Modern Information Retrieval

Index compression ${ }^{1}$

Hamid Beigy

Sharif university of technology

October 28, 2022

[^0]
Table of contents

1. Characterization of an index
2. Dictionary compression
3. Compressing the dictionary
4. Compressing the posting lists
5. Conclusion
6. References

Introduction

1. Dictionary and inverted index: core of IR systems
2. Techniques can be used to compress these data structures, with two objectives:

- reducing the disk space needed
- reducing the time processing, by using a cache (keeping the postings of the most frequently used terms into main memory)

3. Decompression can be faster than reading from disk

Table of contents

1. Characterization of an index
2. Dictionary compression
3. Compressing the dictionary
4. Compressing the posting lists
5. Conclusion
6. References

Characterization of an index

Characterization of an index

Considering the Reuters-RCV1 collection

size of	dictionary			non-positional index			positional index		
	size	Δ	cum.	size	Δ	cum.	size	Δ	cum.
unfiltered	484,494			109,971,179			197,879,290		
no numbers	473,723	-2\%	-2\%	100,680,242	-8\%	-8\%	179,158,204	-9\%	-9\%
case folding	391,523	-17\%	-19\%	96,969,056	-3\%	-12\%	179,158,204	-0\%	-9\%
30 stop words	391,493	-0\%	-19\%	83,390,443	-14\%	-24\%	121,857,825	-31\%	-38\%
150 stop words	391,373	-0\%	-19\%	67,001,847	-30\%	-39\%	94,516,599	-47\%	-52\%
stemming	322,383	-17\%	-33\%	63,812,300	-4\%	-42\%	94,516,599	-0\%	-52\%

Statistical properties of terms

1. The vocabulary grows with the corpus size
2. Empirical law determining the number of term types in a collection of size M (Heap's law)

$$
M=k T^{b}
$$

where T is the number of tokens, and k and b 2 parameters defined as follows:

$$
b \approx 0.5 \text { and } 30 \leq k \leq 100
$$

(k is the growth-rate)
3. On the REUTERS corpus fo the first $1,000,020$ tokens (taking $k=44$ and $b=0.49$):

$$
M=44 \times 1,000,020^{0.5}=38,323
$$

Statistical properties of terms (Heap's law)

Modeling the distribution of terms (Zipf's law)

1. Now we have characterized the growth of the vocabulary in collections.
2. We also want to know how many frequent vs. infrequent terms we should expect in a collection.
3. In natural language, there are a few very frequent terms and very many very rare terms.
4. Zipf's law: The $i^{\text {th }}$ most frequent term has frequency cf_{i} proportional to 1/i.

$$
\mathrm{cf}_{i} \propto \frac{1}{i}
$$

5. cf_{i} is collection frequency: the number of occurrences of the term t_{i} in the collection.

Modeling the distribution of terms (Zipf's law)

1. Zipf's law: The $i^{\text {th }}$ most frequent term has frequency proportional to $1 / i$.

$$
\mathrm{cf}_{i} \propto \frac{1}{i}
$$

2. So if the most frequent term (the) occurs cf_{1} times, then the second most frequent term (of) has half as many occurrences $\mathrm{cf}_{2}=\frac{1}{2} \mathrm{cf}_{1}$
3. The third most frequent term (and) has a third as many occurrences $\mathrm{cf}_{3}=\frac{1}{3} \mathrm{cf}_{1}$ etc.
4. Equivalent: $c f_{i}=c i^{k}$ and $\log c f_{i}=\log c+k \log i($ for $k=-1)$

Modeling the distribution of terms (Zipf's law)

Dictionary compression

Dictionary compression

1. The dictionary is small compared to the postings file.
2. But we want to keep it in memory.
3. Also: competition with other applications, cell phones, onboard computers, fast startup time
4. So compressing the dictionary is important.

