
Modern Information Retrieval

Neural information retrieval

Hamid Beigy

Sharif university of technology

January 6, 2023

Table of contents

1. Introduction

2. Gradient based learning

3. Activation function

4. Word embedding

5. Word2vec algorithm

6. Global Vectors for Word Representation

7. Term embeddings for IR

8. Summary

9. References

1/38

Introduction

What is a neuron?

1. Brain is a network of simple elements called neuron.

What is a neuron?

This is a real neuron!

Figure: Real Neuron - diagram

Figure: Real Neuron

The idea of neural networks began unsurprisingly as a model of how neurons in the brain
function, termed ‘connectionism’ and used connected circuits to simulate intelligent be-
haviour.

E. Scornet Deep Learning January 2020 18 / 118

2. The idea of neural networks began as a model of how neurons in the brain function and

used connected circuits to simulate intelligent behavior.

2/38

McCulloch and Pitts network (1943)

1. The first model of a neuron was invented by McCulloch (physiologists) and Pitts

(logician).

2. This neuron has two types of binary inputs:
I excitatory inputs (shown by a)
I Inhibitory inputs(shown by b)

3. The output is binary: fires (1) and not fires (0).

4. Until sum of inputs is less than a certain threshold level, output remains zero.

THE PERCEPTRON

The McCulloch-Pitts Neuron

• The first mathematical model of a neuron [Warren
McCulloch and Walter Pitts, 1943]

• Binary activation: fires (1) or not fires (0)

• Excitatory inputs: the a’s, and
Inhibitory inputs: the b’s

• Unit weights and fixed threshold µ

• Absolute inhibition

ct+1 =

8
><
>:

1 If
Pn

i=0 ai,t ∏ µ and b1,t = · · · = bm,t = 0

0 Otherwise

θ

.

.

.

.

.

.

ct+1

1

n

1

m

a

a

b

b
1

Computing with McCulloch-Pitts Neurons

2

1

2

a

a

AND

1

2

a

a

1 OR

1b 0 NOT

Any task or phenomenon that can be represented as

a logic function can be modelled by a network of

MP-neurons

• {OR, AND, NOT} is functionally complete

• Any Boolean function can be implemented using

OR, AND and NOT

• Canonical forms: CSOP or CPOS forms

• MP-neurons , Finite State Automata
2

Computing with McCulloch-Pitts Neurons

2

1

2

a

a

AND

1

2

a

a

1 OR

1b 0 NOT

Any task or phenomenon that can be represented as

a logic function can be modelled by a network of

MP-neurons

• {OR, AND, NOT} is functionally complete

• Any Boolean function can be implemented using

OR, AND and NOT

• Canonical forms: CSOP or CPOS forms

• MP-neurons , Finite State Automata
2

Computing with McCulloch-Pitts Neurons

2

1

2

a

a

AND

1

2

a

a

1 OR

1b 0 NOT

Any task or phenomenon that can be represented as

a logic function can be modelled by a network of

MP-neurons

• {OR, AND, NOT} is functionally complete

• Any Boolean function can be implemented using

OR, AND and NOT

• Canonical forms: CSOP or CPOS forms

• MP-neurons , Finite State Automata
2

3/38

Perceptron (Frank Rosenblat (1958))

1. McCulloch and Pitts neurons can not learn.

McCulloch and Pitts neuron - 1943

In 1943, portrayed with a simple electrical circuit by neurophysiologist Warren McCulloch
and mathematician Walter Pitts.

A McCulloch-Pitts neuron takes binary inputs, computes a weighted sum and returns 0 if
the result is below threshold and 1 otherwise.

Figure: [“A logical calculus of the ideas immanent in nervous activity”, McCulloch and Pitts 1943]

E. Scornet Deep Learning January 2020 19 / 118

2. Let y be the correct output, and f (x) the output function of the network. Perceptron

updates weights.

w
(t)
j ← w

(t)
j + αxj(y − f (x))

3. McCulloch and Pitts’ neuron is a better model for the electrochemical process inside the

neuron than the Perceptron.

4. But Perceptron is the basis and building block for the modern neural networks.

4/38

Problems with Perceptron (Minsky and Papert (1968))

1. Minsky and Papert published their book Perceptron.

2. The book shows that Perceptron could only solve linearly separable problems.

3. They showed that it is not possible for Perceptron to learn an XOR function.

Perceptron

X

Y

?

