
Modern Information Retrieval

Index compression1

Hamid Beigy

Sharif university of technology

October 28, 2022

1Some slides have been adapted from slides of Manning, Yannakoudakis, and Schütze.

Table of contents

1. Characterization of an index

2. Dictionary compression

3. Compressing the dictionary

4. Compressing the posting lists

5. Conclusion

6. References

1/32

Introduction

1. Dictionary and inverted index: core of IR systems

2. Techniques can be used to compress these data structures, with two

objectives:

I reducing the disk space needed

I reducing the time processing, by using a cache (keeping the postings of the

most frequently used terms into main memory)

3. Decompression can be faster than reading from disk

2/32

Table of contents

1. Characterization of an index

2. Dictionary compression

3. Compressing the dictionary

4. Compressing the posting lists

5. Conclusion

6. References

3/32

Characterization of an index

Characterization of an index

Considering the Reuters-RCV1 collection

size of dictionary non-positional index positional index

size ∆ cum. size ∆ cum. size ∆ cum.

unfiltered 484,494 109,971,179 197,879,290

no numbers 473,723 -2% -2% 100,680,242 -8% -8% 179,158,204 -9% -9%

case folding 391,523 -17% -19% 96,969,056 -3% -12% 179,158,204 -0% -9%

30 stop words 391,493 -0% -19% 83,390,443 -14% -24% 121,857,825 -31% -38%

150 stop words 391,373 -0% -19% 67,001,847 -30% -39% 94,516,599 -47% -52%

stemming 322,383 -17% -33% 63,812,300 -4% -42% 94,516,599 -0% -52%

4/32

Statistical properties of terms

1. The vocabulary grows with the corpus size

2. Empirical law determining the number of term types in a collection of size

M (Heap’s law)

M = kT b

where T is the number of tokens, and k and b

2 parameters defined as follows:

b ≈ 0.5 and 30 ≤ k ≤ 100

(k is the growth-rate)

3. On the REUTERS corpus fo the first 1, 000, 020 tokens (taking k = 44 and

b = 0.49):

M = 44× 1, 000, 0200.5 = 38, 323

5/32

Statistical properties of terms (Heap’s law)

Online edition (c)�2009 Cambridge UP

88 5 Index compression

0 2 4 6 8

0
1

2
3

4
5

6

log10 T

lo
g

1
0

 M

! Figure 5.1 Heaps’ law. Vocabulary size M as a function of collection size T
(number of tokens) for Reuters-RCV1. For these data, the dashed line log10 M =

0.49 ∗ log10 T + 1.64 is the best least-squares fit. Thus, k = 101.64 ≈ 44 and b = 0.49.

entities like genes. These names need to be included in the inverted index,
so our users can search for them.

5.1.1 Heaps’ law: Estimating the number of terms

A better way of getting a handle on M is Heaps’ law, which estimates vocab-HEAPS’ LAW

ulary size as a function of collection size:

M = kTb(5.1)

where T is the number of tokens in the collection. Typical values for the
parameters k and b are: 30 ≤ k ≤ 100 and b ≈ 0.5. The motivation for
Heaps’ law is that the simplest possible relationship between collection size
and vocabulary size is linear in log–log space and the assumption of linearity
is usually born out in practice as shown in Figure 5.1 for Reuters-RCV1. In
this case, the fit is excellent for T > 105 = 100,000, for the parameter values
b = 0.49 and k = 44. For example, for the first 1,000,020 tokens Heaps’ law

6/32

Modeling the distribution of terms (Zipf’s law)

1. Now we have characterized the growth of the vocabulary in collections.

2. We also want to know how many frequent vs. infrequent terms we should

expect in a collection.

3. In natural language, there are a few very frequent terms and very many very

rare terms.

4. Zipf’s law: The i th most frequent term has frequency cf i proportional to

1/i .

cf i ∝
1

i

5. cf i is collection frequency: the number of occurrences of the term ti in the

collection.

7/32

Modeling the distribution of terms (Zipf’s law)

1. Zipf’s law: The i th most frequent term has frequency proportional to 1/i .

cf i ∝
1

i

2. So if the most frequent term (the) occurs cf1 times, then the second most

frequent term (of) has half as many occurrences cf2 = 1
2
cf1

3. The third most frequent term (and) has a third as many occurrences

cf3 = 1
3
cf1 etc.

4. Equivalent: cf i = cik and log cf i = log c + k log i (for k = −1)

8/32

Modeling the distribution of terms (Zipf’s law)

Online edition (c)�2009 Cambridge UP

90 5 Index compression

0 1 2 3 4 5 6

0
1

2
3

4
5

6
7

log10 rank

7

lo
g
1
0
 c

f

! Figure 5.2 Zipf’s law for Reuters-RCV1. Frequency is plotted as a function of
frequency rank for the terms in the collection. The line is the distribution predicted
by Zipf’s law (weighted least-squares fit; intercept is 6.95).

