
Modern Information Retrieval

Index Construction1

Hamid Beigy

Sharif university of technology

October 23, 2022

1Some slides have been adapted from slides of Manning, Yannakoudakis, and Schütze.

Table of contents

1. Introduction

2. Sort-based index construction

3. Single–pass in-memory indexing (SPIMI)

4. Distributed indexing

5. Dynamic indexing

6. References

1/30

Introduction

Inverted index

1. The goal is constructing inverted index

Inverted index

For each term t, we store a list of all documents that contain t.
Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...

︸ ︷︷ ︸ ︸ ︷︷ ︸
dictionary postings

4 / 62

2/30

RCV1 collection

1. Shakespeare’s collected works are not large enough for demonstrating many

of the points in this course.

2. As an example for applying scalable index construction algorithms, we will

use the Reuters RCV1 collection.

3. English newswire articles sent over the wire in 1995 and 1996 (a year).

4. RCV1 statistics

I Number of documents (N): 800,000

I Number of tokens per document (L): 200

I terms (M) : 400,000

I Bytes per token (including spaces): 6

I Bytes per token (without spaces): 4.5

I Bytes per term: 7.5

5. Why does the algorithm given in previous sections not scale to very large

collections?

3/30

Hardware Basics

1. Access to data is much faster in memory than on disk. (roughly a factor of

10)

2. Disk seeks are ”idle” time: No data is transferred from disk while the disk

head is being positioned.

3. To optimize transfer time from disk to memory: one large chunk is faster

than many small chunks.

4. Disk I/O is block-based: Reading and writing of entire blocks (as opposed

to smaller chunks). Block sizes: 8KB to 256 KB

5. Servers used in IR systems typically have many GBs of main memory and

TBs of disk space.

6. Fault tolerance is expensive: It’s cheaper to use many regular machines than

one fault tolerant machine.

4/30

Hard Disk

5/30

Sort-based index construction

Sort-based index construction

1. As we build index, we parse docs one at a time.

2. The final postings for any term are incomplete until the end.

3. Can we keep all postings in memory and then do the sort in-memory at the

end?

No, not for large collections

Thus: We need to store intermediate results on disk.

4. Can we use the same index construction algorithm for larger collections, but

by using disk instead of memory?

No: Sorting very large sets of records on disk is too slow– too many disk

seeks.

5. We need an external sorting algorithm.

6/30

External sorting algorithm

1. We must sort T = 100,000,000 non-positional postings.

2. Each posting has size 12 bytes (4+4+4: termID, docID, term frequency).

3. Define a block to consist of 10,000,000 such postings

4. We can easily fit that many postings into memory. We will have 10 such

blocks for RCV1.

5. Basic idea of algorithm:

6. For each block do

I accumulate postings

I sort in memory

I write to disk

7. Then merge the blocks into one long sorted order.

7/30

Merging two blocks
Merging two blocks

Block 1
brutus d3
caesar d4
noble d3
with d4

Block 2
brutus d2
caesar d1
julius d1
killed d2

postings
to be merged brutus d2

brutus d3
caesar d1
caesar d4
julius d1
killed d2
noble d3
with d4

merged
postings

disk

25 / 54

8/30

Blocked Sort-Based IndexingBlocked Sort-Based Indexing

BSBIndexConstruction()
1 n← 0
2 while (all documents have not been processed)
3 do n← n + 1
4 block ← ParseNextBlock()
5 BSBI-Invert(block)
6 WriteBlockToDisk(block , fn)
7 MergeBlocks(f1, . . . , fn; f merged)

26 / 54

9/30

Problem with sort-based algorithm

1. The assumption was: we can keep the dictionary in memory.

2. We need the dictionary (which grows dynamically) in order to implement a

term to termID mapping.

3. Actually, we could work with term,docID postings instead of termID,docID

postings . . .

4. The intermediate files become very large. (We would end up with a scalable,

but very slow index construction method.)

10/30

Single–pass in-memory indexing (SPIMI)

Single–pass in-memory indexing (SPIMI)

1. Key idea 1: Generate separate dictionaries for each block - no need to

maintain term–termID mapping across blocks.

2. Key idea 2: Don’t sort. Accumulate postings in postings lists as they occur.

3. With these two ideas we can generate a complete inverted index for each

block.

4. These separate indexes can then be merged into one big index.

11/30

Single–pass in-memory indexing algorithm

SPIMI-Invert

SPIMI-Invert(token stream)
1 output file ← NewFile()
2 dictionary ← NewHash()
3 while (free memory available)
4 do token ← next(token stream)
5 if term(token) /∈ dictionary
6 then postings list ← AddToDictionary(dictionary ,term(token))
7 else postings list ← GetPostingsList(dictionary ,term(token))
8 if full(postings list)
9 then postings list ← DoublePostingsList(dictionary ,term(token))

10 AddToPostingsList(postings list,docID(token))
11 sorted terms ← SortTerms(dictionary)
12 WriteBlockToDisk(sorted terms,dictionary ,output file)
13 return output file
Merging of blocks is analogous to BSBI.