?
?

No solution for XOR!
Not universal!

• Minsky and Papert, 1968

74

Multi-layer Perceptron!

• XOR
– The first layer is a “hidden” layer
– Also originally suggested by Minsky and Paper 1968

76

1

1

1

-1

1

-1

X

Y

1

-1

2

Hidden Layer

4. The right network is called multilayer Perceptrons (MLP) network.

5. How do you learn a MLP network?

6. How many hidden layers do use in a MLP network?

7. How many hidden units in each hidden layer do use in a MLP network?

5/38

Gradient based learning

Multilayer Perceptrons

1. How do you learn the following Multilayer Perceptrons?

X
X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X

.22T 722/@7Q`r�`/ M2irQ`Fb

tR

tk

tj

t9

vR

vk

vj

2. What are deep networks and shallow networks? 6/38

Cost function

1. The goal of machine learning algorithms is to construct a model that can be used to

estimate y based on x .

2. Let the model be in form of

h(x) = w0 + w1x

3. The goal of creating a model is to choose parameters so that h(x) is close to y for the

training data, x and y .

4. We need a function that will minimize the parameters over our dataset. A function that is

often used is mean squared error,

J(w) =
1

2m

m∑

i=1

(h(xi)− yi)
2

5. How do we find the minimum value of cost function?

7/38

Gradient descent

1. Gradient descent is by far the most popular

optimization strategy, used in machine learning and

deep learning at the moment.

2. Cost (error) is a function of the weights

(parameters).

3. We want to reduce/minimize the error.

4. Gradient descent: move towards the error minimum.

5. Compute gradient, which implies get direction to

the error minimum.

6. Adjust weights towards direction of lower error.

8/38

Gradient descent (Linear Regression)

1. We have the following hypothesis and we need fit to the training data

h(x) = w0 + w1x

2. We use a cost function such Mean Squared Error

J(w) =
1

2m

m∑

i=1

(h(xi)− yi)
2

3. This cost function can be minimized using gradient descent.

w
(t+1)
0 = w

(t)
0 − α

∂J(w (t))

∂w0

w
(t+1)
1 = w

(t)
1 − α

∂J(w (t))

∂w1

α is step (learning) rate.

9/38

Gradient based learning for single unit

1. Considering the following single

neuron

McCulloch and Pitts neuron - 1943

In 1943, portrayed with a simple electrical circuit by neurophysiologist Warren McCulloch
and mathematician Walter Pitts.

A McCulloch-Pitts neuron takes binary inputs, computes a weighted sum and returns 0 if
the result is below threshold and 1 otherwise.

Figure: [“A logical calculus of the ideas immanent in nervous activity”, McCulloch and Pitts 1943]

E. Scornet Deep Learning January 2020 19 / 118

1. We want to train this neuron to

minimize the following cost function

J(w) =
1

2m

m∑

i=1

(h(x i)− y i)2

2. Considering the sigmoid activation

function f (z) = 1
1+e−z

−10 −5 5 10

0.2

0.4

0.6

0.8

1

x

y

3. We want to calculate ∂J(w)
∂wi

10/38

Training neuron with sigmoid activation(regression)

1. We want to calculate ∂J(w)
∂wi

2. By using the chain rule, we obtain

∂J(w)

∂wj
=
∂J(w)

∂f (z)
× ∂f (z)

∂z
× ∂z

∂wj

∂J(w)

∂f (z i)
=

1

m

m∑

i=1

(f (z i)− y i)

∂f (z)

∂z
=

e−z

(1 + e−z)2
= f (z)(1− f (z))

∂z

∂wj
= x j

w
(t+1)
j = w

(t)
j − α

∂J(w)

∂wj

α is the learning rate.

11/38

Training neuron with sigmoid activation(classification)

1. We want to train this neuron to minimize the following cost function

J(w) =
m∑

i=1

[
−y i ln h(x i)− (1− y i) ln(1− h(x i))

]

2. Computing the gradients of J(w) with respect to w , we obtain

∇J(w) =
m∑

i=1

y ix i (h(x i)− y i)

3. Updating the weight vector using the gradient descent rule will result in

w (t+1) = w (t) − α
m∑

i=1

y ix i (h(x i)− y i)

α is the learning rate.