? Exercise 5.1 [⋆]

Assuming one machine word per posting, what is the size of the uncompressed (non-
positional) index for different tokenizations based on Table 5.1? How do these num-
bers compare with Table 5.6?

5.2 Dictionary compression

This section presents a series of dictionary data structures that achieve in-
creasingly higher compression ratios. The dictionary is small compared with
the postings file as suggested by Table 5.1. So why compress it if it is respon-
sible for only a small percentage of the overall space requirements of the IR
system?

One of the primary factors in determining the response time of an IR sys-
tem is the number of disk seeks necessary to process a query. If parts of the
dictionary are on disk, then many more disk seeks are necessary in query
evaluation. Thus, the main goal of compressing the dictionary is to fit it in
main memory, or at least a large portion of it, to support high query through-

9/32

Dictionary compression

Dictionary compression

1. The dictionary is small compared to the postings file.

2. But we want to keep it in memory.

3. Also: competition with other applications, cell phones, onboard computers,

fast startup time

4. So compressing the dictionary is important.

10/32

Index format with fixed-width entries

term document frequency pointer to postings list postings list

a 656,265 −→ . . .

aachen 65 −→ . . .

.

zulu 221 −→ . . .

40 4 4 space needed

Total space: M × (2× 20 + 4 + 4) = 400,000× 48 = 19.2 MB

Why 40 bytes per term? (Considering unicode + max. length of a term)

Without using unicode: M × (20 + 4 + 4) = 400,000× 28 = 11.2 MB

11/32

Remarks

1. The average length of a word type for REUTERS is 7.5 bytes

2. With fixed-length entries, a one-letter term is stored using 20 bytes!

3. Some very long words (such as hydrochlorofluorocarbons) cannot be

handled.

4. How can we extend the dictionary representation to save bytes and allow for

long words?

12/32

Compressing the dictionary

Dictionary as a string
Compressing the dictionary The string method

Dictionary-as-a-string
. . . s y s t i l e s y z yg e t i c s y z y g i a l s y z y g y s z a i b e l y i t e s z e c i

freq.

9

92

5

71

12

. . .

4 bytes

postings ptr.

→
→
→
→
→
. . .

4 bytes

term ptr.

3 bytes

. . .

8 / 30

13/32

Space use for dictionary-as-a-string

1. 4 bytes per term for frequency

2. 4 bytes per term for pointer to postings list

3. 3 bytes per pointer into string (need log2 400000 ≈ 22 bits to resolve

400,000 positions)

4. 8 chars (on average) for term in string

5. Space: 400,000× (4 + 4 + 3 + 2× 8) = 10.8 MB (compared to 19.2 MB for

fixed-width)

6. Without using unicode:

Space: 400,000× (4 + 4 + 3 + 8) = 7.6 MB (compared to 11.2 MB for

fixed-width)

14/32

Block storage
Compressing the dictionary The block-storage method

Block-storage

. . . 7 s y s t i l e9 s y z y g e t i c8 s y z y g i a l 6 s y z y gy11s zz a i b e l y i t e

freq.

9

92

5

71

12

. . .

postings ptr.

→
→
→
→
→
. . .

term ptr.

. . .

10 / 30
15/32

Space use for block-storage

1. Let us consider blocks of size k

2. We remove k − 1 pointers, but add k bytes for term length

3. Example: k = 4, (k − 1)× 3 bytes saved (pointers), and 4 bytes added

(term length) → 5 bytes saved

4. Space saved: 400,000× (1
4
)× 5 = 0.5 MB (dictionary reduced to 10.3 MB

and for non-unicode (7.1MB))

5. Why not taking k > 4 ?

16/32

Search uncompressed dictionary
Compressing the dictionary The block-storage method

Search without blocking

aid

box

den

ex

job

ox

pit

win

Average search cost: (4 + 3 + 2 + 3 + 1 + 3 + 2 + 3)/8 ≈ 2.6 steps

12 / 30

Average search cost: (0 + 1 + 2 + 3 + 2 + 1 + 2 + 2)/8 ≈ 1.6 steps

17/32

Search compressed dictionary with blockingCompressing the dictionary The block-storage method

Impact of blocking on search

aid box den ex

job ox pit win

Average search cost: (2 + 3 + 4 + 5 + 1 + 2 + 3 + 4)/8 ≈ 3 steps

13 / 30

Average search cost: (0 + 1 + 2 + 3 + 4 + 1 + 2 + 3)/8 ≈ 2 steps

18/32

Front coding

1. Many words have the same prefix. We can write common prefix once.

2. One block in blocked compression (k = 4)

8automata8automate9automatic10automation
3. Compressed with front coding.

