ε is for numerical

stability.).

âk =
ak − µk√
σk
n + ε

4. But increasing the magnitude of weights may improve network performance.

ŷk = γâk + β = LNγ,β(ak)

γ and β are learnable parameters.
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Group normalization (GN)

1. GN divides channels into groups and then computes group statistics over the group (Wu

and He 2020).

2. GN computes the mean and variance of that feature in every group G .

µg =
1

|G |
∑

k∈G
ak

σg =

√
1

|G |
∑

k∈G
(ak − µg )

2

3. Then, it normalizes every feature using this mean and variance (ε is for numerical

stability.).

âk =
ak − µg

√
σ2,g + ε

4. But increasing the magnitude of weights may improve network performance.

ŷk = γâk + β = GNγ,β(ak)

γ and β are learnable parameters. 59/67



Instance normalization

1. IN normalizes each channel of each batch’s image independently (Ulyanov, Vedaldi, and

Lempitsky 2016).

2. For example, IN normalization is done across the width and height of a single feature map

of a single example.

3. The goal is to normalize the contrast of the content image.
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Weight normalization (WN) & Cosine normalization (CN)

1. In WN, the weight vectors is expressed as (Salimans and Kingma 2016).

W =
g

‖V ‖V

g and V are learnable scalar and a learnable matrix, respectively.

2. CN normalizes both the weights and the input by replacing the classic dot product by a

cosine similarity:

y = σ

( 〈X ,W 〉
‖W ‖ × ‖X‖

)

3. For more information, please read (Huang et al. 2020).
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Other approaches for increasing generalization

1. Multi-task learning

2. Semi-supervised learning

3. other ensemble methods such as boosting?
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Reading



Readings

1. Chapter 7 of Deep Learning Book2

2Ian Goodfellow, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. MIT Press.
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