
Modern Information Retrieval

Web cralwing and search

Hamid Beigy

Sharif university of technology

December 25, 2022

Table of contents

1. Introduction

2. Duplicate detection

3. Spam pages

4. Web IR

5. Size of the web

6. Web crawler

7. A real crawler

8. References

1/44

Introduction

Web Search

Web search overview

10 / 123

2/44

Web Search

The World Wide Web is huge.

1. 100,000 indexed pages in1994.

2. 10,000,000,000’s indexed pages in 2013.

3. 30 trillion pages in the Google Index in 2022 (100 million gigabytes).

4. Most queries will return millions of pages with high similarity.

5. Content(text) alone cannot discriminate.

6. Use the structure of the Web(a graph).

7. Gives indications of usefulness of each page.

3/44

Without web search engines

1. Without search, content is hard to find.

2. Without search, there is no incentive to create content.

I Why publish something if nobody will read it?
I Why publish something if I don’t get ad revenue from it?

3. Somebody needs to pay for the web.

I Servers, web infrastructure, content creation
I A large part today is paid by search ads.
I Search pays for the web.

4. On the web, search is not just a nice feature, search is a key enabler of the web.

4/44

Google (1998)

5/44

Results of a query

Web pages (left) and ads (right)Two ranked lists: web pages (left) and ads (right)

SogoTrade ap-
pears in search
results.

SogoTrade ap-
pears in ads.

Do search engines
rank advertis-
ers higher than
non-advertisers?

All major search
engines claim no.

20 / 123
6/44

Duplicate detection

Duplicate detection

1. The web is full of duplicated content (30%–40%).

2. More so than many other collections

3. Exact duplicates (easy to eliminate by using hash/fingerprint)

4. Near-duplicates (difficult to eliminate)

5. For the user, it’s annoying to get a search result with near-identical documents.

6. We need to eliminate near-duplicates.

7/44

Detecting near-duplicates

1. Computing similarity with an edit-distance measure

2. We want syntactic (as opposed to semantic) similarity.

True semantic similarity (similarity in content) is too difficult to compute.

3. We do not consider documents near-duplicates if they have the same content, but

express it with different words.

4. Use similarity threshold θ to make the call is/isn’t a near-duplicate.

For example, two documents are near-duplicates if similarity > θ = 80%.

8/44

Represent each document as set of shingles

I A shingle is simply a word n-gram.

I Shingles are used as features to measure syntactic similarity of documents.

I For example, for n = 3, a rose is a rose is a rose would be represented as this set

of shingles:

{ a-rose-is, rose-is-a, is-a-rose }
I Let U be a set and A and B be subsets of U, then the Jaccard coefficient is

defined as

J(A,B) =
|A ∩ B|
|A ∪ B|

I Computing the Jaccard coefficient for two documents needs high computation

time.

I We define the similarity of two documents as the Jaccard coefficient of their

shingle sets.

I To avoid this, we use a form of hashing.

I We map every shingle into a hash value over large space (for example 64-bits).

9/44

Detecting near-duplicates (Hashing)

This needs long time to compute, because it needs to hash all shingles.

10/44

MinHash

1. MinHash uses constant storage independent of the document length and

producing a good estimate of our similarity measure.

2. This approach maps each document to a fixed-size set of hashes as a rough

signature of this document.

3. This is accomplished by using a set of k randomizing hash functions.

4. For each randomizing hash function πi , we pass the entire document’s phrase

hashes through to get a minimum hash denoted mi .

11/44

MinHash

1. The signature of the document is now the ordered list of these minimum hashes

m0 through mk−1.

2. This method achieves an approximation to Jaccard similarity (the given

probability).

12/44

MinHash

Step 3: Estimate the Jaccard similarity JS(Si, Sj) as

ĴS(Si, Sj) =

(
1 m(Si) = m(Sj)

0 otherwise.

Lemma 5.3.1. Pr[m(Si) = m(Sj)] = E[ĴS(Si, Sj)] = JS(Si, Sj).

Proof. There are three types of rows.