12/38

Activation function

Identity activation function

−10 −5 5 10

−10

−5

5

10

x

y

−10 −5 5 10
−1

1

2

x

y

Properties of identity activation function

1. Output of this functions will not be confined

between any range.

2. It doesn’t help with the complexity or various

parameters of usual data that is fed to the neural

networks.

3. It doesn’t increase the complexity of hypothesis

space of neural network

13/38

Sigmoid activation function

−10 −5 5 10

0.2

0.4

0.6

0.8

1

x

y

−10 −5 5 10

0.2

0.4

0.6

0.8

1

x

y

Properties of sigmoid activation function

1. The sigmoid function is in interval (0, 1).

2. It is used to predict the probability as an output.

3. The function is differentiable.

4. The function is monotonic but its derivative is not.

5. This function can cause a neural network to get

stuck at the training time.

14/38

Hyperbolic tangent activation function

−10 −5 5 10

−1

−0.5

0.5

1

x

y

−10 −5 5 10

0.2

0.4

0.6

0.8

1

x

y

Properties Hyperbolic tangent activation function

1. The Tanh function is in interval (−1, 1).

2. It is used for classification of two classes.

3. The function is differentiable.

4. The function is monotonic but its derivative is not.

5. This function can cause a neural network to get

stuck at the training time.

6. Both tanh and logistic sigmoid activation functions

are used in feed-forward nets

15/38

Rectified linear unit activation function

−4 −2 2 4

2

4

x

y

−4 −2 2 4

0.2

0.4

0.6

0.8

1

x

y

Properties Rectified linear unit (ReLU)

1. The ReLU is the most used activation function in

the world right now.

2. The function is differentiable except at the origin.

3. The function and its derivative both are monotonic

4. All the negative values become zero immediately

which decreases the ability of the model to train

from the data properly.

16/38

Leaky ReLU activation function

−4 −2 2 4

2

4

x

y

−4 −2 2 4

0.2

0.4

0.6

0.8

1

x

y

Properties Leaky

1. The leaky ReLU helps to increase the range of the

ReLU function.

2. Usually, the value of a is 0.01. a is the slope of

negative part.

3. When a 6= 0.01, then it is called Randomized ReLU.

4. Both Leaky and Randomized ReLU functions are

monotonic in nature. Also, their derivatives

monotonic in nature.

17/38

Word embedding

Introduction

1. How do you represent a word?

I Represent words as atomic symbols such as talk, university, building.
I Represent word as a one-hot vector such as

university = (0
egg

, 0
student

, 0
talk

, 1
university

, 0
building

, . . . , 0
buy

)

2. Issues with on-hot representation

I How large is this vector? dimensionality is large; vector is sparse
I Representing new words (any idea?).
I How measure word similarity?

18/38

Distributional representation

1. Local versus distributional representation28 Unsupervised learning of term representations

banana

mango

dog

(a) Local representation

banana

mango

dog
fruit elongate ovatebarks has tail

(b) Distributed representation

Figure 3.1: Under local representations the terms “banana”, “mango”, and “dog”
are distinct items. But distributed vector representations may recognize that “banana”
and “mango” are both fruits, but “dog” is di�erent.

terms “mango” and “dog” are represented by setting di�erent positions in the
vector to one. Figure 3.1a highlights that under this scheme each term is a
unique entity, and “banana” is as distinct from “dog” as it is from “mango”.
Terms outside of the vocabulary either have no representation or are denoted
by a special “UNK” symbol under this scheme.

Distributed representations Under distributed representations every term
is represented by a vector v̨ œ R|k|. v̨ can be a sparse or a dense vector—a vector
of hand-crafted features or a latent representation in which the individual
dimensions are not interpretable in isolation. The key underlying hypothesis
for any distributed representation scheme, however, is that by representing a
term by its attributes allows for defining some notion of similarity between the
di�erent terms based on the chosen properties. For example, in Figure 3.1b
“banana” is more similar to “mango” than “dog” because they are both fruits,
but yet di�erent because of other properties that are not shared between the
two, such as shape.

Under a local or one-hot representation ev-
ery item is distinct. But when items have dis-

tributed or feature based representation, then the
similarity between two items is determined based
on the similarity between their features.

