Modern Information Retrieval

Index compression¹

Hamid Beigy

Sharif university of technology

October 28, 2022

¹Some slides have been adapted from slides of Manning, Yannakoudakis, and Schütze.

Table of contents

- 1. Characterization of an index
- 2. Dictionary compression
- 3. Compressing the dictionary
- 4. Compressing the posting lists
- 5. Conclusion
- 6. References

Introduction

- 1. Dictionary and inverted index: core of IR systems
- 2. Techniques can be used to compress these data structures, with two objectives:
 - reducing the disk space needed
 - reducing the time processing, by using a cache (keeping the postings of the most frequently used terms into main memory)
- 3. Decompression can be faster than reading from disk

Table of contents

- 1. Characterization of an index
- 2. Dictionary compression
- 3. Compressing the dictionary
- 4. Compressing the posting lists
- 5. Conclusion
- 6. References

Characterization of an index

Characterization of an index

Considering the Reuters-RCV1 collection

size of	dictionary			non-posit	non-positional index			positional index		
	size	Δ	cum.	size	size Δ cum.		size	Δ	cum.	
unfiltered	484,494			109,971,179			197,879,290			
no numbers	473,723	-2%	-2%	100,680,242	-8%	-8%	179,158,204	-9%	-9%	
case folding	391,523	-17%	-19%	96,969,056	-3%	-12%	179,158,204	-0%	-9%	
30 stop words	391,493	-0%	-19%	83,390,443	-14%	-24%	121,857,825	-31%	-38%	
150 stop words	391,373	-0%	-19%	67,001,847	-30%	-39%	94,516,599	-47%	-52%	
stemming	322,383	-17%	-33%	63,812,300	-4%	-42%	94,516,599	-0%	-52%	

Statistical properties of terms

- 1. The vocabulary grows with the corpus size
- Empirical law determining the number of term types in a collection of size M (Heap's law)

$$M = kT^b$$

where T is the number of tokens, and k and b 2 parameters defined as follows:

$$b \approx 0.5 \text{ and } 30 < k < 100$$

(*k* is the growth-rate)

3. On the REUTERS corpus fo the first 1,000,020 tokens (taking k=44 and b=0.49):

$$M = 44 \times 1,000,020^{0.5} = 38,323$$

Statistical properties of terms (Heap's law)

Modeling the distribution of terms (Zipf's law)

- 1. Now we have characterized the growth of the vocabulary in collections.
- 2. We also want to know how many frequent vs. infrequent terms we should expect in a collection.
- 3. In natural language, there are a few very frequent terms and very many very rare terms.
- 4. Zipf's law: The i^{th} most frequent term has frequency cf_i proportional to 1/i.

$$\mathrm{cf}_i \propto \frac{1}{i}$$

5. cf_i is collection frequency: the number of occurrences of the term t_i in the collection.

Modeling the distribution of terms (Zipf's law)

1. Zipf's law: The i^{th} most frequent term has frequency proportional to 1/i.

$$\mathrm{cf}_i \propto \frac{1}{i}$$

- 2. So if the most frequent term (the) occurs cf_1 times, then the second most frequent term (of) has half as many occurrences $cf_2 = \frac{1}{2}cf_1$
- 3. The third most frequent term (and) has a third as many occurrences $cf_3 = \frac{1}{3}cf_1$ etc.
- 4. Equivalent: $cf_i = ci^k$ and $\log cf_i = \log c + k \log i$ (for k = -1)

Modeling the distribution of terms (Zipf's law)

Dictionary compression

Dictionary compression

- 1. The dictionary is small compared to the postings file.
- 2. But we want to keep it in memory.
- 3. Also: competition with other applications, cell phones, onboard computers, fast startup time
- 4. So compressing the dictionary is important.

Index format with fixed-width entries

term	document frequency	pointer to postings list	postings list
а	656,265	\longrightarrow	
aachen	65	\longrightarrow	
zulu	221	\longrightarrow	
40	4	4	space needed

Total space: $M \times (2 \times 20 + 4 + 4) = 400,000 \times 48 = 19.2 \text{ MB}$

Why 40 bytes per term? (Considering unicode + max. length of a term)

Without using unicode: $M \times (20 + 4 + 4) = 400,000 \times 28 = 11.2 \text{ MB}$

Remarks

- 1. The average length of a word type for REUTERS is 7.5 bytes
- 2. With fixed-length entries, a one-letter term is stored using 20 bytes!
- 3. Some very long words (such as hydrochlorofluorocarbons) cannot be handled.
- 4. How can we extend the dictionary representation to save bytes and allow for long words?

Compressing the dictionary

Dictionary as a string

Space use for dictionary-as-a-string

- 1. 4 bytes per term for frequency
- 2. 4 bytes per term for pointer to postings list
- 3. 3 bytes per pointer into string (need $\log_2 400000 \approx 22$ bits to resolve 400,000 positions)
- 4. 8 chars (on average) for term in string
- 5. Space: $400,000 \times (4 + 4 + 3 + 2 \times 8) = 10.8$ MB (compared to 19.2 MB for fixed-width)
- 6. Without using unicode: Space: $400,000 \times (4+4+3+8) = 7.6$ MB (compared to 11.2 MB for fixed-width)

Space use for block-storage

- 1. Let us consider blocks of size k
- 2. We remove k-1 pointers, but add k bytes for term length
- 3. Example: k=4, $(k-1)\times 3$ bytes saved (pointers), and 4 bytes added (term length) $\to 5$ bytes saved
- 4. Space saved: $400,000 \times (\frac{1}{4}) \times 5 = 0.5$ MB (dictionary reduced to 10.3 MB and for non-unicode (7.1MB))
- 5. Why not taking k > 4?