30 / 54

12/30

Single–pass in-memory indexing : compression

1. Compression makes SPIMI even more efficient.

I Compression of terms

I Compression of postings

13/30

Distributed indexing

Distributed indexing

1. For web-scale indexing: must use a distributed computer cluster

2. Individual machines are fault-prone.

Can unpredictably slow down or fail.

3. How do we exploit such a pool of machines?

4. Distributed index is partitioned across several machines - either according to

term or according to document.

14/30

google data centers (Gartner estimates)

1. Google data centers mainly contain commodity machines. Data centers are

distributed all over the world.

2. 1 million servers, 3 million processors/cores

3. Google installs 100,000 servers each quarter.

4. Based on expenditures of 200–250 million dollars per year. This would be

10% of the computing capacity of the world!

5. If in a non-fault-tolerant system with 1000 nodes, each node has 99.9%

uptime, what is the uptime of the system (assuming it does not tolerate

failures)?

6. Suppose a server will fail after 3 years. For an installation of 1 million

servers, what is the interval between machine failures?

7. Answer: Less than two minutes.

15/30

Cluster architecture

Cluster Architecture

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Each rack contains 16-64 nodes

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Switch1 Gbps between
any pair of nodes
in a rack

2-10 Gbps backbone between racks

16/30

Distributed indexing

1. Maintain a master machine directing the indexing job – considered ”safe”

2. Break up indexing into sets of parallel tasks

3. Master machine assigns each task to an idle machine from a pool.

17/30

Parallel tasks

1. We will define two sets of parallel tasks and deploy two types of machines to

solve them:

Parsers and Inverters

2. Break the input document collection into splits (corresponding to blocks in

BSBI/SPIMI)

3. Each split is a subset of documents.

18/30

Parsers

1. Master assigns a split to an idle parser machine.

2. Parser reads a document at a time and emits (term,docID)-pairs.

3. Parser writes pairs into j term-partitions. Each for a range of terms’ first

letters

E.g., a-f, g-p, q-z (here: j = 3)

19/30

Inverters

1. An inverter collects all (term,docID) pairs (= postings) for one

term-partition (e.g., for a-f).

2. Sorts and writes to postings lists

20/30

Data flow

Data flow

masterassign

map
phase

reduce
phase

assign

parser

splits

parser

parser

inverter

postings

inverter

inverter

a-f

g-p

q-z

a-f g-p q-z

a-f g-p q-z

a-f

segment
files

g-p q-z

39 / 54

21/30

MapReduce

1. The index construction algorithm we just described is an instance of

MapReduce.

2. MapReduce is a robust and conceptually simple framework for distributed

computing without having to write code for the distribution part.

3. The Google indexing system consisted of a number of phases, each

implemented in MapReduce.

4. Index construction was just one phase.

22/30

MapReduce: word count example

Word Count using MapReduce

map(key, value):
// key: document name; value: text of document

for each word w in value:
emit(w, 1)

reduce(key, values):
// key: a word; value: an iterator over counts

result = 0
for each count v in values:

result += v
emit(result)

23/30

Dynamic indexing

Dynamic indexing

1. Up to now, we have assumed that collections are static.

2. They rarely are: Documents are inserted, deleted and modified.

3. This means that the dictionary and postings lists have to be dynamically

modified.

24/30

Dynamic indexing: simplest approach

1. Maintain big main index on disk

2. New docs go into small auxiliary index in memory.

3. Search across both, merge results

4. Periodically, merge auxiliary index into big index

5. Deletions:

I Invalidation bit-vector for deleted docs

I Filter docs returned by index using this bit-vector

25/30

Issues with auxiliary and main index

1. Frequent merges

2. Poor search performance during index merge

26/30

Logarithmic merge

1. Logarithmic merging amortizes the cost of merging indexes over time.

Users see smaller effect on response times.

2. Maintain a series of indexes, each twice as large as the previous one.

3. Keep smallest (Z0) in memory

4. Larger ones (I0, I1, . . .) on disk

5. If Z0 gets too big (> n), write to disk as I0 or merge with I0 (if I0 already

exists) and write merger to I1 etc.

27/30

Logarithmic merge

LMergeAddToken(indexes,Z0, token)
1 Z0 ←Merge(Z0, {token})
2 if |Z0| = n
3 then for i ← 0 to ∞
4 do if Ii ∈ indexes
5 then Zi+1 ←Merge(Ii ,Zi)
6 (Zi+1 is a temporary index on disk.)
7 indexes ← indexes − {Ii}
8 else Ii ← Zi (Zi becomes the permanent index Ii .)
9 indexes ← indexes ∪ {Ii}

10 Break
11 Z0 ← ∅

LogarithmicMerge()
1 Z0 ← ∅ (Z0 is the in-memory index.)
2 indexes ← ∅
3 while true
4 do LMergeAddToken(indexes,Z0,getNextToken())

48 / 54

28/30

References

Reading

1. Chapters 4 of Information Retrieval Book2

2Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze (2008). Introduction to

Information Retrieval. New York, NY, USA: Cambridge University Press.

29/30

References

Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schütze (2008).

Introduction to Information Retrieval. New York, NY, USA: Cambridge

University Press.

30/30

Questions?

cba

30/30

	Introduction
	Sort-based index construction
	Single–pass in-memory indexing (SPIMI)
	Distributed indexing
	Dynamic indexing
	References