A key consideration in any feature based distributed representation is the
choice of the features themselves. One approach involves representing terms
by features that capture their distributional properties. This is motivated by

2. Linguistic items with similar distributions have similar meanings (words occur in the same

contexts probably have similar meaning).

university = (0.2
egg
, 0.1
student

, 0.12
talk

, 0.38
university

, 0.2
building

, . . . , 0.12
buy

)

3. Word meanings are vector of basic concept.

4. What are basic concept?

5. How to assign weights?

6. How to define the similarity/distance?

19/38

How to use word vectors?

1. Distance/similarity

Cosine similarity Word vector are normalized by length

cos(u, v) =
〈u, v〉
‖u‖‖v‖

Euclidean distance

d(u, v) = ‖u− v‖2

Inner product This is same as cosine similarity if

vectors are normalized

d(u, v) = 〈u, v〉

2. Choosing the right similarity metric is important. 13

Preliminaries
Distributed representations

I Represent units, e.g., words, as vectors

I Goal: words that are similar, e.g., in terms of
meaning, should get similar embeddings

Cosine similarity to determine how similar two vectors
are:

cosine(~v, ~w) =
~v> · ~w
k~vk2k~wk2

=

P|v|
i=1 vi · wiqP|v|

i=1 v2
i

qP|w|
i=1 w2

i

newspaper = <0.08, 0.31, 0.41>

magazine = <0.09, 0.35, 0.36>

biking = <0.59, 0.25, 0.01>

20/38

How to learn word vectors?

1. What are basic concept?

I We want that the number of basic concepts to be small and
I Basis be orthogonal

2. How to assign weights?

3. How to define the similarity/distance such as cosine similarity?

21/38

Term-document incidence matrix

Example

Anthony and Julius The Hamlet Othello Macbeth . . .

Cleopatra Caesar Tempest

Anthony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

. . .

Entry is 1 if term occurs. Example: Calpurnia occurs in Julius Caesar.

Entry is 0 if term doesn’t occur. Example: Calpurnia doesn’t occur in Tempest.

Each term is represented as a vector of bits.

22/38

Term weighting

1. Evaluation of how important a term is with respect to a document.

2. First idea: the more important a term is, the more often it appears: term frequency

tft,d =
∑

x∈d

ft(x) where ft(x) =

{
1 if x = t

0 otherwise

3. The order of terms within a doc is ignored

23/38

Inverse Document Frequency

1. Inverse document frequency of a term t:

idft = log
N

dft
with N = collection size

2. Rare terms have high idf , contrary to frequent terms

3. Example (Reuters collection):

Term t dft idft

car 18165 1.65

auto 6723 2.08

insurance 19241 1.62

best 25235 1.5

4. In tf-idf weighting, the weight of a term is computed using both tf and idf :

w(t, d) = tft,d × idft called tf − idft,d

24/38

Dimensionality reduction

1. we don’t need all of the dimensions that represent a word, only the most important ones.

2. There are several techniques such as

I Principle Component Analysis (PCA): The most important dimensions contain the most

variance
I Latent Semantic Analysis (LSA): Project terms and documents into a topic space using SVD

on term-document (co-occurrence) matrix.
I Low-rank Approximation

3. Can we learn the dimensionality reduction from texts?

25/38

Word2vec algorithm

Word2vec algorithm

1. Proposed by Mikolov et. al. and widely used for many NLP applications (Mikolov, Chen,

et al. 2013; Mikolov, Sutskever, et al. 2013).

2. Key features

I Uses neural networks to train word / context classifiers (feed-forward neural net)
I Uses local context windows (environment around any word in a corpus) as inputs to the NN
I Removed hidden layer.
I Use of additional context for training LM’s.
I Introduced newer training strategies using huge database of words efficiently.

3. In (Mikolov, Chen, et al. 2013), they proposed two architectures for learning word

embeddings that are computationally less expensive than previous models.

4. In (Mikolov, Sutskever, et al. 2013), they improved upon these models by employing

additional strategies to enhance training speed and accuracy.

26/38

Continuous Bag-of-Words

1. Mikolov et al. thus used both the n words

before and after the target word wt to predict

it.

2. They called this continuous bag-of-words

(CBOW), as it uses continuous representations

whose order is of no importance.

