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Anchor text



The web as a directed graph

The web as a directed graph

page d1 anchor text page d2
hyperlink

Assumption 1: A hyperlink is a quality signal.
The hyperlink d1 → d2 indicates that d1’s author deems d2
high-quality and relevant.

Assumption 2: The anchor text describes the content of d2.
We use anchor text somewhat loosely here for: the text
surrounding the hyperlink.
Example: “You can find cheap cars <a
href=http://...>here</a>.”

Anchor text: “You can find cheap cars here”
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1. Assumption 1: A hyperlink is a quality signal.
▶ The hyperlink d1 → d2 indicates that d1’s author seems d2 high-quality and relevant.

2. Assumption 2: The anchor text describes the content of d2.
▶ We use anchor text somewhat loosely here for the text surrounding the hyperlink.
▶ Example: You can find cheap cars <a href=http://...>here</a>.’
▶ Anchor text: You can find cheap cars here.
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[text of d2] only vs. [text of d2] + [anchor text→ d2]

1. Searching on [text of d2] +[anchor text→ d2] is often more effective than searching
on [text of d2] only.

2. Example: Query IBM
▶ Matches IBM’s copyright page
▶ Matches many spam pages
▶ Matches IBM wikipedia article
▶ May not match IBM home page! if IBM home page is mostly graphics

3. Searching on [anchor text→ d2] is better for the query IBM.
▶ In this representation, the page with the most occurrences of IBM is www.ibm.com.
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Anchor text containing IBM pointing to www.ibm.com

Anchor text containing IBM pointing to www.ibm.com

www.nytimes.com: “IBM acquires Webify”

www.slashdot.org: “New IBM optical chip”

www.stanford.edu: “IBM faculty award recipients”

wwww.ibm.com
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1. Anchor text is often a better description of a page’s content than the page itself.
2. Anchor text can be weighted more highly than document text. (based on
Assumptions 1&2)
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Assumptions underlying PageRank

1. Assumption 1: A link on the web is a quality signal –the author of the link thinks that
the linked-to page is high-quality.

2. Assumption 2: The anchor text describes the content of the linked-to page.
3. Is assumption 1 true in general?
4. Is assumption 2 true in general?
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Citation analysis



Origins of PageRank: Citation analysis

1. Citation analysis: analysis of citations in the scientific literature
2. Example citation: “Miller (2001) has shown that physical activity alters the
metabolism of estrogens.”

3. We can view “Miller (2001)” as a hyperlink linking two articles.
4. An application: Citation frequency can be used to measure the impact of a scientific
article.

▶ Simplest measure: Each citation gets one vote.
▶ On the web: citation frequency = inlink count

5. However: A high inlink count does not necessarily mean high quality mainly because
of link spam.

6. Better measure: weighted citation frequency or citation rank
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PageRank



Model behind PageRank: Random walk

1. Imagine a web surfer doing a random walk on the web
▶ Start at a random page
▶ At each step, go out of the current page along one of the links on that page, equiprobably

2. In the steady state, each page has a long-term visit rate.
3. This long-term visit rate is the page’s PageRank.
4. PageRank = long-term visit rate = steady state probability
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Formalization of random walk: Markov chains

1. A Markov chain consists of N states, plus an N× N transition probability matrix P.
2. state = page
3. At each step, we are on exactly one of the pages.
4. For 1 ≤ i, j ≤ N, the matrix entry Pij tells us the probability of j being the next page,
given we are currently on page i.

5. Clearly, for all i,
∑N

j=1 Pij = 1

Formalisation of random walk: Markov chains

A Markov chain consists of N states, plus an N ×N transition
probability matrix P .

state = page

At each step, we are on exactly one of the pages.

For 1 ≤ i , j ≤ N, the matrix entry Pij tells us the probability
of j being the next page, given we are currently on page i .

