
Modern Information Retrieval

Dictionaries and and tolerant retrieval1

Hamid Beigy

Sharif university of technology

October 21, 2022

1Some slides have been adapted from slides of Manning, Yannakoudakis, and Schütze.

Table of contents

1. Introduction

2. Hash tables

3. Search trees

4. Permuterm index

5. k-gram indexes

6. Spelling correction

7. Soundex

8. References
1/35

Introduction

Information retrieval system componentsIR System components

IR System
Query

Document
Collection

Set of relevant
documents

Today: more indexing, some query normalisation

103

2/35

Inverted index

Inverted Index

Brutus 1 2 4 45 31 11 174173

Caesar 1321 2 4 5 6 16 57

Calpurnia 54 1012 31

8

9

4

179

105

3/35

This session

1. Data structures for dictionaries

I Hash tables

I Trees

I k-term index

I Permuterm index

2. Tolerant retrieval: What to do if there is no exact match between query

term and document term

3. Spelling correction

4/35

Term-document incidence matrix

1. Inverted index

Inverted index

For each term t, we store a list of all documents that contain t.
Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...

︸ ︷︷ ︸ ︸ ︷︷ ︸
dictionary postings

4 / 62

5/35

Dictionaries

1. Dictionary: the data structure for storing the term vocabulary.

2. For each term, we need to store a couple of items:

I document frequency

I pointer to postings list

3. How do we look up a query term q in the dictionary at query time?

6/35

Data structures for looking up terms

1. Two different types of implementations:

I hash tables

I search trees

2. Some IR systems use hash tables, some use search trees.

3. Criteria for when to use hash tables vs. search trees:

I How many terms are we likely to have?

I Is the number likely to remain fixed, or will it keep growing?

I What are the relative frequencies with which various terms will be accessed?

7/35

Hash tables

Hash tables

1. Hash table: an array with a hash function

I Input: a key which is a query term

I output: an integer which is an index in array.

I Hash function: determine where to store / search key.

I Hash function that minimizes chance of collisions.

Use all info provided by key (among others).

2. Each vocabulary term (key) is hashed into an integer.

3. At query time: hash each query term, locate entry in array.

8/35

Hash tables

1. Advantages

I Lookup in a hash is faster than lookup in a tree. (Lookup time is constant.)

2. disadvantages

I No easy way to find minor variants (r ésumé vs. resume)

I No prefix search (all terms starting with automat)

I Need to rehash everything periodically if vocabulary keeps growing

I Hash function designed for current needs may not suffice in a few years’ time

9/35

Search trees

Binary search tree

1. Simplest search tree: binary search tree

Search trees overcome many of these issues

Simplest tree: binary search tree

Figure: partition vocabulary terms into two subtrees, those whose first
letter is between a and m, and the rest (actual terms stored in the leafs).

Anything that is on the left subtree is smaller than what’s on the right.

Trees solve the prefix problem (find all terms starting with automat).

109

2. Partitions vocabulary terms into two subtrees, those whose first letter is

between a and m, and the rest (actual terms stored in the leafs).

3. Anything that is on the left subtree is smaller than what’s on the right.

4. Trees solve the prefix problem (find all terms starting with automat).
10/35

Binary search tree

1. Cost of operations depends on height of tree.

2. Keep height minimum / keep binary tree balanced: for each node, heights of

subtrees differ by no more than 1.

3. O(logM) search for balanced trees, where M is the size of the vocabulary.

4. Search is slightly slower than in hashes

5. But: re-balancing binary trees is expensive (insertion and deletion of terms).

11/35

B-Tree

1. Need to mitigate re-balancing problem – allow the number of sub-trees

under an internal node to vary in a fixed interval.

2. B-tree definition: every internal node has a number of children in the

interval [a, b] where a, b are appropriate positive integers, e.g., [2, 4].

B-tree

Need to mitigate re-balancing problem – allow the number of
sub-trees under an internal node to vary in a fixed interval.

B-tree definition: every internal node has a number of children
in the interval [a, b] where a, b are appropriate positive
integers, e.g., [2, 4].

Figure: every internal node has between 2 and 4 children.