3. The objective function of CBOW in turn is

l(θ)=
∑

t∈Text

log P(wt |wt−n, · · · ,wt−1,wt+1, · · · ,wt+n)

CBOW

Input layer

Hidden layer Output layer

WV×N

WV×N

WV×N

W'N×V yjhix2k

x1k

xCk

C×V-dim

N-dim
V-dim

source: ”word2vec parameter learning explained.” ([4])27/38

Continuous Bag-of-Words

1. Let vocabulary size be V and hidden layer size be N.

2. The input is a one-hot encoded vector x = (x1, . . . , xV).

Input layer Hidden layer Output layer
x1
x2
x3

xk

xV

y1
y2
y3

yj

yV

h1
h2
hi

hN
WV×N={wki} W'N×V={w'ij}

Figure 1: A simple CBOW model with only one word in the context

layers are fully connected. The input is a one-hot encoded vector, which means for a given
input context word, only one out of V units, {x1, · · · , xV }, will be 1, and all other units
are 0.

The weights between the input layer and the output layer can be represented by a
V ⇥ N matrix W. Each row of W is the N -dimension vector representation vw of the
associated word of the input layer. Formally, row i of W is vT

w. Given a context (a word),
assuming xk = 1 and xk0 = 0 for k0 6= k, we have

h = WTx = WT
(k,·) := vT

wI
, (1)

which is essentially copying the k-th row of W to h. vwI is the vector representation of the
input word wI . This implies that the link (activation) function of the hidden layer units is
simply linear (i.e., directly passing its weighted sum of inputs to the next layer).

From the hidden layer to the output layer, there is a di↵erent weight matrix W0 = {w0
ij},

which is an N ⇥ V matrix. Using these weights, we can compute a score uj for each word
in the vocabulary,

uj = v0
wj

T
h, (2)

where v0
wj

is the j-th column of the matrix W0. Then we can use softmax, a log-linear
classification model, to obtain the posterior distribution of words, which is a multinomial
distribution.

p(wj |wI) = yj =
exp(uj)PV

j0=1 exp(uj0)
, (3)

where yj is the output of the j-the unit in the output layer. Substituting (1) and (2) into

2

3. Weights between input layer and hidden layer is represented by V × N matrix W.

4. Each row of W is the N-dimension vector representation vwI
of the input word.

5. Let xk = 1 and xj = 0 for j 6= k , then

h= W>x = v>wI

6. This implies that activation function of the hidden layer units is simply linear.

7. Weights between hidden layer and output layer is represented by N × V matrix W′.

28/38

Continuous Bag-of-Words

1. Using these weights, we can compute a score uj for each word in the vocabulary.

uj= v′>wj
h

where v′wj
is the j-th column of the matrix W′

2. Then, softmax is used to obtain the posterior distribution of words.

p(wj |wI) = yj =
exp(uj)∑V
k=1 exp(uk)

where yj is the output of the j-the unit in the output layer.

3. By replacing the above two equation, we obtain

p(wj |wI) =
exp(v

′>
wj

vwI
)

∑V
k=1 exp(v′>wk

vwI
)

4. Note that vw and v′w are two representations of the word w .

5. They are called input vector, and output vector of the word w .

29/38

Skip-gram

1. Instead of using the surrounding words to

predict the center word as with CBOW,

skip-gram uses the center word to predict

the surrounding words.

2. The skip-gram objective thus sums the log

probabilities of the surrounding n words to

the left and to the right of the target word

wt to produce the following objective

function.

l(θ) =
∑

t∈Text

∑

−n≤j≤n, j 6=0

log P(wt+j |wt)

Skip Gram: Think of it as a Neural Network

Learn W and W’ in order to maximize previous objective

Input layer
Hidden layer

Output layer

WV×N!

W'N×V!

C×V-dim!

N-dim!
V-dim!

xk! hi! W'N×V!

W'N×V!

y2,j!

y1,j!

yC,j!

source: ”word2vec parameter learning explained.” ([4])
30/38

Skip-gram (calculating the output)

1. Let vocabulary size be V and hidden layer size be N.

2. The input is a one-hot encoded vector x = (x1, . . . , xV).

3. Weights between input layer and hidden layer is represented by V × N matrix W.

4. Each row of W is the N-dimension vector representation vwI
of the input word.

h= W>x = v>wI

5. On the output layer, instead of outputting one multinomial distribution, C -multinomial

distributions are output.