Index format with fixed-width entries

term	document frequency	pointer to postings list	postings list
a	656,265	\longrightarrow	\ldots
aachen	65	\longrightarrow	\ldots
\ldots	\ldots	\ldots	\ldots
zulu	221	\longrightarrow	\ldots
40	4	4	space needed

Total space: $M \times(2 \times 20+4+4)=400,000 \times 48=19.2 \mathrm{MB}$
Why 40 bytes per term? (Considering unicode + max. length of a term)
Without using unicode: $M \times(20+4+4)=400,000 \times 28=11.2 \mathrm{MB}$

Remarks

1. The average length of a word type for REUTERS is 7.5 bytes
2. With fixed-length entries, a one-letter term is stored using 20 bytes!
3. Some very long words (such as hydrochlorofluorocarbons) cannot be handled.
4. How can we extend the dictionary representation to save bytes and allow for long words?

Compressing the dictionary

Dictionary as a string

...systilesyzygeticsyzygialsyzygyszaibely
freq. postings ptr. term ptr.

9	\rightarrow
92	\rightarrow
5	\rightarrow
71	\rightarrow
12	
\ldots	\ldots

4 bytes $\quad 4$ bytes $\quad 3$ bytes

Space use for dictionary-as-a-string

1. 4 bytes per term for frequency
2. 4 bytes per term for pointer to postings list
3. 3 bytes per pointer into string (need $\log _{2} 400000 \approx 22$ bits to resolve 400,000 positions)
4. 8 chars (on average) for term in string
5. Space: $400,000 \times(4+4+3+2 \times 8)=10.8 \mathrm{MB}$ (compared to 19.2 MB for fixed-width)
6. Without using unicode:

Space: $400,000 \times(4+4+3+8)=7.6 \mathrm{MB}$ (compared to 11.2 MB for fixed-width)

Block storage

... $\mathbf{7}$ systile $\mathbf{9}$ syzygetic $\mathbf{8 s y z y g i a l} \mathbf{6 s y z y g y 1 1 s z a}$ ibelyit postings ptr. term ptr.

9	\rightarrow
92	\rightarrow
5	\rightarrow
71	\rightarrow
12	

Space use for block-storage

1. Let us consider blocks of size k
2. We remove $k-1$ pointers, but add k bytes for term length
3. Example: $k=4,(k-1) \times 3$ bytes saved (pointers), and 4 bytes added (term length) $\rightarrow 5$ bytes saved
4. Space saved: $400,000 \times\left(\frac{1}{4}\right) \times 5=0.5 \mathrm{MB}$ (dictionary reduced to 10.3 MB and for non-unicode (7.1MB))
5. Why not taking $k>4$?

Search uncompressed dictionary

Average search cost: $(0+1+2+3+2+1+2+2) / 8 \approx 1.6$ steps

Search compressed dictionary with blocking

Average search cost: $(0+1+2+3+4+1+2+3) / 8 \approx 2$ steps

Front coding

1. Many words have the same prefix. We can write common prefix once.
2. One block in blocked compression $(k=4)$

8automata8automate9automatic10automation

3. Compressed with front coding.

8automat*a1»e2ßic3®ion

4. End of prefix marked by $*$
5. Deletion of prefix marked by \diamond

Dictionary compression for Reuters

representation	size (unicode)	size (non-unicode)
dictionary, fixed-width	19.2 MB	11.2 MB
dictionary as a string	10.8 MB	7.6 MB
\sim, with blocking, $k=4$	10.3 MB	7.1 MB
\sim, with blocking \& front coding	7.9 MB	5.9 MB

Compressing the posting lists

Compressing the posting lists

1. Recall: the REUTERS collection has about 800000 documents, each having 200 tokens
2. Since tokens are encoded using 6 bytes, the collection's size is 960 MB
3. A document identifier must cover all the collection, i.e. must be $\log _{2} 800,000 \approx 20$ bits long
4. If the collection includes about $100,000,000$ postings, the size of the posting lists is $100,000,000 \times 20 / 8=250 \mathrm{MB}$
5. How to compress these postings ?
6. Idea: most frequent terms occur close to each other
\rightarrow we encode the gaps between occurrences of a given term