8automat∗a1�e2�ic3�ion
4. End of prefix marked by ∗
5. Deletion of prefix marked by �

19/32

Dictionary compression for Reuters

representation size (unicode) size (non-unicode)

dictionary, fixed-width 19.2MB 11.2MB

dictionary as a string 10.8MB 7.6MB

∼, with blocking, k = 4 10.3MB 7.1MB

∼, with blocking & front coding 7.9MB 5.9MB

20/32

Compressing the posting lists

Compressing the posting lists

1. Recall: the REUTERS collection has about 800 000 documents, each having

200 tokens

2. Since tokens are encoded using 6 bytes, the collection’s size is 960 MB

3. A document identifier must cover all the collection, i.e. must be

log2800, 000 ≈ 20 bits long

4. If the collection includes about 100, 000, 000 postings, the size of the

posting lists is 100, 000, 000× 20/8 = 250MB

5. How to compress these postings ?

6. Idea: most frequent terms occur close to each other

→ we encode the gaps between occurrences of a given term

21/32

Gap encoding

encoding postings list

the docIDs . . . 283042 283043 283044 283045 . . .

gaps 1 1 1 . . .

computer docIDs . . . 283047 283154 283159 283202 . . .

gaps 107 5 43 . . .

arachnocentric docIDs 252000 500100

gaps 252000 248100

Furthermore, small gaps are represented with shorter codes than big
gaps

22/32

Compressing the posting lists

Using variable-length byte-codes

Using variable-length byte-codes

1. Variable-length byte encoding uses an integral number of bytes to encode a

gap

2. First bit := continuation byte

3. Last 7 bits := part of the gap

4. The first bit is set to 1 for the last byte of the encoded gap, 0 otherwise

5. Example: a gap of size 5 is encoded as 10000101

23/32

Variable-length byte code: example

docIDs 824 829 215406

gaps 5 214577

VB code 00000110 10111000 10000101 00001101 00001100 10110001

What is the code for a gap of size 1283?

24/32

Variable-length byte code

1. The posting lists for the REUTERS collection are compressed to 116 MB

with this technique (original size: 250 MB)

2. The idea of representing gaps with variable integral number of bytes can be

applied with units that differ from 8 bits

3. Larger units can be processed (decompression) quicker than small ones, but

are less effective in terms of compression rate

25/32

Compressing the posting lists

Using γ-codes

Using γ-codes

1. Idea: representing numbers with a variable bit code

2. Example: unary code

the number n is encoded as:

n times︷ ︸︸ ︷
11 . . . 0

(not efficient)

3. γ-code, variable encoding done by splitting the representation of a gap as

follows:

length offset

4. offset is the binary encoding of the gap (without the leading 1)

5. length is the unary code of the offset size

6. Objective: having a representation that is as close as possible to the log2G

size (in terms of bits) for G gaps

26/32

Unary and γ-codes

number unary code length offset γ code

0 0

1 10 0 0

2 110 10 0 10,0

3 1110 10 1 10,1

4 11110 110 00 110,00

9 1111111110 1110 001 1110,001

13 1110 101 1110,101

24 11110 1000 11110,1000

511 111111110 11111111 111111110,11111111

1025 11111111110 0000000001 11111111110,0000000001

γ-codes are always of odd length. More precisely, their length is
2× blog2 sc+ 1

γ-code for 6 ? 27/32

Example

1. Given the following γ-coded gaps:

1110001110101011111101101111011

2. Decode these, extract the gaps, and recompute the posting list

3. γ-decoding :

I first reads the length (terminated by 0),

I then uses this length to extract the offset,

I and eventually prepends the missing 1

28/32

Compression of Reuters: Summary

representation size in MB size in MB

Unicode non-unicode

dictionary, fixed-width 19.2 11.2

dictionary, term pointers into string 10.8 7.6

∼, with blocking, k = 4 10.3 7.1

∼, with blocking & front coding 7.9 5.3

collection (text, xml markup etc) 3600.0 3600.0

collection (text) 960.0 960.0

term incidence matrix 40,000.0 40,000.0

postings, uncompressed (32-bit words) 400.0 400.0

postings, uncompressed (20 bits) 250.0 250.0

postings, variable byte encoded 116.0 116.0

postings, γ encoded 101.0 101.0

29/32

Conclusion

Conclusion

1. γ-codes achieve better compression ratios (about 15 % better than variable

bytes encoding), but are more complex (expensive) to decode

2. This cost applies on query processing → trade-off to find

3. The objectives announced are met by both techniques, recall:

I reducing the disk space needed

I reducing the time processing, by using a cache

4. The techniques we have seen are lossless compression (no information is lost)

5. Lossy compression can be useful, e.g. storing only the most relevant

postings (more on this in the ranking lecture)

30/32

References

Reading

1. Chapters 5 of Information Retrieval Book2

2Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to

Information Retrieval. New York, NY, USA: Cambridge University Press, 2008.

31/32

References

32/32

Questions?

32/32

	Characterization of an index
	Dictionary compression
	Compressing the dictionary
	Compressing the posting lists
	Using variable-length byte-codes
	Using -codes

	Conclusion
	References