6. Each output is computed using the same hidden-output

p(wc,j = wo,c |wI)= yc,j =
exp(uc,j)∑V
k=1 exp(uk)

where wc,j is the j-th word on the c-th panel of output layer and wo,c is the actual c-th

word in the output context words.

31/38

Global Vectors for Word Representation

Global Vectors for Word Representation

1. Skip-gram doesn’t utilize the statistics of corpus since they train on separate local context

windows instead of on global co-occurrence counts.

2. The statistics of word occurrences in a corpus is the primary source of information

available to all unsupervised methods for learning word representations.

3. Glove model aims to combine the count-based matrix factorization and the context-based

skip-gram model together (Pennington, Socher, and Manning 2014).

4. Let Xij be the number of times word j occurs in the context of word i .

5. Let Xi =
∑

k Xik be the number of times any word appears in context of word i .

6. Let Pij = P(j |i) =
Xij

Xi
be the probability that word j appear in context of word i .

32/38

Global Vectors for Word Representation

1. Co-occurrence probabilities for target words ice and steam with selected context words

from a 6 billion token corpus.

Table 1: Co-occurrence probabilities for target words ice and steam with selected context words from a 6
billion token corpus. Only in the ratio does noise from non-discriminative words like water and fashion
cancel out, so that large values (much greater than 1) correlate well with properties specific to ice, and
small values (much less than 1) correlate well with properties specific of steam.

Probability and Ratio k = solid k = gas k = water k = fashion

P(k |ice) 1.9 ⇥ 10�4 6.6 ⇥ 10�5 3.0 ⇥ 10�3 1.7 ⇥ 10�5

P(k |steam) 2.2 ⇥ 10�5 7.8 ⇥ 10�4 2.2 ⇥ 10�3 1.8 ⇥ 10�5

P(k |ice)/P(k |steam) 8.9 8.5 ⇥ 10�2 1.36 0.96

context of word i.
We begin with a simple example that showcases

how certain aspects of meaning can be extracted
directly from co-occurrence probabilities. Con-
sider two words i and j that exhibit a particular as-
pect of interest; for concreteness, suppose we are
interested in the concept of thermodynamic phase,
for which we might take i = ice and j = steam.
The relationship of these words can be examined
by studying the ratio of their co-occurrence prob-
abilities with various probe words, k. For words
k related to ice but not steam, say k = solid, we
expect the ratio Pik/Pjk will be large. Similarly,
for words k related to steam but not ice, say k =
gas, the ratio should be small. For words k like
water or fashion, that are either related to both ice
and steam, or to neither, the ratio should be close
to one. Table 1 shows these probabilities and their
ratios for a large corpus, and the numbers confirm
these expectations. Compared to the raw probabil-
ities, the ratio is better able to distinguish relevant
words (solid and gas) from irrelevant words (water
and fashion) and it is also better able to discrimi-
nate between the two relevant words.

The above argument suggests that the appropri-
ate starting point for word vector learning should
be with ratios of co-occurrence probabilities rather
than the probabilities themselves. Noting that the
ratio Pik/Pjk depends on three words i, j, and k,
the most general model takes the form,

F (wi ,w j , w̃k) =
Pik

Pjk
, (1)

where w 2 Rd are word vectors and w̃ 2 Rd
are separate context word vectors whose role will
be discussed in Section 4.2. In this equation, the
right-hand side is extracted from the corpus, and
F may depend on some as-of-yet unspecified pa-
rameters. The number of possibilities for F is vast,
but by enforcing a few desiderata we can select a
unique choice. First, we would like F to encode

the information present the ratio Pik/Pjk in the
word vector space. Since vector spaces are inher-
ently linear structures, the most natural way to do
this is with vector differences. With this aim, we
can restrict our consideration to those functions F
that depend only on the difference of the two target
words, modifying Eqn. (1) to,

F (wi � w j , w̃k) =
Pik

Pjk
. (2)

Next, we note that the arguments of F in Eqn. (2)
are vectors while the right-hand side is a scalar.
While F could be taken to be a complicated func-
tion parameterized by, e.g., a neural network, do-
ing so would obfuscate the linear structure we are
trying to capture. To avoid this issue, we can first
take the dot product of the arguments,