111

3. Every internal node has between 2 and 4 children.

12/35

Trie

1. Trie is a search tree
Trie (from trie in retrieval)

t

o e

d
na

n

n

i
A

An ordered tree data structure for strings
A tree where the keys are strings (keys “tea”, “ted”)
Each node is associated with a string inferred from the position of the
node in the tree (node stores bit indicating whether string is in collection)

Tries can be searched by prefixes: all descendants of a node have a
common prefix of the string associated with that node

Search time linear on length of term / key 2

The trie is sometimes called radix tree or prefix tree
2
See https://thenextcode.wordpress.com/2015/04/12/trie-vs-bst-vs-hashtable/

112

2. An ordered tree data structure for strings
I A tree where the keys are strings (keys tea, ted)

I Each node is associated with a string inferred from the position of the node

in the tree.

3. Tries can be searched by prefixes: all descendants of a node have a common

prefix of the string associated with that node

4. Search time linear on length of term / key

5. The trie is sometimes called radix tree or prefix tree

13/35

Trie in IR

Trie with postings

t

o e

d
na

n

n

i
A

67444

206 117 2476

302

5774310993

1 2 3 5 6 7 8 ...

10423 14301 17998 ...

15 28 29 100 103 298 ...

1 3 4 7 8 9

249 11234 23001 ...

12 56 233 1009 ...

20451 109987 ...

113

14/35

Wildcard queries

1. Query :hel*

2. Find all docs containing any term beginning with hel

3. Easy with trie: follow letters h-e-l and then lookup every term you find there

4. Query : *hel

5. Find all docs containing any term ending with hel

6. Maintain an additional trie for terms backwards

7. Then retrieve all terms in subtree rooted at l-e-h

8. In both cases:

I This procedure gives us a set of terms that are matches for the wildcard

queries

I Then retrieve documents that contain any of these terms

15/35

How to handle * in the middle of a term

1. Query: hel*o

2. We could look up hel* and *o in the tries as before and intersect the two

term sets (expensive!).

3. Solution: permuterm index – special index for general wildcard queries

16/35

Permuterm index

Permuterm index

1. For term hello$ (given $ to match the end of a term), store each of these

rotations in the dictionary (trie):

hello$, ello$h, llohe, lohel, o$hell, $hello : permuterm vocabulary

2. Rotate every wildcard query, so that the * occurs at the end: for hel*o$,

look up o$hel*

Permuterm index

For term hello$ (given $ to match the end of a term), store each of these
rotations in the dictionary (trie):

hello$, ello$h, llohe, lohel, o$hell, $hello : permuterm vocabulary

Rotate every wildcard query, so that
the * occurs at the end:
for hel*o$, look up o$hel*

Problem: Permuterm more than quadrupels the size of the dictionary compared
to normal trie (empirical number).

116

3. Problem: Permuterm more than quadrupels the size of the dictionary

compared to normal trie (empirical number).

17/35

k-gram indexes

k-gram indexes

1. More space-efficient than permuterm index

2. Enumerate all character k-grams (sequence of k characters) occurring in a

term and store in a dictionary

Example (Character bi-grams from April is the cruelest month)

$a ap pr ri il l$ $i is s$ $t th he e$ $c cr ru ue el le es st t$ $m mo on nt th h$

3. $ special word boundary symbol

4. A postings list that points to all vocabulary terms containing a k-gram

k-gram indexes

More space-e�cient than permuterm index

Enumerate all character k-grams (sequence of k characters)
occurring in a term and store in a dictionary

Character bi-grams from April is the cruelest month

$a ap pr ri il l$ $i is s$ $t th he e$ $c cr ru ue el le es st t$ $m mo
on nt th h$

$ special word boundary symbol

A postings list that points to all vocabulary terms containing
a k-gram

117

5. Note that we have two different kinds of inverted indexes:
I The term-document inverted index for finding documents based on a query

consisting of terms

I The k-gram index for finding terms based on a query consisting of k-grams

18/35

Processing wild-card queries in a (char) bigram index

1. Query hel* can now be run as:

$h AND he AND el

2. This will show up many false positives like blueheel.

3. Post-filter, then look up surviving terms in term–document inverted index.

4. k-gram vs. permuterm index

I k-gram index is more space-efficient

I permuterm index does not require post-filtering.