Search uncompressed dictionary

Average search cost: $(0+1+2+3+2+1+2+2)/8 \approx 1.6$ steps

Search compressed dictionary with blocking

Average search cost: $\big(0+1+2+3+4+1+2+3\big)/8\approx 2$ steps

Front coding

- 1. Many words have the same prefix. We can write common prefix once.
- 2. One block in blocked compression (k = 4)

8automata8automate9automatic10automation

3. Compressed with front coding.

- 4. End of prefix marked by *
- 5. Deletion of prefix marked by ⋄

Dictionary compression for Reuters

representation	size (unicode)	size (non-unicode)	
dictionary, fixed-width	19.2MB	11.2MB	
dictionary as a string	10.8MB	7.6MB	
\sim , with blocking, $k=4$	10.3MB	7.1MB	
\sim , with blocking & front coding	7.9MB	5.9MB	

Compressing the posting lists

Compressing the posting lists

- 1. Recall: the REUTERS collection has about 800 000 documents, each having 200 tokens
- 2. Since tokens are encoded using 6 bytes, the collection's size is 960 MB
- 3. A document identifier must cover all the collection, *i.e.* must be $log_2800,000\approx 20$ bits long
- 4. If the collection includes about 100,000,000 postings, the size of the posting lists is $100,000,000\times 20/8=250MB$
- 5. How to compress these postings?
- 6. Idea: most frequent terms occur close to each other
 - \rightarrow we encode the gaps between occurrences of a given term

Gap encoding

	encoding	postings I	ist								
the	docIDs			283042		283043		283044		283045	
	gaps				1		1		1		
computer	docIDs			283047		283154		283159		283202	
	gaps				107		5		43		
arachnocentric	docIDs	252000		500100							
	gaps	252000	248100								

Furthermore, small gaps are represented with shorter codes than big gaps

Compressing the posting lists

Using variable-length byte-codes

Using variable-length byte-codes

- 1. Variable-length byte encoding uses an integral number of bytes to encode a gap
- 2. First bit := continuation byte
- 3. Last 7 bits := part of the gap
- 4. The first bit is set to 1 for the last byte of the encoded gap, 0 otherwise
- 5. Example: a gap of size 5 is encoded as 10000101

Variable-length byte code: example

doclDs	824	829	215406
gaps		5	214577
VB code	00000110 10111000	10000101	00001101 00001100 10110001

What is the code for a gap of size 1283?

Variable-length byte code

- 1. The posting lists for the REUTERS collection are compressed to 116 MB with this technique (original size: 250 MB)
- 2. The idea of representing gaps with variable integral number of bytes can be applied with units that differ from 8 bits
- 3. Larger units can be processed (decompression) quicker than small ones, but are less effective in terms of compression rate

Compressing the posting lists

Using γ -codes

Using γ -codes

1. Idea: representing numbers with a variable bit code

2. Example: unary code

the number n is encoded as: 11...0 (not efficient)

3. γ -code, variable encoding done by splitting the representation of a gap as follows:

- 4. offset is the binary encoding of the gap (without the leading 1)
- 5. *length* is the unary code of the offset size
- 6. Objective: having a representation that is as close as possible to the log_2G size (in terms of bits) for G gaps

Unary and γ -codes

number	unary code	length	offset	γ code
0	0			
1	10	0		0
2	110	10	0	10,0
3	1110	10	1	10,1
4	11110	110	00	110,00
9	1111111110	1110	001	1110,001
13		1110	101	1110,101
24		11110	1000	11110,1000
511		111111110	11111111	111111110,11111111
1025		11111111110	000000001	11111111110,0000000001

 $\gamma\text{-codes}$ are always of odd length. More precisely, their length is $2\times \lfloor \log_2 s\rfloor +1$

 γ -code for 6 ?

Example

- 2. Decode these, extract the gaps, and recompute the posting list
- 3. γ -decoding :
 - first reads the length (terminated by 0),
 - ▶ then uses this length to extract the offset,
 - and eventually prepends the missing 1

Compression of Reuters: Summary

representation	size in MB	size in MB	
	Unicode	non-unicode	
dictionary, fixed-width	19.2	11.2	
dictionary, term pointers into string	10.8	7.6	
\sim , with blocking, $k=4$	10.3	7.1	
\sim , with blocking & front coding	7.9	5.3	
collection (text, xml markup etc)	3600.0	3600.0	
collection (text)	960.0	960.0	
term incidence matrix	40,000.0	40,000.0	
postings, uncompressed (32-bit words)	400.0	400.0	
postings, uncompressed (20 bits)	250.0	250.0	
postings, variable byte encoded	116.0	116.0	
postings, γ encoded	101.0	101.0	

Conclusion

Conclusion

- 1. γ -codes achieve better compression ratios (about 15 % better than variable bytes encoding), **but** are more complex (expensive) to decode
- 2. This cost applies on query processing \rightarrow trade-off to find
- 3. The objectives announced are met by both techniques, recall:
 - reducing the disk space needed
 - reducing the time processing, by using a cache
- 4. The techniques we have seen are *lossless compression* (no information is lost)
- 5. Lossy compression can be useful, e.g. storing only the most relevant postings (more on this in the ranking lecture)

References

Reading

1. Chapters 5 of Information Retrieval Book²

²Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. *Introduction to Information Retrieval*. New York, NY, USA: Cambridge University Press, 2008.

References

Questions?