(Tx) There are x rows with 1 in both column
(Ty) There are y rows with 1 in one column and 0 in the other
(Tz) There are z rows with 0 in both column

The total number of rows is x + y + z. The Jaccard similarity is precisely JS(Si, Sj) = x/(x + y). (Note
that usually z � x, y (mostly empty) and we can ignore these.)

Let row r be the min{m(Si), m(Sj)}. It is either type (Tx) or (Ty), and it is (Tx) with probability exactly
x/(x + y), since the permutation is random. This is the only case that m(Si) = m(Sj), otherwise Si or Sj

has 1, but not both.

Thus this approach only gives 0 or 1, but has the right expectation. To get a better estimate, we need
to repeat this several (k) times. Consider k random permutations {m1, m2, . . . , mk} and also k random
variables {X1, X2, . . . , Xk} (and {Y1, Y2, . . . , Yk}) where

X` =

(
1 if m`(Si) = m`(Sj)

0 otherwise.

and Y` = (1/k)(X` � JS(Si, Sj)). Let M =
Pk

`=1 Y` and A =
Pk

`=1 X`. Note that �1 X` 1 and
E[M] = 0. We can now apply Theorem 3.1.2 with �i = 1 and r = k = (2/"2) ln(2/�) to say

Pr[|JS(Si, Sj)�A| < "] > 1� �.

That is, the Jaccard similarity is within " error with probability at least 1 � � if we repeat this k =
(2/"2) ln(2/�) times.

5.3.1 Fast Min Hashing Algorithm
This is still too slow. We need to construct the full matrix, and we need to permute it k times. A faster way
is the min hash algorithm.

Make one pass over the data. Let N = |E|. Maintain k random hash functions {h1, h2, . . . , hk} so
hi : E! [N] at random. An initialize k counters at {c1, c2, . . . , ck} so ci =1.

Algorithm 5.3.1 Min Hash on set S

for i = 1 to N do
if (S(i) = 1) then

for j = 1 to k do
if (hj(i) < cj) then

cj hj(i)

On output mj(S) = cj . If there are n elements total in the set, the first for and if can be made to
just iterate over these elements so the runtime is only nk. And the output space of a single set is only
k = (2/"2) ln(2/�) which is independent of the size of the original set. The space for n sets is only nk.

CS 6955 Data Mining; Spring 2013 Instructor: Jeff M. Phillips, University of Utah

I Now we have an extremely efficient method for estimating a Jaccard coefficient

for a single pair of two documents.

I But we still have to estimate O(N2) coefficients where N is the number of web

pages and still is intractable.

I A solution is locality sensitive hashing (LSH)

13/44

Spam pages

The goal of spamming on the web

1. You have a page that will generate lots of revenue for you if people visit it.

2. Therefore, you would like to direct visitors to this page.

3. One way of doing this: get your page ranked highly in search results.

14/44

Spam technique: Keyword stuffing / Hidden text

1. Misleading meta-tags, excessive repetition

2. Hidden text with colors, style sheet tricks etc.

3. Used to be very effective, most search engines now catch these

15/44

Spam technique: Doorway and lander pages

Doorway page optimized for a single keyword, redirects to the real target page.

Lander page optimized for a single keyword or a misspelled domain name, designed

to attract surfers who will then click on ads.

16/44

Spam technique: Duplication

1. Get good content from somewhere (steal it or produce it yourself)

2. Publish a large number of slight variations of it

3. For example, publish the answer to a tax question with the spelling variations of

“tax deferred” on the previous slide

17/44

Spam technique: Link spam

1. Create lots of links pointing to the page you want to promote

2. Put these links on pages with high (or at least non-zero) PageRank

I Newly registered domains (domain flooding)
I A set of pages that all point to each other to boost each other’s PageRank
I Pay somebody to put your link on their highly ranked page
I Leave comments that include the link on blogs

18/44

SEO: Search engine optimization

1. Promoting a page in the search rankings is not necessarily spam.

2. It can also be a legitimate business – which is called SEO.

3. You can hire an SEO firm to get your page highly ranked.

4. There are many legitimate reasons for doing this.

I For example, Google bombs like Who is a failure?