F
⇣
(wi � w j)T w̃k

⌘
=

Pik

Pjk
, (3)

which prevents F from mixing the vector dimen-
sions in undesirable ways. Next, note that for
word-word co-occurrence matrices, the distinction
between a word and a context word is arbitrary and
that we are free to exchange the two roles. To do so
consistently, we must not only exchange w $ w̃

but also X $ XT . Our final model should be in-
variant under this relabeling, but Eqn. (3) is not.
However, the symmetry can be restored in two
steps. First, we require that F be a homomorphism
between the groups (R,+) and (R>0,⇥), i.e.,

F
⇣
(wi � w j)T w̃k

⌘
=

F (wT
i w̃k)

F (wT
j w̃k)

, (4)

which, by Eqn. (3), is solved by,

F (wT
i w̃k) = Pik =

Xik

Xi
. (5)

The solution to Eqn. (4) is F = exp, or,

wT
i w̃k = log(Pik) = log(Xik) � log(Xi) . (6)

2. Considering two words i = ice and j = steam and study their relationship using various

probe words, k .

3. For words k related to ice but not steam, say k = solid , we expect the ratio Pik

Pjk
will be

large.

4. For words k related to steam but not ice, say k = gas, we expect the ratio Pik

Pjk
will be

small.

5. For words k like water or fashion, that are either related to both ice and steam, or to

neither, the ratio should be close to one.

6. Glove uses these global information to learn word representation.

33/38

Term embeddings for IR

Introduction

1. Traditional IR models use local representations of terms for query-document matching.

2. The most straight-forward use case for term embeddings in IR is to enable inexact

matching in the embedding space.

3. These approaches can be broadly categorized as (Mitra and Craswell 2018)

I Methods comparing the query with the document directly in the embedding space,
I Methods using embeddings to generate suitable query expansion candidates from a global

vocabulary and then perform retrieval based on the expanded query.

34/38

Query-document matching

1. These methods

Query embedding finds the term embedding for each query term, and then aggregate

these embedding using average word/ term embeddings.

Document embedding finds the term embedding for each document term, and then

aggregate these embedding using average word/ term embeddings.

Query-document mathcing The query and the document embeddings can be compared

using a variety of similarity metrics, such as cosine similarity or dot-product.

2. The term embeddings must be appropriate for the retrieval scenario.

3. The following embeddings are common.

I LSA
I word2vec
I GloVe

35/38

Query expansion

1. Instead of comparing the query and the document directly in the embedding space, an

alternative approach is to use term embeddings to find good expansion candidates from a

global vocabulary, and then retrieving documents using the expanded query.

2. Different functions have been proposed for estimating the relevance of candidate terms to

the query.

3. This approach involves comparing the candidate term individually to every query term

using their vector representations, and then aggregating the scores.

4. For example,

score(tc , q) =
1

|q|
∑

tq∈q
cos(vtc , vtq)

5. Term embedding based query expansion performs worse than pseudo-relevance feedback.

6. But it has better performances when used in combination with pseudo-relevance feedback.

36/38

Summary

Query expansion

1. In information retrieval, deep learning can be used for

I distributed representations of documents and queries,
I learn to match models by/ without using relevance feedback,
I learn to rank,
I entity linking/resolution,
I recommender systems,
I sentiment analysis,
I expertise retrieval,

37/38

References

References

Mikolov, Tomas, Kai Chen, et al. (2013). “Efficient Estimation of Word Representations in

Vector Space”. In: Proc. of International Conference on Learning Representations (ICLR).

Mikolov, Tomas, Ilya Sutskever, et al. (2013). “Distributed Representations of Words and

Phrases and their Compositionality”. In: Proc. of Advances in Neural Information Processing

Systems, pp. 3111–3119.

Mitra, Bhaskar and Nick Craswell (2018). “An Introduction to Neural Information Retrieval”.

In: Foundations and Trends in Information Retrieval 13.1, pp. 1–126.

Pennington, Jeffrey, Richard Socher, and Christopher D. Manning (2014). “Glove: Global

Vectors for Word Representation”. In: Proc. of Advances in Neural Information Processing

Systems, pp. 1532–1543.

38/38

Questions?

38/38

	Introduction
	Gradient based learning
	Activation function
	Word embedding
	Word2vec algorithm
	Global Vectors for Word Representation
	Term embeddings for IR
	Summary
	References

