Modern Information Retrieval

Introduction¹

Hamid Beigy

Sharif University of Technology

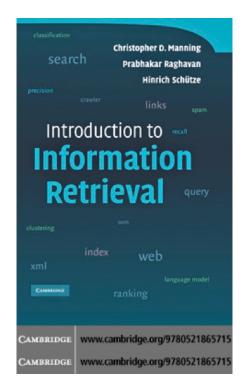
September 25, 2022

¹Some slides have been adapted from slides of Manning, Yannakoudakis, and Schütze.

- 1. Course Information
- 2. Introduction
- 3. Course overview

Course Information

- 1. Course name : Modern Information Retrieval
- Instructor : Hamid Beigy Email : beigy@sharif.edu
- 3. Class : CE 102
- 4. Virtual class link: https://vc.sharif.edu/ch/beigy
- 5. Course Website: http://ce.sharif.edu/courses/01-02/1/ce324-1/ http://sharif.edu/~beigy/14011-40324.html
- 6. Lectures: Sat-Mon (9:00-10:30)
- 7. TAs :


Hossein Mirzaiee Email: mirhosseinsadegh@yahoo.com

• Evaluation:

Mid-term exam	30%	1401/09/02
Final exam	30%	
Practical Assignments	30%	
Quiz	10%	

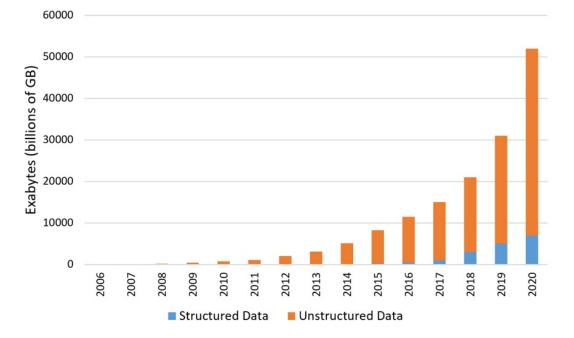
- Baeza-Yates, Ricardo and Berthier Ribeiro-Neto (2011). *Modern Information Retrieval*. 2nd. USA: Addison-Wesley Publishing Company. ISBN: 9780321416919.
- Kowalski, Gerald (2010). Information Retrieval Architecture and Algorithms. 1st. Berlin, Heidelberg: Springer-Verlag. ISBN: 1441977155, 9781441977151.
- Li, Hang (2011). Learning to Rank for Information Retrieval and Natural Language Processing. Morgan & Claypool Publishers.
- Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schütze (2008). *Introduction to Information Retrieval*. New York, NY, USA: Cambridge University Press.
- Mitra, Bhaskar and Nick Craswell (2018). "An Introduction to Neural Information Retrieval". In: Foundations and Trends in Information Retrieval: 13.1, pp. 1–126.

Introduction

$1. \ \mbox{We}$ define the information retrieval as

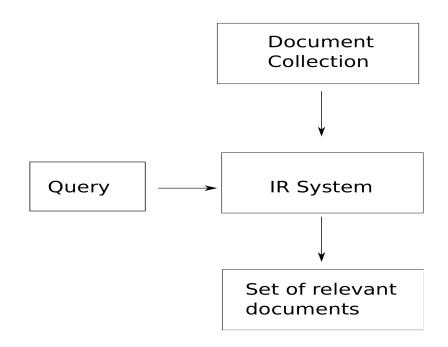
Definition (Information retrieval)

Information retrieval (IR) is finding material (usually documents) of an unstructured nature (usually text) that satisfies an information need from within large collections (usually stored on computers).

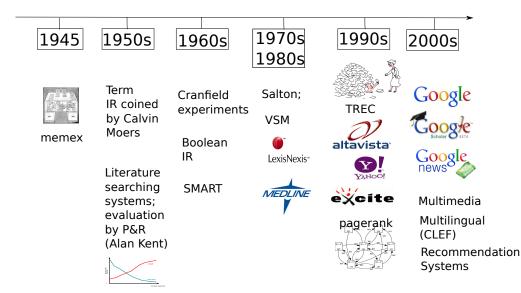

- 2. Document Collection: units we have built an IR system over. Documents can be
 - memos
 - book chapters paragraphs
 - scenes of a movie
 - turns in a conversation...
- 3. These days we frequently think first of web search, but there are many other cases:
 - E-mail search
 - Searching your laptop
 - Corporate knowledge bases
 - Legal information retrieval

- 1. Unstructured data means that a formal, semantically overt, easy-for-computer structure is missing.
- 2. In contrast to the rigidly structured data used in DB style searching (e.g. product inventories, personnel records) SELECT * FROM BUSINESS-CATALOGUE WHERE CATEGORY = "FLORIST" AND CITY-ZIP = "CB1"
- 3. This does not mean that there is no structure in the data
 - Document structure (headings, paragraphs, lists. . .)
 - Explicit markup formatting (e.g. in HTML, XML. . .)
 - Linguistic structure (latent, hidden)

- 1. Information retrieval (IR) is finding material (usually documents) of an unstructured nature (usually text) that satisfies an information need from within large collections (usually stored on computers).
- 2. An information need is the topic about which the user desires to know more about.
- 3. A query is what the user conveys to the computer in an attempt to communicate the information need.
- 4. Types of information needs
 - Known-item search
 - Precise information seeking search
 - Open-ended search ("topical search")



- 1. A document is relevant if the user perceives that it contains information of value with respect to their personal information need.
- 2. Are the retrieved documents
 - about the target subject ?
 - up-to-date?
 - from a trusted source?
 - satisfying the user's needs?
- 3. How should we rank documents in terms of these factors?