5. And there are many legitimate ways of achieving this:

I Restructure your content in a way that makes it easy to index
I Talk with influential bloggers and have them link to your site
I Add more interesting and original content

19/44

The war against spam

1. Quality indicators

I Links, statistically analyzed (PageRank etc)
I Usage (users visiting a page)
I No adult content (e.g., no pictures with flesh-tone)
I Distribution and structure of text

2. Combine all of these indicators and use machine learning

3. Editorial intervention

I Blacklists
I Top queries audited
I Complaints addressed
I Suspect patterns detected

20/44

Web IR

Web IR: Differences from traditional IR

Links The web is a hyperlinked document collection.

Queries Web queries are different, more varied and there are a lot of them. How

many?

Users Users are different, more varied and there are a lot of them. How many?

Documents Documents are different, more varied and there are a lot of them. How

many?

Context Context is more important on the web than in many other IR applications.

Ads and spam

21/44

Bowtie structure of the web

Bowtie structure of the web

Strongly connected component (SCC) in the center
Lots of pages that get linked to, but don’t link (OUT)
Lots of pages that link to other pages, but don’t get linked to (IN)
Tendrils, tubes, islands

74 / 123

1. Strongly connected component (SCC) in the center

2. Lots of pages that get linked to, but don’t link (OUT)

3. Lots of pages that link to other pages, but don’t get linked to (IN)

4. Tendrils, tubes, islands

22/44

How do users evaluate search engines?

1. Classic IR relevance (as measured by F) can also be used for web IR.

2. Equally important: Trust, duplicate elimination, readability, loads fast, no pop-ups

3. On the web, precision is more important than recall.

I Precision at 1, precision at 10, precision on the first 2-3 pages
I But there is a subset of queries where recall matters.

23/44

Search in a hyperlinked collection

I Web search in most cases is interleaved with navigation (with following links).

I Different from most other IR collections

I Distributed content creation: no design, no coordination

I Unstructured (text, html), semistructured (html, xml), structured/relational

(databases)

I Dynamically generated content

24/44

Size of the web

Size of the web

1. What is size? Number of web servers? Number of pages? Terabytes of data

available?

2. Some servers are seldom connected (such as your laptop running a web server)

3. The dynamic web is infinite.

25/44

Sampling methods

1. Random queries

2. Random searches

3. Random IP addresses

4. Random walks

26/44

Variant: Estimate relative sizes of indexes

1. There are significant differences between indexes of different search engines (max

url depth, max count/host, anti-spam rules, priority rules etc.).

2. Different engines have different preferences.

3. Different engines index different things under the same URL (anchor text, frames,

meta-keywords, size of prefix etc.).

27/44

Sampling URLs

I Generate a random URL

I Problem: Random URLs are hard to find (and sampling distribution should reflect

user interest)

I Approach 1: Random walks / IP addresses : In theory: might give us a true

estimate of the size of the web (as opposed to just relative sizes of index)

I Approach 2: Generate a random URL contained in a given engine: Suffices for

accurate estimation of relative size

28/44

Random URLs from random queries

I Use vocabulary of the web for query generation

I Vocabulary can be generated from web crawl

I Use conjunctive queries w1 AND w2 (such as vocalists AND rsi)

I Get result set of one hundred URLs from the source engine

I Choose a random URL from the result set

I This sampling method induces a weight W (p) for each page p.

29/44

Checking if a page is in the index

1. Search for URL if the engine supports this or create a query that will find doc d
with high probability.

I Download doc, extract words
I Use 8 low frequency word as AND query
I Call this a strong query for d
I Run query
I Check if d is in result set

2. Problems

I Near duplicates
I Redirects
I Engine time-outs

30/44

Random searches

I Choose random searches extracted from a search engine log.

I Use only queries with small result sets.

I For each random query: compute ratio size(r1)/size(r2) of the two result sets

I Average over random searches

31/44

Summary

1. Many different approaches to web size estimation.

2. None is perfect.

3. The problem has gotten much harder.

4. There hasn’t been a good study for a couple of years.

5. Great topic for a thesis!

32/44

Web crawler

Basic crawler operation

1. Initialize queue with URLs of known seed pages

2. Repeat

I Take URL from queue
I Fetch and parse page
I Extract URLs from page
I Add URLs to queue

3. Fundamental assumption: The web is well linked.

33/44

What’s wrong with the simple crawler

1. Scale: we need to distribute.

2. We can’t index everything: we need to subselect. How?

3. Duplicates: need to integrate duplicate detection

4. Spam: need to integrate spam detection

5. Politeness: Web servers have policies (implicit/explicit) for regulating the rate at

which a crawler can visit them. These policies must be respected.