19/35

Spelling correction

Spelling correction

1. Query: an asterorid that fell form the sky

2. Query: britney spears

queries: britian spears, britney’s spears, brandy spears, prittany spears

3. In an IR system, spelling correction is only ever run on queries.

4. Two different methods for spelling correction:

I Isolated word spelling correction

Check each word on its own for misspelling

Will only attempt to catch first typo above

I Context-sensitive spelling correction

Look at surrounding words

Should correct both typos above

20/35

Isolated word spelling correction

1. There is a list of correct words – for instance a standard dictionary

(Webster’s, OED. . .)

2. Then we need a way of computing the distance between a misspelled word

and a correct word

I for instance Edit/Levenshtein distance

I k-gram overlap

3. Return the correct word that has the smallest distance to the misspelled

word.

informaton ⇒ information

21/35

Edit distance

1. Edit distance between two strings s1 and s2 is defined as the minimum

number of basic operations that transform s1 into s2.

2. Levenshtein distance: Admissible operations are insert, delete and replace

3. Example
dog do 1 (delete)

cat cart 1 (insert)

cat cut 1 (replace)

cat act 2 (delete+insert)

Online edition (c)�2009 Cambridge UP

3.3 Spelling correction 59

EDITDISTANCE(s1, s2)
1 int m[i, j] = 0
2 for i← 1 to |s1|
3 do m[i, 0] = i
4 for j← 1 to |s2|
5 do m[0, j] = j
6 for i← 1 to |s1|
7 do for j← 1 to |s2|
8 do m[i, j] = min{m[i− 1, j− 1] + if (s1[i] = s2[j]) then 0 else 1fi,
9 m[i− 1, j] + 1,

10 m[i, j− 1] + 1}
11 return m[|s1|, |s2|]

! Figure 3.5 Dynamic programming algorithm for computing the edit distance be-
tween strings s1 and s2.

f a s t

0 1 1 2 2 3 3 4 4

c 1
1

1 2
2 1

2 3
2 2

3 4
3 3

4 5
4 4

a
2
2

2 2
3 2

1 3
3 1

3 4
2 2

4 5
3 3

t 3
3

3 3
4 3

3 2
4 2

2 3
3 2

2 4
3 2

s
4
4

4 4
5 4

4 3
5 3

2 3
4 2

3 3
3 3

! Figure 3.6 Example Levenshtein distance computation. The 2× 2 cell in the [i, j]
entry of the table shows the three numbers whose minimum yields the fourth. The
cells in italics determine the edit distance in this example.

s2[j], m[i− 1, j] + 1 and m[i, j− 1] + 1. The cells with numbers in italics depict
the path by which we determine the Levenshtein distance.

The spelling correction problem however demands more than computing
edit distance: given a set S of strings (corresponding to terms in the vocab-
ulary) and a query string q, we seek the string(s) in V of least edit distance
from q. We may view this as a decoding problem, in which the codewords
(the strings in V) are prescribed in advance. The obvious way of doing this
is to compute the edit distance from q to each string in V, before selecting the

22/35

Distance matrix

Levenshtein distance: Distance matrix

s n o w

0 1 2 3 4

o 1 1 2 3 4

s 2 1 3 3 3

l 3 3 2 3 4

o 4 3 3 2 3

124

23/35

Example: Edit Distance oslo – snow

Example: Edit Distance oslo – snow

s n o w

0 1 1 2 2 3 3 4 4

o
1
1

1 2

2 1
2 3

2 2
2 4

3 2
4 5

3 3

s
2
2

1 2

3 1
2 3

2 2
3 3
3 3

3 4

4 3

l
3
3

3 2
4 2

2 3

3 2
3 4

3 3
4 4
4 4

o
4
4

4 3
5 3

3 3
4 3

2 4

4 2
4 5

3 3

cost operation input output

1 delete o *
0 (copy) s s
1 replace l n
0 (copy) o o
1 insert * w

126 24/35

Each cell of Levenshtein matrix
Each cell of Levenshtein matrix

Cost of getting here from
my upper left neighbour (by
copy or replace)

Cost of getting here from my
upper neighbour (by delete)

Cost of getting here from my
left neighbour (by insert)

