
Modern Information Retrieval

Vector space model1

Hamid Beigy

Sharif university of technology

October 30, 2022

1Some slides have been adapted from slides of Manning, Yannakoudakis, and Schütze.

Table of contents

1. Introduction

2. Parametric and zone indexes

3. Term weighting

4. Vector space model

5. Variant tf–idf functions

6. Conclusion

7. References

1/24

Introduction

Introduction

1. Boolean model: all documents matching the query are retrieved

2. The matching is binary: yes or no

3. In extreme cases, the list of retrieved documents can be empty or huge

4. A ranking of the documents matching a query is needed

5. A score is computed for each pair of (query, document)

2/24

Parametric and zone indexes

Parametric index

1. Digital documents generally encode, in machine-recognizable form, certain

metadata, such author(s), title, and date of publication of a document.

2. These metadata would generally include fields, such as the creation data and

the format of the document, author and the title of the document.

3. Consider query find documents authored by William Shakespeare in 1601,

containing the phrase alas poor Yorick.

4. Query processing then consists as usual of postings intersections, except that

we may merge postings from standard inverted as well as parametric indexes.

5. There is one parametric index for each field (say, date of creation); it allows

us to select only the documents matching a date specified in the query.

3/24

Zone index

1. Parametric search

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 June 26, 2008 21:26

6.1 Parametric and zone indexes 101

Figure 6.1 Parametric search. In this example, we have a collection with fields allowing us to
select publications by zones such as Author and fields such as Language.

6.1 Parametric and zone indexes

We have thus far viewed a document as a sequence of terms. In fact, most
documents have additional structure. Digital documents generally encode,
in machine-recognizable form, certain metadata associated with each docu-metadata

ment. By metadata, we mean specific forms of data about a document, such
as its author(s), title, and date of publication. These metadata would gener-
ally include fields, such as the date of creation and the format of the docu-field

ment, as well the author and possibly the title of the document. The possible
values of a field should be thought of as finite – for instance, the set of all
dates of authorship.

Consider queries of the form “find documents authored by William Shake-
speare in 1601, containing the phrase alas poor Yorick.” Query processing then
consists as usual of postings intersections, except that we may merge post-
ings from standard inverted as well as parametric indexes. There is one para-parametric

index metric index for each field (say, date of creation); it allows us to select only
the documents matching a date specified in the query. Figure 6.1 illustrates
the user’s view of such a parametric search. Some of the fields may assume
ordered values, such as dates; in the example query above, the year 1601
is one such field value. The search engine may support querying ranges on
such ordered values; to this end, a structure like a B-tree may be used for the
field’s dictionary.

Zones are similar to fields, except the contents of a zone can be arbitraryzone

free text. Whereas a field may take on a relatively small set of values, a zone

4/24

Zone index

1. Zones are similar to fields, except the contents of a zone can be arbitrary

free text.

2. A field may take on a relatively small set of values, a zone can be thought of

as an arbitrary, unbounded amount of text.

3. We may build a separate inverted index for each zone of a document.

4. Consider query find documents with william in the title and william in the

author list and the phrase gentle rain in the body

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 June 26, 2008 21:26

102 Scoring, term weighting, and the vector space model

william.author 2 3 5 8

william.title 2 4 8 16

william.abstract 11 121 1441 1729

✲ ✲ ✲ ✲

✲ ✲ ✲ ✲

✲ ✲ ✲ ✲

Figure 6.2 Basic zone index; zones are encoded as extensions of dictionary entries.

can be thought of as an arbitrary, unbounded amount of text. For instance,
document titles and abstracts are generally treated as zones. We may build
a separate inverted index for each zone of a document, to support queries
such as “find documents with merchant in the title and william in the author
list and the phrase gentle rain in the body.” This has the effect of building an
index that looks like Figure 6.2. Whereas the dictionary for a parametric in-
dex comes from a fixed vocabulary (the set of languages, or the set of dates),
the dictionary for a zone index must structure whatever vocabulary stems
from the text of that zone.

In fact, we can reduce the size of the dictionary by encoding the zone in
which a term occurs in the postings. In Figure 6.3 for instance, we show how
occurrences of william in the title and author zones of various documents
are encoded. Such an encoding is useful when the size of the dictionary is
a concern (because we require the dictionary to fit in main memory). But
there is another important reason why the encoding of Figure 6.3 is useful:
the efficient computation of scores using a technique we call weighted zoneweighted

zone
scoring

scoring.

6.1.1 Weighted zone scoring

Thus far in Section 6.1 we have focused on retrieving documents based on
Boolean queries on fields and zones. We now turn to a second application of
zones and fields.