6. Freshness: we need to recrawl periodically.

I Because of the size of the web, we can do frequent recrawls only for a small subset.
I Again, subselection problem or prioritization

34/44

What a crawler must do?

1. Be polite

I Don’t hit a site too often
I Only crawl pages you are allowed to crawl: robots.txt

2. Be robust

I Be immune to duplicates, very large pages, very large websites, dynamic pages etc

35/44

Robots.txt

1. Protocol for giving crawlers (“robots”) limited access to a website, originally from

1994

2. Examples:

I User-agent: *

Disallow: /yoursite/temp/
I User-agent: searchengine

Disallow:

3. Important: cache the robots.txt file of each site we are crawling

36/44

A real crawler

Basic crawl architecture

Recap A simple crawler A real crawler

Basic crawl architecture

www

fetch

DNS

parse

URL frontier

content
seen?

✓
✒

✏
✑✒✑

doc
FPs ✓

✒
✏
✑✒✑

robots
templates ✓

✒
✏
✑✒✑

URL
set

URL
filter

dup
URL
elim✲

✛

✲

✻

✛ ✲

❄
✻

✲ ✲ ✲

✛

✻
❄

✻
❄

✻
❄

Schütze: Crawling 20 / 3237/44

URL frontier

I The URL frontier is the data structure that holds and manages URLs we’ve seen,

but that have not been crawled yet.

I Can include multiple pages from the same host

I Must avoid trying to fetch them all at the same time

I Must keep all crawling threads busy

38/44

URL frontier: Two main considerations

I Politeness: Don’t hit a web server too frequently

I E.g., insert a time gap between successive requests to the same server

I Freshness: Crawl some pages (e.g., news sites) more often than others

I Not an easy problem: simple priority queue fails.

39/44

URL frontier Recap A simple crawler A real crawler

Mercator URL frontier

b. queue selector

f. queue selector & b. queue router

prioritizer

♣ ♣ ♣ ♣B back queues:

single host on each

♣ ♣ ♣

♣

♣F front queues

1 F

1 B

❳❳❳❳❳❳③
❳❳❳❳❳❳③

✘✘✘✘✘✘✾

✘✘✘✘✘✘✾
✘✘✘✘✘✘✾

❳❳❳❳❳❳③

✏✏✏✏✏✏✮
✏✏✏✏✏✏✮

''''''(

❍❍❍❍❍❥

❍❍❍❍❍❥

✟✟✟✟✟✙

❄

❄

✲✛ heap

URLs flow in from the top
into the frontier.

Schütze: Crawling 27 / 32

40/44

Distributing the crawler

1. Run multiple crawl threads, potentially at different nodes

2. Usually geographically distributed nodes

3. Partition hosts being crawled into nodes

41/44

Distributed crawl architecture

Recap A simple crawler A real crawler

Distributed crawler

www

fetch

DNS

parse

URL frontier

content
seen?

✓
✒

✏
✑✍ ✌

doc
FPs ✓

✒
✏
✑✍ ✌

URL
set

URL
filter

host
splitter

to
other
nodes

from
other
nodes

dup
URL
elim✲

✛

✲

✻

✛✲

❄
✻

✲ ✲ ✲ ✲

✛

✻❄ ✻❄✻✻✻

✲✲✲

Schütze: Crawling 25 / 3242/44

References

Reading

1. Chapters 19 and 20 of Introduction to Information Retrieval1

1Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze (2008). Introduction to

Information Retrieval. New York, NY, USA: Cambridge University Press.

43/44

References

Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schütze (2008).

Introduction to Information Retrieval. New York, NY, USA: Cambridge University

Press.

44/44

Questions?

44/44

	Introduction
	Duplicate detection
	Spam pages
	Web IR
	Size of the web
	Web crawler
	A real crawler
	References