Gap encoding

	encoding	postings list									
the	doclDs	...		283042		283043		283044		283045	
	gaps				1		1		1		\ldots
computer	doclDs	...		283047		283154		283159		283202	\ldots
	gaps			107			5		43		\ldots
arachnocentric	doclDs	252000		500100							
	gaps	252000	248100								

Furthermore, small gaps are represented with shorter codes than big gaps

Compressing the posting lists

Using variable-length byte-codes

Using variable-length byte-codes

1. Variable-length byte encoding uses an integral number of bytes to encode a gap
2. First bit $:=$ continuation byte
3. Last 7 bits $:=$ part of the gap
4. The first bit is set to 1 for the last byte of the encoded gap, 0 otherwise
5. Example: a gap of size 5 is encoded as 10000101

Variable-length byte code: example

docIDs	824	829	215406
gaps		5	214577
VB code	0000011010111000	10000101	000011010000110010110001

What is the code for a gap of size 1283 ?

Variable-length byte code

1. The posting lists for the REUTERS collection are compressed to 116 MB with this technique (original size: 250 MB)
2. The idea of representing gaps with variable integral number of bytes can be applied with units that differ from 8 bits
3. Larger units can be processed (decompression) quicker than small ones, but are less effective in terms of compression rate

Compressing the posting lists

Using γ-codes

Using γ-codes

1. Idea: representing numbers with a variable bit code
2. Example: unary code

$$
\mathrm{n} \text { times }
$$

the number n is encoded as: $\overbrace{11 \ldots 0} 0$ (not efficient)
3. γ-code, variable encoding done by splitting the representation of a gap as follows:

length	offset

4. offset is the binary encoding of the gap (without the leading 1)
5. length is the unary code of the offset size
6. Objective: having a representation that is as close as possible to the $\log _{2} G$ size (in terms of bits) for G gaps

Unary and γ-codes

number	unary code	length	offset	γ code
0	0			
1	10	0		0
2	110	10	0	10,0
3	1110	10	1	10,1
4	11110	110	00	110,00
9	1111111110	1110	001	1110,001
13		1110	101	1110,101
24		11110	1000	11110,1000
511		111111110	11111111	111111110,11111111
1025		11111111110	0000000001	11111111110,0000000001

γ-codes are always of odd length. More precisely, their length is
$2 \times\left\lfloor\log _{2} s\right\rfloor+1$
γ-code for 6 ?

Example

1. Given the following γ-coded gaps:

1110001110101011111101101111011

2. Decode these, extract the gaps, and recompute the posting list
3. γ-decoding :

- first reads the length (terminated by 0),
- then uses this length to extract the offset,
- and eventually prepends the missing 1

Compression of Reuters: Summary

representation	size in MB Unicode	size in MB non-unicode
dictionary, fixed-width	19.2	11.2
dictionary, term pointers into string	10.8	7.6
\sim, with blocking, $k=4$	10.3	7.1
\sim, with blocking \& front coding	7.9	5.3
collection (text, xml markup etc)	3600.0	3600.0
collection (text)	960.0	960.0
term incidence matrix	$40,000.0$	$40,000.0$
postings, uncompressed (32-bit words)	400.0	400.0
postings, uncompressed (20 bits)	250.0	250.0
postings, variable byte encoded	116.0	116.0
postings, γ encoded	101.0	101.0

Conclusion

Conclusion

1. γ-codes achieve better compression ratios (about 15% better than variable bytes encoding), but are more complex (expensive) to decode
2. This cost applies on query processing \rightarrow trade-off to find
3. The objectives announced are met by both techniques, recall:

- reducing the disk space needed
- reducing the time processing, by using a cache

4. The techniques we have seen are lossless compression (no information is lost)
5. Lossy compression can be useful, e.g. storing only the most relevant postings (more on this in the ranking lecture)

References

Reading

1. Chapters 5 of Information Retrieval Book ${ }^{2}$

[^1]
References

Questions?

[^0]: ${ }^{1}$ Some slides have been adapted from slides of Manning, Yannakoudakis, and Schütze.

[^1]: ${ }^{2}$ Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to Information Retrieval. New York, NY, USA: Cambridge University Press, 2008.