Given a Boolean query q and a document d, weighted zone scoring as-
signs to the pair (q , d) a score in the interval [0, 1], by computing a linear
combination of zone scores, where each zone of the document contributes a
Boolean value. More specifically, consider a set of documents, each of which

william 2.author,2.title 3.author 4.title 5.author✲ ✲ ✲ ✲

Figure 6.3 Zone index in which the zone is encoded in the postings rather than the dictionary.

5/24

Zone index

1. The dictionary for a parametric index comes from a fixed vocabulary (the set

of languages, or the set of dates), the dictionary for a zone index must

structure whatever vocabulary stems from the text of that zone.

2. We can reduce the size of the dictionary by encoding the zone in which a

term occurs in the postings.

P1: KRU/IRP

irbook CUUS232/Manning 978 0 521 86571 5 June 26, 2008 21:26

102 Scoring, term weighting, and the vector space model

william.author 2 3 5 8

william.title 2 4 8 16

william.abstract 11 121 1441 1729

✲ ✲ ✲ ✲

✲ ✲ ✲ ✲

✲ ✲ ✲ ✲

Figure 6.2 Basic zone index; zones are encoded as extensions of dictionary entries.

can be thought of as an arbitrary, unbounded amount of text. For instance,
document titles and abstracts are generally treated as zones. We may build
a separate inverted index for each zone of a document, to support queries
such as “find documents with merchant in the title and william in the author
list and the phrase gentle rain in the body.” This has the effect of building an
index that looks like Figure 6.2. Whereas the dictionary for a parametric in-
dex comes from a fixed vocabulary (the set of languages, or the set of dates),
the dictionary for a zone index must structure whatever vocabulary stems
from the text of that zone.

In fact, we can reduce the size of the dictionary by encoding the zone in
which a term occurs in the postings. In Figure 6.3 for instance, we show how
occurrences of william in the title and author zones of various documents
are encoded. Such an encoding is useful when the size of the dictionary is
a concern (because we require the dictionary to fit in main memory). But
there is another important reason why the encoding of Figure 6.3 is useful:
the efficient computation of scores using a technique we call weighted zoneweighted

zone
scoring

scoring.

6.1.1 Weighted zone scoring

Thus far in Section 6.1 we have focused on retrieving documents based on
Boolean queries on fields and zones. We now turn to a second application of
zones and fields.

Given a Boolean query q and a document d, weighted zone scoring as-
signs to the pair (q , d) a score in the interval [0, 1], by computing a linear
combination of zone scores, where each zone of the document contributes a
Boolean value. More specifically, consider a set of documents, each of which

william 2.author,2.title 3.author 4.title 5.author✲ ✲ ✲ ✲

Figure 6.3 Zone index in which the zone is encoded in the postings rather than the dictionary.3. How do you compute the score of a document for a given query?

6/24

Term weighting

Term weighting

1. Evaluation of how important a term is with respect to a document

2. First idea: the more important a term is, the more often it appears: term

frequency

tft,d =
∑
x∈d

ft(x) where ft(x) =

{
1 if x = t

0 otherwise

3. The order of terms within a doc is ignored

4. Are all words equally important ? What about stop-lists ?

7/24

Term weighting (continued)

1. Terms occurring very often in the collection are not relevant for

distinguishing among the documents

2. A relevance measure cannot only take term frequency into account

3. Idea: reducing the relevance (weight) of a term using a factor growing with

the collection frequency (the total number of occurrences of a term in the

collection).

4. Collection frequency versus document frequency ?

Term t cft dft

try 10422 8760

insurance 10440 3997

8/24

Inverse Document Frequency

1. Inverse document frequency of a term t:

idft = log
N

dft
with N = collection size

2. Rare terms have high idf , contrary to frequent terms

3. Example (Reuters collection):

Term t dft idft

car 18165 1.65

auto 6723 2.08

insurance 19241 1.62

best 25235 1.5

9/24

tf-idf weighting

1. The weight of a term is computed using both tf and idf :

w(t, d) = tft,d × idft called tf − idft,d

2. w(t, d) is:

2.1 high when t occurs many times in a small set of documents

2.2 low when t occurs fewer times in a document, or when it occurs in many

documents

2.3 very low when t occurs in almost every document

3. Score of a document with respect to a query:

score(q, d) =
∑
t∈q

w(t, d)

10/24

Vector space model

Vector space model

1. Each term t of the dictionary is considered as a dimension

2. A document d can be represented by the weight of each dictionary term:

~V (d) = (w(t1, d),w(t2, d), . . . ,w(tn, d))

3. Question: does this representation allow to compute the similarity between

documents?