- ► The effectiveness of an IR system (i.e., the quality of its search results) is determined by two key statistics about the system's returned results for a query:
 - Precision: What fraction of the returned results are relevant to the information need?
 - Recall: What fraction of the relevant documents in the collection were returned by the system?
 - What is the best balance between the two?
 - Easy to get perfect recall: just retrieve everything
 - Easy to get good precision: retrieve only the most relevant

1960-1970²

- Initial exploration of text retrieval systems for "small" corpora of scientific abstracts, and law and business documents.
- > Development of the basic Boolean and vector-space models of retrieval.
- Prof. Salton and his students at Cornell University are the leading researchers in the area

1970-1980

 Large document database systems, many run by companies (Lexis-Nexis and Dialog and MEDLINE)

1980-1990

- Searching FTPable documents on the Internet (Archie and WAIS)
- Searching the World Wide Web (Lycos and Yahoo and Altavista)

1990-2000

- Searching FTPable documents on the Internet (Archie and WAIS)
- Searching the World Wide Web (Lycos and Yahoo and Altavista)
- Organized Competitions (NIST and TREC)
- Searching the World Wide Web (Ringo and Amazon and NetPerceptions)

Automated Text Categorization & Clustering

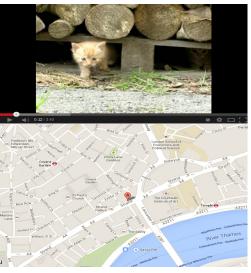
2000-2010

- Link analysis for Web Search (Google)
- Parallel Processing (Map-Reduce)
- Question Answering (TREC Q/A track)
- Multimedia IR (Image and Video and Audio and music)
- Cross-Language IR
- Document Summarization

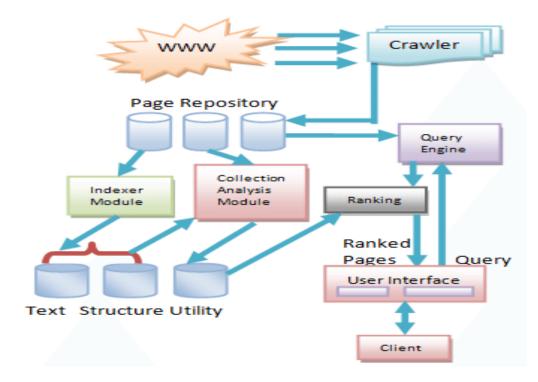
2010-2020

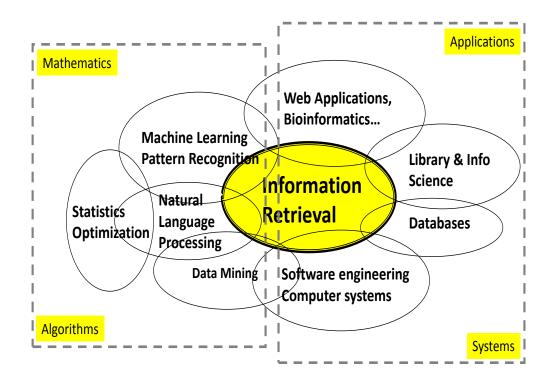
- Intelligent Personal Assistants (Siri, Cortana, Google, and Alexa)
- Complex Question Answering (IBM Watson)
- Distributional Semantics
- Deep Learning

2020-****


 By 2025, the researchers believes that we have rich multi-sensorial experiences that will be capable of producing hallucinations which blend or alter perceived reality.

²This slide is taken from Prof. Sampath Jayarathna slides.





- ► Which plays of Shakespeare contain the words BRUTUS AND CAESAR, but NOT CALPURNIA?
- ► One could grep all of Shakespeare's plays for BRUTUS and CAESAR, then strip out lines containing CALPURNIA.
- Why is grep not the solution?
 - Slow (for large collections)
 - grep is line-oriented, IR is document-oriented
 - "NOT CALPURNIA" is non-trivial
 - ▶ Other operations (e.g., find the word ROMANS near COUNTRYMAN) not feasible

Course overview

- Introduction
- Indexing and text operations
- IR models (Boolean, vector space, probabilistic)
- Evaluation of IR systems
- Query operations
- Language models
- Machine Learning in IR (classification, clustering, and learning to rank)
- Dimensionality reduction and word embedding
- Web information retrieval and search engines
- Some advanced topics
 - Recommender systems
 - Personalized IR
 - Sentiment Analysis
 - Corss-lingual IR
 - QA systems
 - Neural information retrieval

Questions?