Minimum cost out of these

127

25/35

Levenshtein matrix : An example

Levenshtein Distance: Four cells

s n o w

0 1 1 2 2 3 3 4 4

o
1
1

1 2

2 1
2 3

2 2
2 4

3 2
4 5

3 3

s
2
2

1 2

3 1
2 3

2 2
3 3
3 3

3 4

4 3

l
3
3

3 2
4 2

2 3

3 2
3 4

3 3
4 4
4 4

o
4
4

4 3
5 3

3 3
4 3

2 4

4 2
4 5

3 3

Example: (2, 2):

Upper left: cost to replace “o” to “s” (cost: 0+1)

Upper right: come from above where I have already inserted “s”: all I need to do is
delete “o” (cost: 1+1)

Bottom left: come from left neighbour where I have deleted “o”: all I need to do is
insert “s” (cost: 1+1)

Then choose the minimum of the three (bottom right).

128
26/35

Using edit distance for spelling correction

1. Given a query, enumerate all character sequences within a pre-set edit

distance.

2. Intersect this list with our list of correct words.

3. Suggest terms in the intersection to user.

4. Cons

I Comparing query term q to all terms in the vocabulary is too expensive.

I Solution: use heuristics to determine the subset.

27/35

k-gram indexes for spelling correction

1. Enumerate all k-grams in the query term

2. Misspelled word: bordroom

3. Use k-gram index to retrieve correct words that match query term k-grams

4. Threshold by number of matching k-grams

5. Eg. only vocabularly terms that differ by at most 3 k-grams

k-gram indexes for spelling correction

Enumerate all k-grams in the query term

Misspelled word bordroom

bo – or – rd – dr – ro – oo – om

Use k-gram index to retrieve “correct” words that match
query term k-grams
Threshold by number of matching k-grams
Eg. only vocabularly terms that di↵er by at most 3 k-grams

rd aboard ardent boardroom border

or border lord morbid sordid

bo aboard about boardroom border

- - - -

- - - -

- - - -

13028/35

Context-sensitive spelling correction

1. An idea: hit-based spelling correction

flew form munich

2. Enumerate corrections of each of the query terms

flew ⇒ flea

form ⇒ from

munich ⇒ munch

3. Holding all other terms fixed, try all possible phrase queries for each

replacement candidate

flea form munich ⇒ 62 results

flew from munich ⇒ 78900 results

flew form munch ⇒ 66 results

4. Not efficient. Better source of information: large corpus of queries, not

documents

29/35

Soundex

Soundex

I Soundex is the basis for finding phonetic (as opposed to orthographic)

alternatives.

I Example: chebyshev / tchebyscheff

I Algorithm:

I Turn every token to be indexed into a 4-character reduced form

I Do the same with query terms

I Build and search an index on the reduced forms

30/35

Soundex algorithm

1. Retain the first letter of the term.

2. Change all occurrences of the following letters to ’0’ (zero): A, E, I, O, U, H, W, Y

3. Change letters to digits as follows:

I B, F, P, V to 1

I C, G, J, K, Q, S, X, Z to 2

I D,T to 3

I L to 4

I M, N to 5

I R to 6

4. Repeatedly remove one out of each pair of consecutive identical digits

5. Remove all zeros from the resulting string; pad the resulting string with trailing zeros

and return the first four positions, which will consist of a letter followed by three digits

31/35

Example: Soundex of HERMAN

I Retain H

I ERMAN → 0RM0N

I 0RM0N → 06505

I 06505 → 655

I Return H655

I Note: HERMANN will generate the same code

32/35

How useful is Soundex?

I Not very – for information retrieval

I Ok for “high recall” tasks in other applications (e.g., Interpol)

I Zobel and Dart (1996) suggest better alternatives for phonetic matching in

IR.

33/35

References

Reading

1. Chapters 3 of Information Retrieval Book2

2Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze (2008). Introduction to

Information Retrieval. New York, NY, USA: Cambridge University Press.

34/35

References

Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schütze (2008).

Introduction to Information Retrieval. New York, NY, USA: Cambridge

University Press.

35/35

Questions?

cba

35/35

	Introduction
	Hash tables
	Search trees
	Permuterm index
	k-gram indexes
	Spelling correction
	Soundex
	References