4. Similarity between vectors? inner product ~V (d1). ~V (d2)

5. What about the length of a vector ? Longer documents will be represented

with longer vectors, but that does not mean they are more important

11/24

Vector normalization and similarity

1. Euclidian normalization (vector length normalization):

~v(d) =
~V (d)

‖ ~V (d)‖
where ‖ ~V (d)‖ =

√√√√ n∑
i=1

x2i

2. Similarity given by the cosine measure between normalized vectors:

sim(d1, d2) = ~v(d1). ~v(d2)

3. This similarity measure can be applied on a M × N term-document matrix,

where M is the size of the dictionary and N that of the collection:

m[t, d] = ~v(d). ~v(t)

12/24

Example (Manning et al, 07)

Dictionary ~v(d1) ~v(d2) ~v(d3)

affection 0.996 0.993 0.847

jealous 0.087 0.120 0.466

gossip 0.017 0 0.254

sim(d1, d2) = 0.999

sim(d1, d3) = 0.888

13/24

Matching queries against documents

1. Queries are represented using vectors in the same way as documents

2. In this context:

score(q, d) = ~v(q). ~v(d)

3. In the previous example, with q := jealous gossip, we obtain:

~v(q). ~v(d1) = 0.074
~v(q). ~v(d2) = 0.085
~v(q). ~v(d3) = 0.509

14/24

Retrieving documents

1. Basic idea: similarity cosines between the query vector and each document

vector, finally selection of the top K scores

2. Provided we use the tf − idft,d measure as a weight, which information do

we store in the index ?

2.1 The size of the collection divided by the document frequency, N
dft

, (stored

with the pointer to the postings list)

2.2 The term frequency tft,d (stored in each posting)

15/24

Cosine similarity
Computing the cosine score

CosineScore(q)
1 float Scores[N] = 0
2 float Length[N]
3 for each query term t
4 do calculate wt,q and fetch postings list for t
5 for each pair(d , tft,d) in postings list
6 do Scores[d]+ = wt,d × wt,q

7 Read the array Length
8 for each d
9 do Scores[d] = Scores[d]/Length[d]

10 return Top K components of Scores[]

59 / 65

16/24

Variant tf–idf functions

Sub-linear term frequency scaling

I Idea: balancing the number of occurrences of a term, using a logarithm

wt,d =

{
1 + log(tft,d) if tft,d ≥ 0

0 otherwise

I The relevance of a term is not directly proportional to its frequency

17/24

Maximum term frequency normalization

I Idea: normalizing tft,d with the maximum term frequency of the document d

tfmax(d) = maxτ∈dtfτ,d

ntft,d = a + (1− a)
tft,d

tfmax(d)

I 0 ≤ a ≤ 1 is a smoothing coefficient (generally set to 0.4)

I a allows to avoid having big changes of ntft,d while tft,d slightly changes

18/24

Limitations of maximum tf normalization

1. lack of stability with respect to the stop-list

2. what if the document contains a high-occurrence term that is not relevant

with respect to the document’s topic ? (inter versus intra-document

frequencies)

3. No distinction of the case when the most frequent term has the same

number of occurrences of others

19/24

SMART weightings

I Named after a widely used IR system whose development started at Cornell

University (US)

I Library of weightings schemes fitting the Vector Space Model (cosine

similarity)

I Based on the following weighting:

w(t, d) =
tf ′t,d × idf ′t
norm′d

I where (i) tf ′t,d , (ii) idf ′t , and (iii) norm′d are parameter of the system

20/24

SMART weightings

I Frequency weighting, discrimination and normalisation:

tf ′t,d idf ′t norm′d

b {0, 1} n 1 n 1

n tft,d t idft = log(N
dft

) c 1√
w2
1+...+w2

n

l 1 + log(tft,d) p max(0, log(N−dft
dft

) p K (cf supra)

m ntft,d

a 0.5 +
0.5×tft,d
maxt(tft,d)

• The mnemonic ddd .qqq is used (term/document/normalization).

• tf − idft,d := ntc

• doc and query can use different parameters

21/24

Conclusion

Conclusion

1. What we have seen today ?

I Term weighting using tf − idft,d
I Vector space model (cosine similarity)

I Optimizations for document ranking

2. Next lecture ?

I Other weighting schemes

22/24

References

Reading

1. Chapters 6 of Information Retrieval Book2

2Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to

Information Retrieval. New York, NY, USA: Cambridge University Press, 2008.

23/24

References

24/24

Questions?

24/24

	Introduction
	Parametric and zone indexes
	Term weighting
	Vector space model
	Variant tf–idf functions
	Conclusion
	References