Clearly, for all i,
∑N

j=1 Pij = 1

di dj
Pij
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Example web graph

Example web graph
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PageRank
d0 0.05
d1 0.04
d2 0.11
d3 0.25
d4 0.21
d5 0.04
d6 0.31

PageRank(d2)< PageRank(d6)

why?
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Link matrix for example

d0 d1 d2 d3 d4 d5 d6
d0 0 0 1 0 0 0 0
d1 0 1 1 0 0 0 0
d2 1 0 1 1 0 0 0
d3 0 0 0 1 1 0 0
d4 0 0 0 0 0 0 1
d5 0 0 0 0 0 1 1
d6 0 0 0 1 1 0 1
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Transition probability matrix P for example

d0 d1 d2 d3 d4 d5 d6
d0 0.00 0.00 1.00 0.00 0.00 0.00 0.00
d1 0.00 0.50 0.50 0.00 0.00 0.00 0.00
d2 0.33 0.00 0.33 0.33 0.00 0.00 0.00
d3 0.00 0.00 0.00 0.50 0.50 0.00 0.00
d4 0.00 0.00 0.00 0.00 0.00 0.00 1.00
d5 0.00 0.00 0.00 0.00 0.00 0.50 0.50
d6 0.00 0.00 0.00 0.33 0.33 0.00 0.33
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Long-term visit rate

1. Recall: PageRank = long-term visit rate
2. Long-term visit rate of page d is the probability that a web surfer is at page d at a
given point in time.

3. Next: what properties must hold of the web graph for the long-term visit rate to be
well defined?

4. The web graph must correspond to an ergodic Markov chain.
5. First a special case: The web graph must not contain dead ends.
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Dead ends

Dead ends

??

The web is full of dead ends.

Random walk can get stuck in dead ends.

If there are dead ends, long-term visit rates are not
well-defined (or non-sensical).
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1. The web is full of dead ends.
2. Random walk can get stuck in dead ends.
3. If there are dead ends, long-term visit rates are not well-defined.
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Teleporting – to get us out of dead ends

1. At a dead end, jump to a random web page with prob. 1/N.
2. At a non-dead end, with probability 10%, jump to a random web page (to each with a
probability of 0.1/N).

3. With remaining probability (90%), go out on a random hyperlink.
▶ For example, if the page has 4 outgoing links: randomly choose one with probability
(1-0.10)/4=0.225

4. 10% is a parameter, the teleportation rate.
5. Note: “jumping” from dead end is independent of teleportation rate.
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Result of teleporting

1. With teleporting, we cannot get stuck in a dead end.
2. But even without dead ends, a graph may not have well-defined long-term visit rates.
3. More generally, we require that the Markov chain be ergodic.
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Ergodic Markov chains

1. A Markov chain is ergodic iff it is irreducible and aperiodic.
2. Irreducibility. Roughly: there is a path from any page to any other page.
3. Aperiodicity. Roughly: The pages cannot be partitioned such that the random walker
visits the partitions sequentially.
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Ergodic Markov chains

Theorem (Ergodic Markov chains)
For any ergodic Markov chain, there is a unique long-term visit rate for each state.

1. This is the steady-state probability distribution.
2. Over a long time period, we visit each state in proportion to this rate.
3. It doesn’t matter where we start.
4. Teleporting makes the web graph ergodic.
5. ⇒ Web-graph+teleporting has a steady-state probability distribution.
6. ⇒ Each page in the web-graph+teleporting has a PageRank.
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Formalization of “visit”: Probability vector

1. A probability (row) vector x⃗ = (x1, . . . , xN) tells us where the random walk is at any
point.

2. Example: ( 0 0 0 … 1 … 0 0 0 )
1 2 3 … i … N-2 N-1 N

3. More generally: the random walk is on page i with probability xi.

4. Example: ( 0.05 0.01 0.0 … 0.2 … 0.01 0.05 0.03 )
1 2 3 … i … N-2 N-1 N

5.
∑
xi = 1
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Change in probability vector

1. If the probability vector is x⃗ = (x1, . . . , xN) at this step, what is it at the next step?
2. Recall that row i of the transition probability matrix P tells us where we go next from
state i.

3. So from x⃗, our next state is distributed as x⃗P.
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Steady state in vector notation

1. The steady state in vector notation is simply a vector π⃗ = (π1, π2, . . . , πN) of
probabilities.

2. (We use π⃗ to distinguish it from the notation for the probability vector x⃗.)
3. πi is the long-term visit rate (or PageRank) of page i.
4. So we can think of PageRank as a very long vector – one entry per page.

20/35



Steady-state distribution: Example

▶ What is the PageRank / steady state in this example?

Steady-state distribution: Example

What is the PageRank / steady state in this example?

d1 d2
0.75

0.25

0.25 0.
75

36 / 80
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Steady-state distribution: Example

x1 x2
Pt(d1) Pt(d2)

P11 = 0.25 P12 = 0.75
P21 = 0.25 P22 = 0.75

t0 0.25 0.75 0.25 0.75
t1 0.25 0.75 (convergence)

PageRank vector = π⃗ = (π1, π2) = (0.25, 0.75) Pt(d1) = Pt−1(d1) ∗ P11 + Pt−1(d2) ∗ P21

Pt(d2) = Pt−1(d1) ∗ P12 + Pt−1(d2) ∗ P22
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How do we compute the steady state vector?

▶ In other words: how do we compute PageRank?
▶ Recall: π⃗ = (π1, π2, . . . , πN) is the PageRank vector.
▶ If the distribution in this step is x⃗, then the distribution in the next step is x⃗P.
▶ But π⃗ is the steady state!
▶ So: π⃗ = π⃗P
▶ Solving this matrix equation gives us π⃗.
▶ π⃗ is the principal left eigenvector for P, that is, π⃗ is the left eigenvector with the
largest eigenvalue.

λπ⃗ = π⃗P

▶ All transition probability matrices have largest eigenvalue 1.
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One way of computing the PageRank π⃗

▶ Start with any distribution x⃗, e.g., uniform distribution
▶ After one step, we’re at x⃗P.
▶ After two steps, we’re at x⃗P2.
▶ After k steps, we’re at x⃗Pk.
▶ Algorithm: multiply x⃗ by increasing powers of P until convergence.
▶ This is called the power method.
▶ Recall: regardless of where we start, we eventually reach the steady state π⃗.
▶ Thus: we will eventually (in asymptotia) reach the steady state.

24/35



Power method: Example

▶ What is the PageRank / steady state in this example?

Steady-state distribution: Example

What is the PageRank / steady state in this example?

d1 d2
0.75

0.25

0.25 0.
75
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▶ The steady state distribution (= the PageRanks) in this example are 0.25 for d1 and
0.75 for d2.
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HITS: Hubs & Authorities



HITS – Hyperlink-Induced Topic Search

▶ Premise: there are two different types of relevance on the web.
▶ Relevance type 1: Hubs. A hub page is a good list of [links to pages answering the
information need].

▶ Relevance type 2: Authorities. An authority page is a direct answer to the information
need.

▶ Most approaches to search (including PageRank ranking) don’t make the distinction
between these two very different types of relevance.
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Hubs and authorities: Definition

1. A good hub page for a topic links to many authority pages for that topic.
2. A good authority page for a topic is linked by many hub pages for that topic.
3. Circular definition – we will turn this into an iterative computation.

27/35



Example for hubs and authoritiesExample for hubs and authorities

hubs authorities

www.bestfares.com

www.airlinesquality.com

blogs.usatoday.com/sky

aviationblog.dallasnews.com

www.aa.com

www.delta.com

www.united.com
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How to compute hub and authority scores

1. Do a regular web search first
2. Call the search result the root set
3. Find all pages that are linked to or link to pages in the root set
4. Call this larger set the base set
5. Finally, compute hubs and authorities for the base set (which we’ll view as a small
web graph)
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Root set and base set

Root set and base set (1)

base set

root set

The root set Nodes that root set nodes link to Nodes that link to
root set nodes The base set

58 / 80
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Root set and base set

1. Root set typically has 200–1000 nodes.
2. Base set may have up to 5000 nodes.
3. Computation of base set, as shown on previous slide:

▶ Follow outlinks by parsing the pages in the root set
▶ Find d’s inlinks by searching for all pages containing a link to d
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Hub and authority scores

1. Compute for each page d in the base set a hub score h(d) and an authority score a(d)
2. Initialization: for all d: h(d) = 1, a(d) = 1
3. Iteratively update all h(d),a(d)
4. After convergence:

▶ Output pages with highest h scores as top hubs
▶ Output pages with highest a scores as top authorities
▶ So we output two ranked lists
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Iterative update

1. For all d: h(d) =
∑

d 7→y a(y)
2. For all d: a(d) =

∑
y7→d h(y)

3. Iterate these two steps until convergence
4. Scaling

▶ To prevent the a() and h() values from getting too big, can scale down after each iteration
▶ Scaling factor doesn’t really matter.
▶ We care about the relative (as opposed to absolute) values of the scores.

5. In most cases, the algorithm converges after a few iterations.
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Reading

1. Chapter 21 of Introduction to Information Retrieval2

2Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze (2008). Introduction to Information
Retrieval. New York, NY, USA: Cambridge University Press.
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Questions?
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